sha256-avx-asm.S
16.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
########################################################################
# Implement fast SHA-256 with AVX1 instructions. (x86_64)
#
# Copyright (C) 2013 Intel Corporation.
#
# Authors:
# James Guilford <james.guilford@intel.com>
# Kirk Yap <kirk.s.yap@intel.com>
# Tim Chen <tim.c.chen@linux.intel.com>
#
# This software is available to you under a choice of one of two
# licenses. You may choose to be licensed under the terms of the GNU
# General Public License (GPL) Version 2, available from the file
# COPYING in the main directory of this source tree, or the
# OpenIB.org BSD license below:
#
# Redistribution and use in source and binary forms, with or
# without modification, are permitted provided that the following
# conditions are met:
#
# - Redistributions of source code must retain the above
# copyright notice, this list of conditions and the following
# disclaimer.
#
# - Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials
# provided with the distribution.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
########################################################################
#
# This code is described in an Intel White-Paper:
# "Fast SHA-256 Implementations on Intel Architecture Processors"
#
# To find it, surf to http://www.intel.com/p/en_US/embedded
# and search for that title.
#
########################################################################
# This code schedules 1 block at a time, with 4 lanes per block
########################################################################
#ifdef CONFIG_AS_AVX
#include <linux/linkage.h>
## assume buffers not aligned
#define VMOVDQ vmovdqu
################################ Define Macros
# addm [mem], reg
# Add reg to mem using reg-mem add and store
.macro addm p1 p2
add \p1, \p2
mov \p2, \p1
.endm
.macro MY_ROR p1 p2
shld $(32-(\p1)), \p2, \p2
.endm
################################
# COPY_XMM_AND_BSWAP xmm, [mem], byte_flip_mask
# Load xmm with mem and byte swap each dword
.macro COPY_XMM_AND_BSWAP p1 p2 p3
VMOVDQ \p2, \p1
vpshufb \p3, \p1, \p1
.endm
################################
X0 = %xmm4
X1 = %xmm5
X2 = %xmm6
X3 = %xmm7
XTMP0 = %xmm0
XTMP1 = %xmm1
XTMP2 = %xmm2
XTMP3 = %xmm3
XTMP4 = %xmm8
XFER = %xmm9
XTMP5 = %xmm11
SHUF_00BA = %xmm10 # shuffle xBxA -> 00BA
SHUF_DC00 = %xmm12 # shuffle xDxC -> DC00
BYTE_FLIP_MASK = %xmm13
NUM_BLKS = %rdx # 3rd arg
CTX = %rsi # 2nd arg
INP = %rdi # 1st arg
SRND = %rdi # clobbers INP
c = %ecx
d = %r8d
e = %edx
TBL = %rbp
a = %eax
b = %ebx
f = %r9d
g = %r10d
h = %r11d
y0 = %r13d
y1 = %r14d
y2 = %r15d
_INP_END_SIZE = 8
_INP_SIZE = 8
_XFER_SIZE = 16
_XMM_SAVE_SIZE = 0
_INP_END = 0
_INP = _INP_END + _INP_END_SIZE
_XFER = _INP + _INP_SIZE
_XMM_SAVE = _XFER + _XFER_SIZE
STACK_SIZE = _XMM_SAVE + _XMM_SAVE_SIZE
# rotate_Xs
# Rotate values of symbols X0...X3
.macro rotate_Xs
X_ = X0
X0 = X1
X1 = X2
X2 = X3
X3 = X_
.endm
# ROTATE_ARGS
# Rotate values of symbols a...h
.macro ROTATE_ARGS
TMP_ = h
h = g
g = f
f = e
e = d
d = c
c = b
b = a
a = TMP_
.endm
.macro FOUR_ROUNDS_AND_SCHED
## compute s0 four at a time and s1 two at a time
## compute W[-16] + W[-7] 4 at a time
mov e, y0 # y0 = e
MY_ROR (25-11), y0 # y0 = e >> (25-11)
mov a, y1 # y1 = a
