xdg-shell-client-protocol.h 66.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
/* Generated by wayland-scanner 1.19.0 */

#ifndef XDG_SHELL_CLIENT_PROTOCOL_H
#define XDG_SHELL_CLIENT_PROTOCOL_H

#include <stdint.h>
#include <stddef.h>
#include "wayland-client.h"

#ifdef  __cplusplus
extern "C" {
#endif

/**
 * @page page_xdg_shell The xdg_shell protocol
 * @section page_ifaces_xdg_shell Interfaces
 * - @subpage page_iface_xdg_wm_base - create desktop-style surfaces
 * - @subpage page_iface_xdg_positioner - child surface positioner
 * - @subpage page_iface_xdg_surface - desktop user interface surface base interface
 * - @subpage page_iface_xdg_toplevel - toplevel surface
 * - @subpage page_iface_xdg_popup - short-lived, popup surfaces for menus
 * @section page_copyright_xdg_shell Copyright
 * <pre>
 *
 * Copyright © 2008-2013 Kristian Høgsberg
 * Copyright © 2013      Rafael Antognolli
 * Copyright © 2013      Jasper St. Pierre
 * Copyright © 2010-2013 Intel Corporation
 * Copyright © 2015-2017 Samsung Electronics Co., Ltd
 * Copyright © 2015-2017 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 * </pre>
 */
struct wl_output;
struct wl_seat;
struct wl_surface;
struct xdg_popup;
struct xdg_positioner;
struct xdg_surface;
struct xdg_toplevel;
struct xdg_wm_base;

#ifndef XDG_WM_BASE_INTERFACE
#define XDG_WM_BASE_INTERFACE
/**
 * @page page_iface_xdg_wm_base xdg_wm_base
 * @section page_iface_xdg_wm_base_desc Description
 *
 * The xdg_wm_base interface is exposed as a global object enabling clients
 * to turn their wl_surfaces into windows in a desktop environment. It
 * defines the basic functionality needed for clients and the compositor to
 * create windows that can be dragged, resized, maximized, etc, as well as
 * creating transient windows such as popup menus.
 * @section page_iface_xdg_wm_base_api API
 * See @ref iface_xdg_wm_base.
 */
/**
 * @defgroup iface_xdg_wm_base The xdg_wm_base interface
 *
 * The xdg_wm_base interface is exposed as a global object enabling clients
 * to turn their wl_surfaces into windows in a desktop environment. It
 * defines the basic functionality needed for clients and the compositor to
 * create windows that can be dragged, resized, maximized, etc, as well as
 * creating transient windows such as popup menus.
 */
extern const struct wl_interface xdg_wm_base_interface;
#endif
#ifndef XDG_POSITIONER_INTERFACE
#define XDG_POSITIONER_INTERFACE
/**
 * @page page_iface_xdg_positioner xdg_positioner
 * @section page_iface_xdg_positioner_desc Description
 *
 * The xdg_positioner provides a collection of rules for the placement of a
 * child surface relative to a parent surface. Rules can be defined to ensure
 * the child surface remains within the visible area's borders, and to
 * specify how the child surface changes its position, such as sliding along
 * an axis, or flipping around a rectangle. These positioner-created rules are
 * constrained by the requirement that a child surface must intersect with or
 * be at least partially adjacent to its parent surface.
 *
 * See the various requests for details about possible rules.
 *
 * At the time of the request, the compositor makes a copy of the rules
 * specified by the xdg_positioner. Thus, after the request is complete the
 * xdg_positioner object can be destroyed or reused; further changes to the
 * object will have no effect on previous usages.
 *
 * For an xdg_positioner object to be considered complete, it must have a
 * non-zero size set by set_size, and a non-zero anchor rectangle set by
 * set_anchor_rect. Passing an incomplete xdg_positioner object when
 * positioning a surface raises an error.
 * @section page_iface_xdg_positioner_api API
 * See @ref iface_xdg_positioner.
 */
/**
 * @defgroup iface_xdg_positioner The xdg_positioner interface
 *
 * The xdg_positioner provides a collection of rules for the placement of a
 * child surface relative to a parent surface. Rules can be defined to ensure
 * the child surface remains within the visible area's borders, and to
 * specify how the child surface changes its position, such as sliding along
 * an axis, or flipping around a rectangle. These positioner-created rules are
 * constrained by the requirement that a child surface must intersect with or
 * be at least partially adjacent to its parent surface.
 *
 * See the various requests for details about possible rules.
 *
 * At the time of the request, the compositor makes a copy of the rules
 * specified by the xdg_positioner. Thus, after the request is complete the
 * xdg_positioner object can be destroyed or reused; further changes to the
 * object will have no effect on previous usages.
 *
 * For an xdg_positioner object to be considered complete, it must have a
 * non-zero size set by set_size, and a non-zero anchor rectangle set by
 * set_anchor_rect. Passing an incomplete xdg_positioner object when
 * positioning a surface raises an error.
 */
extern const struct wl_interface xdg_positioner_interface;
#endif
#ifndef XDG_SURFACE_INTERFACE
#define XDG_SURFACE_INTERFACE
/**
 * @page page_iface_xdg_surface xdg_surface
 * @section page_iface_xdg_surface_desc Description
 *
 * An interface that may be implemented by a wl_surface, for
 * implementations that provide a desktop-style user interface.
 *
 * It provides a base set of functionality required to construct user
 * interface elements requiring management by the compositor, such as
 * toplevel windows, menus, etc. The types of functionality are split into
 * xdg_surface roles.
 *
 * Creating an xdg_surface does not set the role for a wl_surface. In order
 * to map an xdg_surface, the client must create a role-specific object
 * using, e.g., get_toplevel, get_popup. The wl_surface for any given
 * xdg_surface can have at most one role, and may not be assigned any role
 * not based on xdg_surface.
 *
 * A role must be assigned before any other requests are made to the
 * xdg_surface object.
 *
 * The client must call wl_surface.commit on the corresponding wl_surface
 * for the xdg_surface state to take effect.
 *
 * Creating an xdg_surface from a wl_surface which has a buffer attached or
 * committed is a client error, and any attempts by a client to attach or
 * manipulate a buffer prior to the first xdg_surface.configure call must
 * also be treated as errors.
 *
 * Mapping an xdg_surface-based role surface is defined as making it
 * possible for the surface to be shown by the compositor. Note that
 * a mapped surface is not guaranteed to be visible once it is mapped.
 *
 * For an xdg_surface to be mapped by the compositor, the following
 * conditions must be met:
 * (1) the client has assigned an xdg_surface-based role to the surface
 * (2) the client has set and committed the xdg_surface state and the
 * role-dependent state to the surface
 * (3) the client has committed a buffer to the surface
 *
 * A newly-unmapped surface is considered to have met condition (1) out
 * of the 3 required conditions for mapping a surface if its role surface
 * has not been destroyed.
 * @section page_iface_xdg_surface_api API
 * See @ref iface_xdg_surface.
 */
/**
 * @defgroup iface_xdg_surface The xdg_surface interface
 *
 * An interface that may be implemented by a wl_surface, for
 * implementations that provide a desktop-style user interface.
 *
 * It provides a base set of functionality required to construct user
 * interface elements requiring management by the compositor, such as
 * toplevel windows, menus, etc. The types of functionality are split into
 * xdg_surface roles.
 *
 * Creating an xdg_surface does not set the role for a wl_surface. In order
 * to map an xdg_surface, the client must create a role-specific object
 * using, e.g., get_toplevel, get_popup. The wl_surface for any given
 * xdg_surface can have at most one role, and may not be assigned any role
 * not based on xdg_surface.
 *
 * A role must be assigned before any other requests are made to the
 * xdg_surface object.
 *
 * The client must call wl_surface.commit on the corresponding wl_surface
 * for the xdg_surface state to take effect.
 *
 * Creating an xdg_surface from a wl_surface which has a buffer attached or
 * committed is a client error, and any attempts by a client to attach or
 * manipulate a buffer prior to the first xdg_surface.configure call must
 * also be treated as errors.
 *
 * Mapping an xdg_surface-based role surface is defined as making it
 * possible for the surface to be shown by the compositor. Note that
 * a mapped surface is not guaranteed to be visible once it is mapped.
 *
 * For an xdg_surface to be mapped by the compositor, the following
 * conditions must be met:
 * (1) the client has assigned an xdg_surface-based role to the surface
 * (2) the client has set and committed the xdg_surface state and the
 * role-dependent state to the surface
 * (3) the client has committed a buffer to the surface
 *
 * A newly-unmapped surface is considered to have met condition (1) out
 * of the 3 required conditions for mapping a surface if its role surface
 * has not been destroyed.
 */
extern const struct wl_interface xdg_surface_interface;
#endif
#ifndef XDG_TOPLEVEL_INTERFACE
#define XDG_TOPLEVEL_INTERFACE
/**
 * @page page_iface_xdg_toplevel xdg_toplevel
 * @section page_iface_xdg_toplevel_desc Description
 *
 * This interface defines an xdg_surface role which allows a surface to,
 * among other things, set window-like properties such as maximize,
 * fullscreen, and minimize, set application-specific metadata like title and
 * id, and well as trigger user interactive operations such as interactive
 * resize and move.
 *
 * Unmapping an xdg_toplevel means that the surface cannot be shown
 * by the compositor until it is explicitly mapped again.
 * All active operations (e.g., move, resize) are canceled and all
 * attributes (e.g. title, state, stacking, ...) are discarded for
 * an xdg_toplevel surface when it is unmapped.
 *
 * Attaching a null buffer to a toplevel unmaps the surface.
 * @section page_iface_xdg_toplevel_api API
 * See @ref iface_xdg_toplevel.
 */
/**
 * @defgroup iface_xdg_toplevel The xdg_toplevel interface
 *
 * This interface defines an xdg_surface role which allows a surface to,
 * among other things, set window-like properties such as maximize,
 * fullscreen, and minimize, set application-specific metadata like title and
 * id, and well as trigger user interactive operations such as interactive
 * resize and move.
 *
 * Unmapping an xdg_toplevel means that the surface cannot be shown
 * by the compositor until it is explicitly mapped again.
 * All active operations (e.g., move, resize) are canceled and all
 * attributes (e.g. title, state, stacking, ...) are discarded for
 * an xdg_toplevel surface when it is unmapped.
 *
 * Attaching a null buffer to a toplevel unmaps the surface.
 */
extern const struct wl_interface xdg_toplevel_interface;
#endif
#ifndef XDG_POPUP_INTERFACE
#define XDG_POPUP_INTERFACE
/**
 * @page page_iface_xdg_popup xdg_popup
 * @section page_iface_xdg_popup_desc Description
 *
 * A popup surface is a short-lived, temporary surface. It can be used to
 * implement for example menus, popovers, tooltips and other similar user
 * interface concepts.
 *
 * A popup can be made to take an explicit grab. See xdg_popup.grab for
 * details.
 *
 * When the popup is dismissed, a popup_done event will be sent out, and at
 * the same time the surface will be unmapped. See the xdg_popup.popup_done
 * event for details.
 *
 * Explicitly destroying the xdg_popup object will also dismiss the popup and
 * unmap the surface. Clients that want to dismiss the popup when another
 * surface of their own is clicked should dismiss the popup using the destroy
 * request.
 *
 * A newly created xdg_popup will be stacked on top of all previously created
 * xdg_popup surfaces associated with the same xdg_toplevel.
 *
 * The parent of an xdg_popup must be mapped (see the xdg_surface
 * description) before the xdg_popup itself.
 *
 * The client must call wl_surface.commit on the corresponding wl_surface
 * for the xdg_popup state to take effect.
 * @section page_iface_xdg_popup_api API
 * See @ref iface_xdg_popup.
 */
/**
 * @defgroup iface_xdg_popup The xdg_popup interface
 *
 * A popup surface is a short-lived, temporary surface. It can be used to
 * implement for example menus, popovers, tooltips and other similar user
 * interface concepts.
 *
 * A popup can be made to take an explicit grab. See xdg_popup.grab for
 * details.
 *
 * When the popup is dismissed, a popup_done event will be sent out, and at
 * the same time the surface will be unmapped. See the xdg_popup.popup_done
 * event for details.
 *
 * Explicitly destroying the xdg_popup object will also dismiss the popup and
 * unmap the surface. Clients that want to dismiss the popup when another
 * surface of their own is clicked should dismiss the popup using the destroy
 * request.
 *
 * A newly created xdg_popup will be stacked on top of all previously created
 * xdg_popup surfaces associated with the same xdg_toplevel.
 *
 * The parent of an xdg_popup must be mapped (see the xdg_surface
 * description) before the xdg_popup itself.
 *
 * The client must call wl_surface.commit on the corresponding wl_surface
 * for the xdg_popup state to take effect.
 */
extern const struct wl_interface xdg_popup_interface;
#endif