vpalignr $4, X2, X3, XTMP0 # XTMP0 = W[-7]
MY_ROR (22-13), y1 # y1 = a >> (22-13)
xor e, y0 # y0 = e ^ (e >> (25-11))
mov f, y2 # y2 = f
MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6))
xor a, y1 # y1 = a ^ (a >> (22-13)
xor g, y2 # y2 = f^g
vpaddd X0, XTMP0, XTMP0 # XTMP0 = W[-7] + W[-16]
xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
and e, y2 # y2 = (f^g)&e
MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2))
## compute s0
vpalignr $4, X0, X1, XTMP1 # XTMP1 = W[-15]
xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
xor g, y2 # y2 = CH = ((f^g)&e)^g
MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
add y0, y2 # y2 = S1 + CH
add _XFER(%rsp), y2 # y2 = k + w + S1 + CH
mov a, y0 # y0 = a
add y2, h # h = h + S1 + CH + k + w
mov a, y2 # y2 = a
vpsrld $7, XTMP1, XTMP2
or c, y0 # y0 = a|c
add h, d # d = d + h + S1 + CH + k + w
and c, y2 # y2 = a&c
vpslld $(32-7), XTMP1, XTMP3
and b, y0 # y0 = (a|c)&b
add y1, h # h = h + S1 + CH + k + w + S0
vpor XTMP2, XTMP3, XTMP3 # XTMP1 = W[-15] MY_ROR 7
or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c)
add y0, h # h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
mov e, y0 # y0 = e
mov a, y1 # y1 = a
MY_ROR (25-11), y0 # y0 = e >> (25-11)
xor e, y0 # y0 = e ^ (e >> (25-11))
mov f, y2 # y2 = f
MY_ROR (22-13), y1 # y1 = a >> (22-13)
vpsrld $18, XTMP1, XTMP2 #
xor a, y1 # y1 = a ^ (a >> (22-13)
MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6))
xor g, y2 # y2 = f^g
vpsrld $3, XTMP1, XTMP4 # XTMP4 = W[-15] >> 3
MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2))
xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
and e, y2 # y2 = (f^g)&e
MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
vpslld $(32-18), XTMP1, XTMP1
xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
xor g, y2 # y2 = CH = ((f^g)&e)^g
vpxor XTMP1, XTMP3, XTMP3 #
add y0, y2 # y2 = S1 + CH
add (1*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH
MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
vpxor XTMP2, XTMP3, XTMP3 # XTMP1 = W[-15] MY_ROR 7 ^ W[-15] MY_ROR
mov a, y0 # y0 = a
add y2, h # h = h + S1 + CH + k + w
mov a, y2 # y2 = a
vpxor XTMP4, XTMP3, XTMP1 # XTMP1 = s0
or c, y0 # y0 = a|c
add h, d # d = d + h + S1 + CH + k + w
and c, y2 # y2 = a&c
## compute low s1
vpshufd $0b11111010, X3, XTMP2 # XTMP2 = W[-2] {BBAA}
and b, y0 # y0 = (a|c)&b
add y1, h # h = h + S1 + CH + k + w + S0
vpaddd XTMP1, XTMP0, XTMP0 # XTMP0 = W[-16] + W[-7] + s0
or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c)
add y0, h # h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
mov e, y0 # y0 = e
mov a, y1 # y1 = a
MY_ROR (25-11), y0 # y0 = e >> (25-11)
xor e, y0 # y0 = e ^ (e >> (25-11))
MY_ROR (22-13), y1 # y1 = a >> (22-13)
mov f, y2 # y2 = f
xor a, y1 # y1 = a ^ (a >> (22-13)
MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6))
vpsrld $10, XTMP2, XTMP4 # XTMP4 = W[-2] >> 10 {BBAA}
xor g, y2 # y2 = f^g
vpsrlq $19, XTMP2, XTMP3 # XTMP3 = W[-2] MY_ROR 19 {xBxA}
xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
and e, y2 # y2 = (f^g)&e
vpsrlq $17, XTMP2, XTMP2 # XTMP2 = W[-2] MY_ROR 17 {xBxA}
MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2))
xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
xor g, y2 # y2 = CH = ((f^g)&e)^g
MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