#ifndef XDG_WM_BASE_ERROR_ENUM
#define XDG_WM_BASE_ERROR_ENUM
enum xdg_wm_base_error
{
	/**
	 * given wl_surface has another role
	 */
	XDG_WM_BASE_ERROR_ROLE = 0,
	/**
	 * xdg_wm_base was destroyed before children
	 */
	XDG_WM_BASE_ERROR_DEFUNCT_SURFACES = 1,
	/**
	 * the client tried to map or destroy a non-topmost popup
	 */
	XDG_WM_BASE_ERROR_NOT_THE_TOPMOST_POPUP = 2,
	/**
	 * the client specified an invalid popup parent surface
	 */
	XDG_WM_BASE_ERROR_INVALID_POPUP_PARENT = 3,
	/**
	 * the client provided an invalid surface state
	 */
	XDG_WM_BASE_ERROR_INVALID_SURFACE_STATE = 4,
	/**
	 * the client provided an invalid positioner
	 */
	XDG_WM_BASE_ERROR_INVALID_POSITIONER = 5,
};
#endif /* XDG_WM_BASE_ERROR_ENUM */

/**
 * @ingroup iface_xdg_wm_base
 * @struct xdg_wm_base_listener
 */
struct xdg_wm_base_listener
{
	/**
	 * check if the client is alive
	 *
	 * The ping event asks the client if it's still alive. Pass the
	 * serial specified in the event back to the compositor by sending
	 * a "pong" request back with the specified serial. See
	 * xdg_wm_base.pong.
	 *
	 * Compositors can use this to determine if the client is still
	 * alive. It's unspecified what will happen if the client doesn't
	 * respond to the ping request, or in what timeframe. Clients
	 * should try to respond in a reasonable amount of time.
	 *
	 * A compositor is free to ping in any way it wants, but a client
	 * must always respond to any xdg_wm_base object it created.
	 * @param serial pass this to the pong request
	 */
	void (*ping)(void          *data,
			struct xdg_wm_base *xdg_wm_base,
			uint32_t            serial);
};

/**
 * @ingroup iface_xdg_wm_base
 */
static inline int
xdg_wm_base_add_listener(struct xdg_wm_base *xdg_wm_base,
		const struct xdg_wm_base_listener *listener, void *data)
{
	return wl_proxy_add_listener((struct wl_proxy *) xdg_wm_base,
				   (void(* *) (void))listener, data);
}

#define XDG_WM_BASE_DESTROY           0
#define XDG_WM_BASE_CREATE_POSITIONER 1
#define XDG_WM_BASE_GET_XDG_SURFACE   2
#define XDG_WM_BASE_PONG              3

/**
 * @ingroup iface_xdg_wm_base
 */
#define XDG_WM_BASE_PING_SINCE_VERSION 1

/**
 * @ingroup iface_xdg_wm_base
 */
#define XDG_WM_BASE_DESTROY_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_wm_base
 */
#define XDG_WM_BASE_CREATE_POSITIONER_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_wm_base
 */
#define XDG_WM_BASE_GET_XDG_SURFACE_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_wm_base
 */
#define XDG_WM_BASE_PONG_SINCE_VERSION 1

/** @ingroup iface_xdg_wm_base */
static inline void
xdg_wm_base_set_user_data(struct xdg_wm_base *xdg_wm_base, void *user_data)
{
	wl_proxy_set_user_data((struct wl_proxy *) xdg_wm_base, user_data);
}

/** @ingroup iface_xdg_wm_base */
static inline void *
xdg_wm_base_get_user_data(struct xdg_wm_base *xdg_wm_base)
{
	return wl_proxy_get_user_data((struct wl_proxy *) xdg_wm_base);
}

static inline uint32_t
xdg_wm_base_get_version(struct xdg_wm_base *xdg_wm_base)
{
	return wl_proxy_get_version((struct wl_proxy *) xdg_wm_base);
}

/**
 * @ingroup iface_xdg_wm_base
 *
 * Destroy this xdg_wm_base object.
 *
 * Destroying a bound xdg_wm_base object while there are surfaces
 * still alive created by this xdg_wm_base object instance is illegal
 * and will result in a protocol error.
 */
static inline void
xdg_wm_base_destroy(struct xdg_wm_base *xdg_wm_base)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_wm_base,
			XDG_WM_BASE_DESTROY);

	wl_proxy_destroy((struct wl_proxy *) xdg_wm_base);
}

/**
 * @ingroup iface_xdg_wm_base
 *
 * Create a positioner object. A positioner object is used to position
 * surfaces relative to some parent surface. See the interface description
 * and xdg_surface.get_popup for details.
 */
static inline struct xdg_positioner *
xdg_wm_base_create_positioner(struct xdg_wm_base *xdg_wm_base)
{
	struct wl_proxy *id;

	id = wl_proxy_marshal_constructor((struct wl_proxy *) xdg_wm_base,
					XDG_WM_BASE_CREATE_POSITIONER, &xdg_positioner_interface, NULL);

	return (struct xdg_positioner *) id;
}

/**
 * @ingroup iface_xdg_wm_base
 *
 * This creates an xdg_surface for the given surface. While xdg_surface
 * itself is not a role, the corresponding surface may only be assigned
 * a role extending xdg_surface, such as xdg_toplevel or xdg_popup.
 *
 * This creates an xdg_surface for the given surface. An xdg_surface is
 * used as basis to define a role to a given surface, such as xdg_toplevel
 * or xdg_popup. It also manages functionality shared between xdg_surface
 * based surface roles.
 *
 * See the documentation of xdg_surface for more details about what an
 * xdg_surface is and how it is used.
 */
static inline struct xdg_surface *
xdg_wm_base_get_xdg_surface(struct xdg_wm_base *xdg_wm_base, struct wl_surface *surface)
{
	struct wl_proxy *id;

	id = wl_proxy_marshal_constructor((struct wl_proxy *) xdg_wm_base,
					XDG_WM_BASE_GET_XDG_SURFACE, &xdg_surface_interface, NULL, surface);

	return (struct xdg_surface *) id;
}

/**
 * @ingroup iface_xdg_wm_base
 *
 * A client must respond to a ping event with a pong request or
 * the client may be deemed unresponsive. See xdg_wm_base.ping.
 */
static inline void
xdg_wm_base_pong(struct xdg_wm_base *xdg_wm_base, uint32_t serial)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_wm_base,
			XDG_WM_BASE_PONG, serial);
}

#ifndef XDG_POSITIONER_ERROR_ENUM
#define XDG_POSITIONER_ERROR_ENUM
enum xdg_positioner_error
{
	/**
	 * invalid input provided
	 */
	XDG_POSITIONER_ERROR_INVALID_INPUT = 0,
};
#endif /* XDG_POSITIONER_ERROR_ENUM */

#ifndef XDG_POSITIONER_ANCHOR_ENUM
#define XDG_POSITIONER_ANCHOR_ENUM
enum xdg_positioner_anchor
{
	XDG_POSITIONER_ANCHOR_NONE         = 0,
	XDG_POSITIONER_ANCHOR_TOP          = 1,
	XDG_POSITIONER_ANCHOR_BOTTOM       = 2,
	XDG_POSITIONER_ANCHOR_LEFT         = 3,
	XDG_POSITIONER_ANCHOR_RIGHT        = 4,
	XDG_POSITIONER_ANCHOR_TOP_LEFT     = 5,
	XDG_POSITIONER_ANCHOR_BOTTOM_LEFT  = 6,
	XDG_POSITIONER_ANCHOR_TOP_RIGHT    = 7,
	XDG_POSITIONER_ANCHOR_BOTTOM_RIGHT = 8,
};
#endif /* XDG_POSITIONER_ANCHOR_ENUM */

#ifndef XDG_POSITIONER_GRAVITY_ENUM
#define XDG_POSITIONER_GRAVITY_ENUM
enum xdg_positioner_gravity
{
	XDG_POSITIONER_GRAVITY_NONE         = 0,
	XDG_POSITIONER_GRAVITY_TOP          = 1,
	XDG_POSITIONER_GRAVITY_BOTTOM       = 2,
	XDG_POSITIONER_GRAVITY_LEFT         = 3,
	XDG_POSITIONER_GRAVITY_RIGHT        = 4,
	XDG_POSITIONER_GRAVITY_TOP_LEFT     = 5,
	XDG_POSITIONER_GRAVITY_BOTTOM_LEFT  = 6,
	XDG_POSITIONER_GRAVITY_TOP_RIGHT    = 7,
	XDG_POSITIONER_GRAVITY_BOTTOM_RIGHT = 8,
};
#endif /* XDG_POSITIONER_GRAVITY_ENUM */

#ifndef XDG_POSITIONER_CONSTRAINT_ADJUSTMENT_ENUM
#define XDG_POSITIONER_CONSTRAINT_ADJUSTMENT_ENUM
/**
 * @ingroup iface_xdg_positioner
 * vertically resize the surface
 *
 * Resize the surface vertically so that it is completely unconstrained.
 */
enum xdg_positioner_constraint_adjustment
{
	XDG_POSITIONER_CONSTRAINT_ADJUSTMENT_NONE     = 0,
	XDG_POSITIONER_CONSTRAINT_ADJUSTMENT_SLIDE_X  = 1,
	XDG_POSITIONER_CONSTRAINT_ADJUSTMENT_SLIDE_Y  = 2,
	XDG_POSITIONER_CONSTRAINT_ADJUSTMENT_FLIP_X   = 4,
	XDG_POSITIONER_CONSTRAINT_ADJUSTMENT_FLIP_Y   = 8,
	XDG_POSITIONER_CONSTRAINT_ADJUSTMENT_RESIZE_X = 16,
	XDG_POSITIONER_CONSTRAINT_ADJUSTMENT_RESIZE_Y = 32,
};
#endif /* XDG_POSITIONER_CONSTRAINT_ADJUSTMENT_ENUM */

#define XDG_POSITIONER_DESTROY                   0
#define XDG_POSITIONER_SET_SIZE                  1
#define XDG_POSITIONER_SET_ANCHOR_RECT           2
#define XDG_POSITIONER_SET_ANCHOR                3
#define XDG_POSITIONER_SET_GRAVITY               4
#define XDG_POSITIONER_SET_CONSTRAINT_ADJUSTMENT 5
#define XDG_POSITIONER_SET_OFFSET                6
#define XDG_POSITIONER_SET_REACTIVE              7
#define XDG_POSITIONER_SET_PARENT_SIZE           8
#define XDG_POSITIONER_SET_PARENT_CONFIGURE      9