vpxor XTMP3, XTMP2, XTMP2 #
add y0, y2 # y2 = S1 + CH
MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
add (2*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH
vpxor XTMP2, XTMP4, XTMP4 # XTMP4 = s1 {xBxA}
mov a, y0 # y0 = a
add y2, h # h = h + S1 + CH + k + w
mov a, y2 # y2 = a
vpshufb SHUF_00BA, XTMP4, XTMP4 # XTMP4 = s1 {00BA}
or c, y0 # y0 = a|c
add h, d # d = d + h + S1 + CH + k + w
and c, y2 # y2 = a&c
vpaddd XTMP4, XTMP0, XTMP0 # XTMP0 = {..., ..., W[1], W[0]}
and b, y0 # y0 = (a|c)&b
add y1, h # h = h + S1 + CH + k + w + S0
## compute high s1
vpshufd $0b01010000, XTMP0, XTMP2 # XTMP2 = W[-2] {DDCC}
or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c)
add y0, h # h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
mov e, y0 # y0 = e
MY_ROR (25-11), y0 # y0 = e >> (25-11)
mov a, y1 # y1 = a
MY_ROR (22-13), y1 # y1 = a >> (22-13)
xor e, y0 # y0 = e ^ (e >> (25-11))
mov f, y2 # y2 = f
MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6))
vpsrld $10, XTMP2, XTMP5 # XTMP5 = W[-2] >> 10 {DDCC}
xor a, y1 # y1 = a ^ (a >> (22-13)
xor g, y2 # y2 = f^g
vpsrlq $19, XTMP2, XTMP3 # XTMP3 = W[-2] MY_ROR 19 {xDxC}
xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
and e, y2 # y2 = (f^g)&e
MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2))
vpsrlq $17, XTMP2, XTMP2 # XTMP2 = W[-2] MY_ROR 17 {xDxC}
xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
xor g, y2 # y2 = CH = ((f^g)&e)^g
vpxor XTMP3, XTMP2, XTMP2
MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
add y0, y2 # y2 = S1 + CH
add (3*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH
vpxor XTMP2, XTMP5, XTMP5 # XTMP5 = s1 {xDxC}
mov a, y0 # y0 = a
add y2, h # h = h + S1 + CH + k + w
mov a, y2 # y2 = a
vpshufb SHUF_DC00, XTMP5, XTMP5 # XTMP5 = s1 {DC00}
or c, y0 # y0 = a|c
add h, d # d = d + h + S1 + CH + k + w
and c, y2 # y2 = a&c
vpaddd XTMP0, XTMP5, X0 # X0 = {W[3], W[2], W[1], W[0]}
and b, y0 # y0 = (a|c)&b
add y1, h # h = h + S1 + CH + k + w + S0
or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c)
add y0, h # h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
rotate_Xs
.endm
## input is [rsp + _XFER + %1 * 4]
.macro DO_ROUND round
mov e, y0 # y0 = e
MY_ROR (25-11), y0 # y0 = e >> (25-11)
mov a, y1 # y1 = a
xor e, y0 # y0 = e ^ (e >> (25-11))
MY_ROR (22-13), y1 # y1 = a >> (22-13)
mov f, y2 # y2 = f
xor a, y1 # y1 = a ^ (a >> (22-13)
MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6))
xor g, y2 # y2 = f^g
xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2))
and e, y2 # y2 = (f^g)&e
xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
xor g, y2 # y2 = CH = ((f^g)&e)^g
add y0, y2 # y2 = S1 + CH
MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
offset = \round * 4 + _XFER #
add offset(%rsp), y2 # y2 = k + w + S1 + CH
mov a, y0 # y0 = a
add y2, h # h = h + S1 + CH + k + w
mov a, y2 # y2 = a
or c, y0 # y0 = a|c
add h, d # d = d + h + S1 + CH + k + w
and c, y2 # y2 = a&c
and b, y0 # y0 = (a|c)&b
add y1, h # h = h + S1 + CH + k + w + S0
or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c)
add y0, h # h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
.endm
########################################################################