/**
 * @ingroup iface_xdg_positioner
 */
#define XDG_POSITIONER_DESTROY_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_positioner
 */
#define XDG_POSITIONER_SET_SIZE_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_positioner
 */
#define XDG_POSITIONER_SET_ANCHOR_RECT_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_positioner
 */
#define XDG_POSITIONER_SET_ANCHOR_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_positioner
 */
#define XDG_POSITIONER_SET_GRAVITY_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_positioner
 */
#define XDG_POSITIONER_SET_CONSTRAINT_ADJUSTMENT_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_positioner
 */
#define XDG_POSITIONER_SET_OFFSET_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_positioner
 */
#define XDG_POSITIONER_SET_REACTIVE_SINCE_VERSION 3
/**
 * @ingroup iface_xdg_positioner
 */
#define XDG_POSITIONER_SET_PARENT_SIZE_SINCE_VERSION 3
/**
 * @ingroup iface_xdg_positioner
 */
#define XDG_POSITIONER_SET_PARENT_CONFIGURE_SINCE_VERSION 3

/** @ingroup iface_xdg_positioner */
static inline void
xdg_positioner_set_user_data(struct xdg_positioner *xdg_positioner, void *user_data)
{
	wl_proxy_set_user_data((struct wl_proxy *) xdg_positioner, user_data);
}

/** @ingroup iface_xdg_positioner */
static inline void *
xdg_positioner_get_user_data(struct xdg_positioner *xdg_positioner)
{
	return wl_proxy_get_user_data((struct wl_proxy *) xdg_positioner);
}

static inline uint32_t
xdg_positioner_get_version(struct xdg_positioner *xdg_positioner)
{
	return wl_proxy_get_version((struct wl_proxy *) xdg_positioner);
}

/**
 * @ingroup iface_xdg_positioner
 *
 * Notify the compositor that the xdg_positioner will no longer be used.
 */
static inline void
xdg_positioner_destroy(struct xdg_positioner *xdg_positioner)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_positioner,
			XDG_POSITIONER_DESTROY);

	wl_proxy_destroy((struct wl_proxy *) xdg_positioner);
}

/**
 * @ingroup iface_xdg_positioner
 *
 * Set the size of the surface that is to be positioned with the positioner
 * object. The size is in surface-local coordinates and corresponds to the
 * window geometry. See xdg_surface.set_window_geometry.
 *
 * If a zero or negative size is set the invalid_input error is raised.
 */
static inline void
xdg_positioner_set_size(struct xdg_positioner *xdg_positioner, int32_t width, int32_t height)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_positioner,
			XDG_POSITIONER_SET_SIZE, width, height);
}

/**
 * @ingroup iface_xdg_positioner
 *
 * Specify the anchor rectangle within the parent surface that the child
 * surface will be placed relative to. The rectangle is relative to the
 * window geometry as defined by xdg_surface.set_window_geometry of the
 * parent surface.
 *
 * When the xdg_positioner object is used to position a child surface, the
 * anchor rectangle may not extend outside the window geometry of the
 * positioned child's parent surface.
 *
 * If a negative size is set the invalid_input error is raised.
 */
static inline void
xdg_positioner_set_anchor_rect(struct xdg_positioner *xdg_positioner, int32_t x, int32_t y, int32_t width, int32_t height)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_positioner,
			XDG_POSITIONER_SET_ANCHOR_RECT, x, y, width, height);
}

/**
 * @ingroup iface_xdg_positioner
 *
 * Defines the anchor point for the anchor rectangle. The specified anchor
 * is used derive an anchor point that the child surface will be
 * positioned relative to. If a corner anchor is set (e.g. 'top_left' or
 * 'bottom_right'), the anchor point will be at the specified corner;
 * otherwise, the derived anchor point will be centered on the specified
 * edge, or in the center of the anchor rectangle if no edge is specified.
 */
static inline void
xdg_positioner_set_anchor(struct xdg_positioner *xdg_positioner, uint32_t anchor)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_positioner,
			XDG_POSITIONER_SET_ANCHOR, anchor);
}

/**
 * @ingroup iface_xdg_positioner
 *
 * Defines in what direction a surface should be positioned, relative to
 * the anchor point of the parent surface. If a corner gravity is
 * specified (e.g. 'bottom_right' or 'top_left'), then the child surface
 * will be placed towards the specified gravity; otherwise, the child
 * surface will be centered over the anchor point on any axis that had no
 * gravity specified.
 */
static inline void
xdg_positioner_set_gravity(struct xdg_positioner *xdg_positioner, uint32_t gravity)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_positioner,
			XDG_POSITIONER_SET_GRAVITY, gravity);
}

/**
 * @ingroup iface_xdg_positioner
 *
 * Specify how the window should be positioned if the originally intended
 * position caused the surface to be constrained, meaning at least
 * partially outside positioning boundaries set by the compositor. The
 * adjustment is set by constructing a bitmask describing the adjustment to
 * be made when the surface is constrained on that axis.
 *
 * If no bit for one axis is set, the compositor will assume that the child
 * surface should not change its position on that axis when constrained.
 *
 * If more than one bit for one axis is set, the order of how adjustments
 * are applied is specified in the corresponding adjustment descriptions.
 *
 * The default adjustment is none.
 */
static inline void
xdg_positioner_set_constraint_adjustment(struct xdg_positioner *xdg_positioner, uint32_t constraint_adjustment)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_positioner,
			XDG_POSITIONER_SET_CONSTRAINT_ADJUSTMENT, constraint_adjustment);
}

/**
 * @ingroup iface_xdg_positioner
 *
 * Specify the surface position offset relative to the position of the
 * anchor on the anchor rectangle and the anchor on the surface. For
 * example if the anchor of the anchor rectangle is at (x, y), the surface
 * has the gravity bottom|right, and the offset is (ox, oy), the calculated
 * surface position will be (x + ox, y + oy). The offset position of the
 * surface is the one used for constraint testing. See
 * set_constraint_adjustment.
 *
 * An example use case is placing a popup menu on top of a user interface
 * element, while aligning the user interface element of the parent surface
 * with some user interface element placed somewhere in the popup surface.
 */
static inline void
xdg_positioner_set_offset(struct xdg_positioner *xdg_positioner, int32_t x, int32_t y)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_positioner,
			XDG_POSITIONER_SET_OFFSET, x, y);
}

/**
 * @ingroup iface_xdg_positioner
 *
 * When set reactive, the surface is reconstrained if the conditions used
 * for constraining changed, e.g. the parent window moved.
 *
 * If the conditions changed and the popup was reconstrained, an
 * xdg_popup.configure event is sent with updated geometry, followed by an
 * xdg_surface.configure event.
 */
static inline void
xdg_positioner_set_reactive(struct xdg_positioner *xdg_positioner)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_positioner,
			XDG_POSITIONER_SET_REACTIVE);
}

/**
 * @ingroup iface_xdg_positioner
 *
 * Set the parent window geometry the compositor should use when
 * positioning the popup. The compositor may use this information to
 * determine the future state the popup should be constrained using. If
 * this doesn't match the dimension of the parent the popup is eventually
 * positioned against, the behavior is undefined.
 *
 * The arguments are given in the surface-local coordinate space.
 */
static inline void
xdg_positioner_set_parent_size(struct xdg_positioner *xdg_positioner, int32_t parent_width, int32_t parent_height)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_positioner,
			XDG_POSITIONER_SET_PARENT_SIZE, parent_width, parent_height);
}

/**
 * @ingroup iface_xdg_positioner
 *
 * Set the serial of a xdg_surface.configure event this positioner will be
 * used in response to. The compositor may use this information together
 * with set_parent_size to determine what future state the popup should be
 * constrained using.
 */
static inline void
xdg_positioner_set_parent_configure(struct xdg_positioner *xdg_positioner, uint32_t serial)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_positioner,
			XDG_POSITIONER_SET_PARENT_CONFIGURE, serial);
}

#ifndef XDG_SURFACE_ERROR_ENUM
#define XDG_SURFACE_ERROR_ENUM
enum xdg_surface_error
{
	XDG_SURFACE_ERROR_NOT_CONSTRUCTED     = 1,
	XDG_SURFACE_ERROR_ALREADY_CONSTRUCTED = 2,
	XDG_SURFACE_ERROR_UNCONFIGURED_BUFFER = 3,
};
#endif /* XDG_SURFACE_ERROR_ENUM */

/**
 * @ingroup iface_xdg_surface
 * @struct xdg_surface_listener
 */
struct xdg_surface_listener
{
	/**
	 * suggest a surface change
	 *
	 * The configure event marks the end of a configure sequence. A
	 * configure sequence is a set of one or more events configuring
	 * the state of the xdg_surface, including the final
	 * xdg_surface.configure event.
	 *
	 * Where applicable, xdg_surface surface roles will during a
	 * configure sequence extend this event as a latched state sent as
	 * events before the xdg_surface.configure event. Such events
	 * should be considered to make up a set of atomically applied
	 * configuration states, where the xdg_surface.configure commits
	 * the accumulated state.
	 *
	 * Clients should arrange their surface for the new states, and
	 * then send an ack_configure request with the serial sent in this
	 * configure event at some point before committing the new surface.
	 *
	 * If the client receives multiple configure events before it can
	 * respond to one, it is free to discard all but the last event it
	 * received.
	 * @param serial serial of the configure event
	 */
	void (*configure)(void     *data,
			struct xdg_surface *xdg_surface,
			uint32_t            serial);
};

/**
 * @ingroup iface_xdg_surface
 */
static inline int
xdg_surface_add_listener(struct xdg_surface *xdg_surface,
		const struct xdg_surface_listener *listener, void *data)
{
	return wl_proxy_add_listener((struct wl_proxy *) xdg_surface,
				   (void(* *) (void))listener, data);
}

#define XDG_SURFACE_DESTROY             0
#define XDG_SURFACE_GET_TOPLEVEL        1
#define XDG_SURFACE_GET_POPUP           2
#define XDG_SURFACE_SET_WINDOW_GEOMETRY 3
#define XDG_SURFACE_ACK_CONFIGURE       4

/**
 * @ingroup iface_xdg_surface
 */
#define XDG_SURFACE_CONFIGURE_SINCE_VERSION 1

/**
 * @ingroup iface_xdg_surface
 */
#define XDG_SURFACE_DESTROY_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_surface
 */
#define XDG_SURFACE_GET_TOPLEVEL_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_surface
 */
#define XDG_SURFACE_GET_POPUP_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_surface
 */
#define XDG_SURFACE_SET_WINDOW_GEOMETRY_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_surface
 */
#define XDG_SURFACE_ACK_CONFIGURE_SINCE_VERSION 1

/** @ingroup iface_xdg_surface */
static inline void
xdg_surface_set_user_data(struct xdg_surface *xdg_surface, void *user_data)
{
	wl_proxy_set_user_data((struct wl_proxy *) xdg_surface, user_data);
}

/** @ingroup iface_xdg_surface */
static inline void *
xdg_surface_get_user_data(struct xdg_surface *xdg_surface)
{
	return wl_proxy_get_user_data((struct wl_proxy *) xdg_surface);
}

static inline uint32_t
xdg_surface_get_version(struct xdg_surface *xdg_surface)
{
	return wl_proxy_get_version((struct wl_proxy *) xdg_surface);
}

/**
 * @ingroup iface_xdg_surface
 *
 * Destroy the xdg_surface object. An xdg_surface must only be destroyed
 * after its role object has been destroyed.
 */
static inline void
xdg_surface_destroy(struct xdg_surface *xdg_surface)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_surface,
			XDG_SURFACE_DESTROY);

	wl_proxy_destroy((struct wl_proxy *) xdg_surface);
}

/**
 * @ingroup iface_xdg_surface
 *
 * This creates an xdg_toplevel object for the given xdg_surface and gives
 * the associated wl_surface the xdg_toplevel role.
 *
 * See the documentation of xdg_toplevel for more details about what an
 * xdg_toplevel is and how it is used.
 */
static inline struct xdg_toplevel *
xdg_surface_get_toplevel(struct xdg_surface *xdg_surface)
{
	struct wl_proxy *id;

	id = wl_proxy_marshal_constructor((struct wl_proxy *) xdg_surface,
					XDG_SURFACE_GET_TOPLEVEL, &xdg_toplevel_interface, NULL);

	return (struct xdg_toplevel *) id;
}

/**
 * @ingroup iface_xdg_surface
 *
 * This creates an xdg_popup object for the given xdg_surface and gives
 * the associated wl_surface the xdg_popup role.
 *
 * If null is passed as a parent, a parent surface must be specified using
 * some other protocol, before committing the initial state.
 *
 * See the documentation of xdg_popup for more details about what an
 * xdg_popup is and how it is used.
 */
static inline struct xdg_popup *
xdg_surface_get_popup(struct xdg_surface *xdg_surface, struct xdg_surface *parent, struct xdg_positioner *positioner)
{
	struct wl_proxy *id;

	id = wl_proxy_marshal_constructor((struct wl_proxy *) xdg_surface,
					XDG_SURFACE_GET_POPUP, &xdg_popup_interface, NULL, parent, positioner);

	return (struct xdg_popup *) id;
}

/**
 * @ingroup iface_xdg_surface
 *
 * The window geometry of a surface is its "visible bounds" from the
 * user's perspective. Client-side decorations often have invisible
 * portions like drop-shadows which should be ignored for the
 * purposes of aligning, placing and constraining windows.
 *
 * The window geometry is double buffered, and will be applied at the
 * time wl_surface.commit of the corresponding wl_surface is called.
 *
 * When maintaining a position, the compositor should treat the (x, y)
 * coordinate of the window geometry as the top left corner of the window.
 * A client changing the (x, y) window geometry coordinate should in
 * general not alter the position of the window.
 *
 * Once the window geometry of the surface is set, it is not possible to
 * unset it, and it will remain the same until set_window_geometry is
 * called again, even if a new subsurface or buffer is attached.
 *
 * If never set, the value is the full bounds of the surface,
 * including any subsurfaces. This updates dynamically on every
 * commit. This unset is meant for extremely simple clients.
 *
 * The arguments are given in the surface-local coordinate space of
 * the wl_surface associated with this xdg_surface.
 *
 * The width and height must be greater than zero. Setting an invalid size
 * will raise an error. When applied, the effective window geometry will be
 * the set window geometry clamped to the bounding rectangle of the
 * combined geometry of the surface of the xdg_surface and the associated
 * subsurfaces.
 */
static inline void
xdg_surface_set_window_geometry(struct xdg_surface *xdg_surface, int32_t x, int32_t y, int32_t width, int32_t height)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_surface,
			XDG_SURFACE_SET_WINDOW_GEOMETRY, x, y, width, height);
}

/**
 * @ingroup iface_xdg_surface
 *
 * When a configure event is received, if a client commits the
 * surface in response to the configure event, then the client
 * must make an ack_configure request sometime before the commit
 * request, passing along the serial of the configure event.
 *
 * For instance, for toplevel surfaces the compositor might use this
 * information to move a surface to the top left only when the client has
 * drawn itself for the maximized or fullscreen state.
 *
 * If the client receives multiple configure events before it
 * can respond to one, it only has to ack the last configure event.
 *
 * A client is not required to commit immediately after sending
 * an ack_configure request - it may even ack_configure several times
 * before its next surface commit.
 *
 * A client may send multiple ack_configure requests before committing, but
 * only the last request sent before a commit indicates which configure
 * event the client really is responding to.
 */
static inline void
xdg_surface_ack_configure(struct xdg_surface *xdg_surface, uint32_t serial)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_surface,
			XDG_SURFACE_ACK_CONFIGURE, serial);
}