## void sha256_transform_avx(void *input_data, UINT32 digest[8], UINT64 num_blks)
## arg 1 : pointer to input data
## arg 2 : pointer to digest
## arg 3 : Num blocks
########################################################################
.text
ENTRY(sha256_transform_avx)
.align 32
pushq %rbx
pushq %rbp
pushq %r13
pushq %r14
pushq %r15
pushq %r12
mov %rsp, %r12
subq $STACK_SIZE, %rsp # allocate stack space
and $~15, %rsp # align stack pointer
shl $6, NUM_BLKS # convert to bytes
jz done_hash
add INP, NUM_BLKS # pointer to end of data
mov NUM_BLKS, _INP_END(%rsp)
## load initial digest
mov 4*0(CTX), a
mov 4*1(CTX), b
mov 4*2(CTX), c
mov 4*3(CTX), d
mov 4*4(CTX), e
mov 4*5(CTX), f
mov 4*6(CTX), g
mov 4*7(CTX), h
vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK
vmovdqa _SHUF_00BA(%rip), SHUF_00BA
vmovdqa _SHUF_DC00(%rip), SHUF_DC00
loop0:
lea K256(%rip), TBL
## byte swap first 16 dwords
COPY_XMM_AND_BSWAP X0, 0*16(INP), BYTE_FLIP_MASK
COPY_XMM_AND_BSWAP X1, 1*16(INP), BYTE_FLIP_MASK
COPY_XMM_AND_BSWAP X2, 2*16(INP), BYTE_FLIP_MASK
COPY_XMM_AND_BSWAP X3, 3*16(INP), BYTE_FLIP_MASK
mov INP, _INP(%rsp)
## schedule 48 input dwords, by doing 3 rounds of 16 each
mov $3, SRND
.align 16
loop1:
vpaddd (TBL), X0, XFER
vmovdqa XFER, _XFER(%rsp)
FOUR_ROUNDS_AND_SCHED
vpaddd 1*16(TBL), X0, XFER
vmovdqa XFER, _XFER(%rsp)
FOUR_ROUNDS_AND_SCHED
vpaddd 2*16(TBL), X0, XFER
vmovdqa XFER, _XFER(%rsp)
FOUR_ROUNDS_AND_SCHED
vpaddd 3*16(TBL), X0, XFER
vmovdqa XFER, _XFER(%rsp)
add $4*16, TBL
FOUR_ROUNDS_AND_SCHED
sub $1, SRND
jne loop1
mov $2, SRND
loop2:
vpaddd (TBL), X0, XFER
vmovdqa XFER, _XFER(%rsp)
DO_ROUND 0
DO_ROUND 1
DO_ROUND 2
DO_ROUND 3
vpaddd 1*16(TBL), X1, XFER
vmovdqa XFER, _XFER(%rsp)
add $2*16, TBL
DO_ROUND 0
DO_ROUND 1
DO_ROUND 2
DO_ROUND 3
vmovdqa X2, X0
vmovdqa X3, X1
sub $1, SRND
jne loop2
addm (4*0)(CTX),a
addm (4*1)(CTX),b
addm (4*2)(CTX),c
addm (4*3)(CTX),d
addm (4*4)(CTX),e
addm (4*5)(CTX),f
addm (4*6)(CTX),g
addm (4*7)(CTX),h
mov _INP(%rsp), INP
add $64, INP
cmp _INP_END(%rsp), INP
jne loop0
done_hash:
mov %r12, %rsp
popq %r12
popq %r15
popq %r14
popq %r13
popq %rbp
popq %rbx
ret
ENDPROC(sha256_transform_avx)
.data
.align 64
K256:
.long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
.long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
.long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
.long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
.long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
.long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
.long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
.long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
.long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
.long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
.long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
.long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
.long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
.long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
.long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
.long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
PSHUFFLE_BYTE_FLIP_MASK:
.octa 0x0c0d0e0f08090a0b0405060700010203
# shuffle xBxA -> 00BA
_SHUF_00BA:
.octa 0xFFFFFFFFFFFFFFFF0b0a090803020100
# shuffle xDxC -> DC00
_SHUF_DC00:
.octa 0x0b0a090803020100FFFFFFFFFFFFFFFF
#endif