#ifndef XDG_TOPLEVEL_RESIZE_EDGE_ENUM
#define XDG_TOPLEVEL_RESIZE_EDGE_ENUM
/**
 * @ingroup iface_xdg_toplevel
 * edge values for resizing
 *
 * These values are used to indicate which edge of a surface
 * is being dragged in a resize operation.
 */
enum xdg_toplevel_resize_edge
{
	XDG_TOPLEVEL_RESIZE_EDGE_NONE         = 0,
	XDG_TOPLEVEL_RESIZE_EDGE_TOP          = 1,
	XDG_TOPLEVEL_RESIZE_EDGE_BOTTOM       = 2,
	XDG_TOPLEVEL_RESIZE_EDGE_LEFT         = 4,
	XDG_TOPLEVEL_RESIZE_EDGE_TOP_LEFT     = 5,
	XDG_TOPLEVEL_RESIZE_EDGE_BOTTOM_LEFT  = 6,
	XDG_TOPLEVEL_RESIZE_EDGE_RIGHT        = 8,
	XDG_TOPLEVEL_RESIZE_EDGE_TOP_RIGHT    = 9,
	XDG_TOPLEVEL_RESIZE_EDGE_BOTTOM_RIGHT = 10,
};
#endif /* XDG_TOPLEVEL_RESIZE_EDGE_ENUM */

#ifndef XDG_TOPLEVEL_STATE_ENUM
#define XDG_TOPLEVEL_STATE_ENUM
/**
 * @ingroup iface_xdg_toplevel
 * the surface is tiled
 *
 * The window is currently in a tiled layout and the bottom edge is
 * considered to be adjacent to another part of the tiling grid.
 */
enum xdg_toplevel_state
{
	/**
	 * the surface is maximized
	 */
	XDG_TOPLEVEL_STATE_MAXIMIZED = 1,
	/**
	 * the surface is fullscreen
	 */
	XDG_TOPLEVEL_STATE_FULLSCREEN = 2,
	/**
	 * the surface is being resized
	 */
	XDG_TOPLEVEL_STATE_RESIZING = 3,
	/**
	 * the surface is now activated
	 */
	XDG_TOPLEVEL_STATE_ACTIVATED = 4,
	/**
	 * @since 2
	 */
	XDG_TOPLEVEL_STATE_TILED_LEFT = 5,
	/**
	 * @since 2
	 */
	XDG_TOPLEVEL_STATE_TILED_RIGHT = 6,
	/**
	 * @since 2
	 */
	XDG_TOPLEVEL_STATE_TILED_TOP = 7,
	/**
	 * @since 2
	 */
	XDG_TOPLEVEL_STATE_TILED_BOTTOM = 8,
};
/**
 * @ingroup iface_xdg_toplevel
 */
#define XDG_TOPLEVEL_STATE_TILED_LEFT_SINCE_VERSION 2
/**
 * @ingroup iface_xdg_toplevel
 */
#define XDG_TOPLEVEL_STATE_TILED_RIGHT_SINCE_VERSION 2
/**
 * @ingroup iface_xdg_toplevel
 */
#define XDG_TOPLEVEL_STATE_TILED_TOP_SINCE_VERSION 2
/**
 * @ingroup iface_xdg_toplevel
 */
#define XDG_TOPLEVEL_STATE_TILED_BOTTOM_SINCE_VERSION 2
#endif /* XDG_TOPLEVEL_STATE_ENUM */

/**
 * @ingroup iface_xdg_toplevel
 * @struct xdg_toplevel_listener
 */
struct xdg_toplevel_listener
{
	/**
	 * suggest a surface change
	 *
	 * This configure event asks the client to resize its toplevel
	 * surface or to change its state. The configured state should not
	 * be applied immediately. See xdg_surface.configure for details.
	 *
	 * The width and height arguments specify a hint to the window
	 * about how its surface should be resized in window geometry
	 * coordinates. See set_window_geometry.
	 *
	 * If the width or height arguments are zero, it means the client
	 * should decide its own window dimension. This may happen when the
	 * compositor needs to configure the state of the surface but
	 * doesn't have any information about any previous or expected
	 * dimension.
	 *
	 * The states listed in the event specify how the width/height
	 * arguments should be interpreted, and possibly how it should be
	 * drawn.
	 *
	 * Clients must send an ack_configure in response to this event.
	 * See xdg_surface.configure and xdg_surface.ack_configure for
	 * details.
	 */
	void (*configure)(void      *data,
			struct xdg_toplevel *xdg_toplevel,
			int32_t              width,
			int32_t              height,
			struct wl_array     *states);
	/**
	 * surface wants to be closed
	 *
	 * The close event is sent by the compositor when the user wants
	 * the surface to be closed. This should be equivalent to the user
	 * clicking the close button in client-side decorations, if your
	 * application has any.
	 *
	 * This is only a request that the user intends to close the
	 * window. The client may choose to ignore this request, or show a
	 * dialog to ask the user to save their data, etc.
	 */
	void (*close)(void          *data,
			struct xdg_toplevel *xdg_toplevel);
};

/**
 * @ingroup iface_xdg_toplevel
 */
static inline int
xdg_toplevel_add_listener(struct xdg_toplevel *xdg_toplevel,
		const struct xdg_toplevel_listener *listener, void *data)
{
	return wl_proxy_add_listener((struct wl_proxy *) xdg_toplevel,
				   (void(* *) (void))listener, data);
}

#define XDG_TOPLEVEL_DESTROY          0
#define XDG_TOPLEVEL_SET_PARENT       1
#define XDG_TOPLEVEL_SET_TITLE        2
#define XDG_TOPLEVEL_SET_APP_ID       3
#define XDG_TOPLEVEL_SHOW_WINDOW_MENU 4
#define XDG_TOPLEVEL_MOVE             5
#define XDG_TOPLEVEL_RESIZE           6
#define XDG_TOPLEVEL_SET_MAX_SIZE     7
#define XDG_TOPLEVEL_SET_MIN_SIZE     8
#define XDG_TOPLEVEL_SET_MAXIMIZED    9
#define XDG_TOPLEVEL_UNSET_MAXIMIZED  10
#define XDG_TOPLEVEL_SET_FULLSCREEN   11
#define XDG_TOPLEVEL_UNSET_FULLSCREEN 12
#define XDG_TOPLEVEL_SET_MINIMIZED    13

/**
 * @ingroup iface_xdg_toplevel
 */
#define XDG_TOPLEVEL_CONFIGURE_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_toplevel
 */
#define XDG_TOPLEVEL_CLOSE_SINCE_VERSION 1

/**
 * @ingroup iface_xdg_toplevel
 */
#define XDG_TOPLEVEL_DESTROY_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_toplevel
 */
#define XDG_TOPLEVEL_SET_PARENT_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_toplevel
 */
#define XDG_TOPLEVEL_SET_TITLE_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_toplevel
 */
#define XDG_TOPLEVEL_SET_APP_ID_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_toplevel
 */
#define XDG_TOPLEVEL_SHOW_WINDOW_MENU_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_toplevel
 */
#define XDG_TOPLEVEL_MOVE_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_toplevel
 */
#define XDG_TOPLEVEL_RESIZE_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_toplevel
 */
#define XDG_TOPLEVEL_SET_MAX_SIZE_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_toplevel
 */
#define XDG_TOPLEVEL_SET_MIN_SIZE_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_toplevel
 */
#define XDG_TOPLEVEL_SET_MAXIMIZED_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_toplevel
 */
#define XDG_TOPLEVEL_UNSET_MAXIMIZED_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_toplevel
 */
#define XDG_TOPLEVEL_SET_FULLSCREEN_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_toplevel
 */
#define XDG_TOPLEVEL_UNSET_FULLSCREEN_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_toplevel
 */
#define XDG_TOPLEVEL_SET_MINIMIZED_SINCE_VERSION 1

/** @ingroup iface_xdg_toplevel */
static inline void
xdg_toplevel_set_user_data(struct xdg_toplevel *xdg_toplevel, void *user_data)
{
	wl_proxy_set_user_data((struct wl_proxy *) xdg_toplevel, user_data);
}

/** @ingroup iface_xdg_toplevel */
static inline void *
xdg_toplevel_get_user_data(struct xdg_toplevel *xdg_toplevel)
{
	return wl_proxy_get_user_data((struct wl_proxy *) xdg_toplevel);
}

static inline uint32_t
xdg_toplevel_get_version(struct xdg_toplevel *xdg_toplevel)
{
	return wl_proxy_get_version((struct wl_proxy *) xdg_toplevel);
}

/**
 * @ingroup iface_xdg_toplevel
 *
 * This request destroys the role surface and unmaps the surface;
 * see "Unmapping" behavior in interface section for details.
 */
static inline void
xdg_toplevel_destroy(struct xdg_toplevel *xdg_toplevel)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
			XDG_TOPLEVEL_DESTROY);

	wl_proxy_destroy((struct wl_proxy *) xdg_toplevel);
}

/**
 * @ingroup iface_xdg_toplevel
 *
 * Set the "parent" of this surface. This surface should be stacked
 * above the parent surface and all other ancestor surfaces.
 *
 * Parent windows should be set on dialogs, toolboxes, or other
 * "auxiliary" surfaces, so that the parent is raised when the dialog
 * is raised.
 *
 * Setting a null parent for a child window removes any parent-child
 * relationship for the child. Setting a null parent for a window which
 * currently has no parent is a no-op.
 *
 * If the parent is unmapped then its children are managed as
 * though the parent of the now-unmapped parent has become the
 * parent of this surface. If no parent exists for the now-unmapped
 * parent then the children are managed as though they have no
 * parent surface.
 */
static inline void
xdg_toplevel_set_parent(struct xdg_toplevel *xdg_toplevel, struct xdg_toplevel *parent)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
			XDG_TOPLEVEL_SET_PARENT, parent);
}

/**
 * @ingroup iface_xdg_toplevel
 *
 * Set a short title for the surface.
 *
 * This string may be used to identify the surface in a task bar,
 * window list, or other user interface elements provided by the
 * compositor.
 *
 * The string must be encoded in UTF-8.
 */
static inline void
xdg_toplevel_set_title(struct xdg_toplevel *xdg_toplevel, const char *title)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
			XDG_TOPLEVEL_SET_TITLE, title);
}

/**
 * @ingroup iface_xdg_toplevel
 *
 * Set an application identifier for the surface.
 *
 * The app ID identifies the general class of applications to which
 * the surface belongs. The compositor can use this to group multiple
 * surfaces together, or to determine how to launch a new application.
 *
 * For D-Bus activatable applications, the app ID is used as the D-Bus
 * service name.
 *
 * The compositor shell will try to group application surfaces together
 * by their app ID. As a best practice, it is suggested to select app
 * ID's that match the basename of the application's .desktop file.
 * For example, "org.freedesktop.FooViewer" where the .desktop file is
 * "org.freedesktop.FooViewer.desktop".
 *
 * Like other properties, a set_app_id request can be sent after the
 * xdg_toplevel has been mapped to update the property.
 *
 * See the desktop-entry specification [0] for more details on
 * application identifiers and how they relate to well-known D-Bus
 * names and .desktop files.
 *
 * [0] http://standards.freedesktop.org/desktop-entry-spec/
 */
static inline void
xdg_toplevel_set_app_id(struct xdg_toplevel *xdg_toplevel, const char *app_id)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
			XDG_TOPLEVEL_SET_APP_ID, app_id);
}

/**
 * @ingroup iface_xdg_toplevel
 *
 * Clients implementing client-side decorations might want to show
 * a context menu when right-clicking on the decorations, giving the
 * user a menu that they can use to maximize or minimize the window.
 *
 * This request asks the compositor to pop up such a window menu at
 * the given position, relative to the local surface coordinates of
 * the parent surface. There are no guarantees as to what menu items
 * the window menu contains.
 *
 * This request must be used in response to some sort of user action
 * like a button press, key press, or touch down event.
 */
static inline void
xdg_toplevel_show_window_menu(struct xdg_toplevel *xdg_toplevel, struct wl_seat *seat, uint32_t serial, int32_t x, int32_t y)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
			XDG_TOPLEVEL_SHOW_WINDOW_MENU, seat, serial, x, y);
}

/**
 * @ingroup iface_xdg_toplevel
 *
 * Start an interactive, user-driven move of the surface.
 *
 * This request must be used in response to some sort of user action
 * like a button press, key press, or touch down event. The passed
 * serial is used to determine the type of interactive move (touch,
 * pointer, etc).
 *
 * The server may ignore move requests depending on the state of
 * the surface (e.g. fullscreen or maximized), or if the passed serial
 * is no longer valid.
 *
 * If triggered, the surface will lose the focus of the device
 * (wl_pointer, wl_touch, etc) used for the move. It is up to the
 * compositor to visually indicate that the move is taking place, such as
 * updating a pointer cursor, during the move. There is no guarantee
 * that the device focus will return when the move is completed.
 */
static inline void
xdg_toplevel_move(struct xdg_toplevel *xdg_toplevel, struct wl_seat *seat, uint32_t serial)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
			XDG_TOPLEVEL_MOVE, seat, serial);
}

/**
 * @ingroup iface_xdg_toplevel
 *
 * Start a user-driven, interactive resize of the surface.
 *
 * This request must be used in response to some sort of user action
 * like a button press, key press, or touch down event. The passed
 * serial is used to determine the type of interactive resize (touch,
 * pointer, etc).
 *
 * The server may ignore resize requests depending on the state of
 * the surface (e.g. fullscreen or maximized).
 *
 * If triggered, the client will receive configure events with the
 * "resize" state enum value and the expected sizes. See the "resize"
 * enum value for more details about what is required. The client
 * must also acknowledge configure events using "ack_configure". After
 * the resize is completed, the client will receive another "configure"
 * event without the resize state.
 *
 * If triggered, the surface also will lose the focus of the device
 * (wl_pointer, wl_touch, etc) used for the resize. It is up to the
 * compositor to visually indicate that the resize is taking place,
 * such as updating a pointer cursor, during the resize. There is no
 * guarantee that the device focus will return when the resize is
 * completed.
 *
 * The edges parameter specifies how the surface should be resized,
 * and is one of the values of the resize_edge enum. The compositor
 * may use this information to update the surface position for
 * example when dragging the top left corner. The compositor may also
 * use this information to adapt its behavior, e.g. choose an
 * appropriate cursor image.
 */
static inline void
xdg_toplevel_resize(struct xdg_toplevel *xdg_toplevel, struct wl_seat *seat, uint32_t serial, uint32_t edges)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
			XDG_TOPLEVEL_RESIZE, seat, serial, edges);
}

/**
 * @ingroup iface_xdg_toplevel
 *
 * Set a maximum size for the window.
 *
 * The client can specify a maximum size so that the compositor does
 * not try to configure the window beyond this size.
 *
 * The width and height arguments are in window geometry coordinates.
 * See xdg_surface.set_window_geometry.
 *
 * Values set in this way are double-buffered. They will get applied
 * on the next commit.
 *
 * The compositor can use this information to allow or disallow
 * different states like maximize or fullscreen and draw accurate
 * animations.
 *
 * Similarly, a tiling window manager may use this information to
 * place and resize client windows in a more effective way.
 *
 * The client should not rely on the compositor to obey the maximum
 * size. The compositor may decide to ignore the values set by the
 * client and request a larger size.
 *
 * If never set, or a value of zero in the request, means that the
 * client has no expected maximum size in the given dimension.
 * As a result, a client wishing to reset the maximum size
 * to an unspecified state can use zero for width and height in the
 * request.
 *
 * Requesting a maximum size to be smaller than the minimum size of
 * a surface is illegal and will result in a protocol error.
 *
 * The width and height must be greater than or equal to zero. Using
 * strictly negative values for width and height will result in a
 * protocol error.
 */
static inline void
xdg_toplevel_set_max_size(struct xdg_toplevel *xdg_toplevel, int32_t width, int32_t height)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
			XDG_TOPLEVEL_SET_MAX_SIZE, width, height);
}

/**
 * @ingroup iface_xdg_toplevel
 *
 * Set a minimum size for the window.
 *
 * The client can specify a minimum size so that the compositor does
 * not try to configure the window below this size.
 *
 * The width and height arguments are in window geometry coordinates.
 * See xdg_surface.set_window_geometry.
 *
 * Values set in this way are double-buffered. They will get applied
 * on the next commit.
 *
 * The compositor can use this information to allow or disallow
 * different states like maximize or fullscreen and draw accurate
 * animations.
 *
 * Similarly, a tiling window manager may use this information to
 * place and resize client windows in a more effective way.
 *
 * The client should not rely on the compositor to obey the minimum
 * size. The compositor may decide to ignore the values set by the
 * client and request a smaller size.
 *
 * If never set, or a value of zero in the request, means that the
 * client has no expected minimum size in the given dimension.
 * As a result, a client wishing to reset the minimum size
 * to an unspecified state can use zero for width and height in the
 * request.
 *
 * Requesting a minimum size to be larger than the maximum size of
 * a surface is illegal and will result in a protocol error.
 *
 * The width and height must be greater than or equal to zero. Using
 * strictly negative values for width and height will result in a
 * protocol error.
 */
static inline void
xdg_toplevel_set_min_size(struct xdg_toplevel *xdg_toplevel, int32_t width, int32_t height)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
			XDG_TOPLEVEL_SET_MIN_SIZE, width, height);
}

/**
 * @ingroup iface_xdg_toplevel
 *
 * Maximize the surface.
 *
 * After requesting that the surface should be maximized, the compositor
 * will respond by emitting a configure event. Whether this configure
 * actually sets the window maximized is subject to compositor policies.
 * The client must then update its content, drawing in the configured
 * state. The client must also acknowledge the configure when committing
 * the new content (see ack_configure).
 *
 * It is up to the compositor to decide how and where to maximize the
 * surface, for example which output and what region of the screen should
 * be used.
 *
 * If the surface was already maximized, the compositor will still emit
 * a configure event with the "maximized" state.
 *
 * If the surface is in a fullscreen state, this request has no direct
 * effect. It may alter the state the surface is returned to when
 * unmaximized unless overridden by the compositor.
 */
static inline void
xdg_toplevel_set_maximized(struct xdg_toplevel *xdg_toplevel)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
			XDG_TOPLEVEL_SET_MAXIMIZED);
}

/**
 * @ingroup iface_xdg_toplevel
 *
 * Unmaximize the surface.
 *
 * After requesting that the surface should be unmaximized, the compositor
 * will respond by emitting a configure event. Whether this actually
 * un-maximizes the window is subject to compositor policies.
 * If available and applicable, the compositor will include the window
 * geometry dimensions the window had prior to being maximized in the
 * configure event. The client must then update its content, drawing it in
 * the configured state. The client must also acknowledge the configure
 * when committing the new content (see ack_configure).
 *
 * It is up to the compositor to position the surface after it was
 * unmaximized; usually the position the surface had before maximizing, if
 * applicable.
 *
 * If the surface was already not maximized, the compositor will still
 * emit a configure event without the "maximized" state.
 *
 * If the surface is in a fullscreen state, this request has no direct
 * effect. It may alter the state the surface is returned to when
 * unmaximized unless overridden by the compositor.
 */
static inline void
xdg_toplevel_unset_maximized(struct xdg_toplevel *xdg_toplevel)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
			XDG_TOPLEVEL_UNSET_MAXIMIZED);
}

/**
 * @ingroup iface_xdg_toplevel
 *
 * Make the surface fullscreen.
 *
 * After requesting that the surface should be fullscreened, the
 * compositor will respond by emitting a configure event. Whether the
 * client is actually put into a fullscreen state is subject to compositor
 * policies. The client must also acknowledge the configure when
 * committing the new content (see ack_configure).
 *
 * The output passed by the request indicates the client's preference as
 * to which display it should be set fullscreen on. If this value is NULL,
 * it's up to the compositor to choose which display will be used to map
 * this surface.
 *
 * If the surface doesn't cover the whole output, the compositor will
 * position the surface in the center of the output and compensate with
 * with border fill covering the rest of the output. The content of the
 * border fill is undefined, but should be assumed to be in some way that
 * attempts to blend into the surrounding area (e.g. solid black).
 *
 * If the fullscreened surface is not opaque, the compositor must make
 * sure that other screen content not part of the same surface tree (made
 * up of subsurfaces, popups or similarly coupled surfaces) are not
 * visible below the fullscreened surface.
 */
static inline void
xdg_toplevel_set_fullscreen(struct xdg_toplevel *xdg_toplevel, struct wl_output *output)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
			XDG_TOPLEVEL_SET_FULLSCREEN, output);
}

/**
 * @ingroup iface_xdg_toplevel
 *
 * Make the surface no longer fullscreen.
 *
 * After requesting that the surface should be unfullscreened, the
 * compositor will respond by emitting a configure event.
 * Whether this actually removes the fullscreen state of the client is
 * subject to compositor policies.
 *
 * Making a surface unfullscreen sets states for the surface based on the following:
 * * the state(s) it may have had before becoming fullscreen
 * * any state(s) decided by the compositor
 * * any state(s) requested by the client while the surface was fullscreen
 *
 * The compositor may include the previous window geometry dimensions in
 * the configure event, if applicable.
 *
 * The client must also acknowledge the configure when committing the new
 * content (see ack_configure).
 */
static inline void
xdg_toplevel_unset_fullscreen(struct xdg_toplevel *xdg_toplevel)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
			XDG_TOPLEVEL_UNSET_FULLSCREEN);
}

/**
 * @ingroup iface_xdg_toplevel
 *
 * Request that the compositor minimize your surface. There is no
 * way to know if the surface is currently minimized, nor is there
 * any way to unset minimization on this surface.
 *
 * If you are looking to throttle redrawing when minimized, please
 * instead use the wl_surface.frame event for this, as this will
 * also work with live previews on windows in Alt-Tab, Expose or
 * similar compositor features.
 */
static inline void
xdg_toplevel_set_minimized(struct xdg_toplevel *xdg_toplevel)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_toplevel,
			XDG_TOPLEVEL_SET_MINIMIZED);
}

#ifndef XDG_POPUP_ERROR_ENUM
#define XDG_POPUP_ERROR_ENUM
enum xdg_popup_error
{
	/**
	 * tried to grab after being mapped
	 */
	XDG_POPUP_ERROR_INVALID_GRAB = 0,
};
#endif /* XDG_POPUP_ERROR_ENUM */

/**
 * @ingroup iface_xdg_popup
 * @struct xdg_popup_listener
 */
struct xdg_popup_listener
{
	/**
	 * configure the popup surface
	 *
	 * This event asks the popup surface to configure itself given
	 * the configuration. The configured state should not be applied
	 * immediately. See xdg_surface.configure for details.
	 *
	 * The x and y arguments represent the position the popup was
	 * placed at given the xdg_positioner rule, relative to the upper
	 * left corner of the window geometry of the parent surface.
	 *
	 * For version 2 or older, the configure event for an xdg_popup is
	 * only ever sent once for the initial configuration. Starting with
	 * version 3, it may be sent again if the popup is setup with an
	 * xdg_positioner with set_reactive requested, or in response to
	 * xdg_popup.reposition requests.
	 * @param x x position relative to parent surface window geometry
	 * @param y y position relative to parent surface window geometry
	 * @param width window geometry width
	 * @param height window geometry height
	 */
	void (*configure)(void   *data,
			struct xdg_popup *xdg_popup,
			int32_t           x,
			int32_t           y,
			int32_t           width,
			int32_t           height);
	/**
	 * popup interaction is done
	 *
	 * The popup_done event is sent out when a popup is dismissed by
	 * the compositor. The client should destroy the xdg_popup object
	 * at this point.
	 */
	void (*popup_done)(void  *data,
			struct xdg_popup *xdg_popup);
	/**
	 * signal the completion of a repositioned request
	 *
	 * The repositioned event is sent as part of a popup
	 * configuration sequence, together with xdg_popup.configure and
	 * lastly xdg_surface.configure to notify the completion of a
	 * reposition request.
	 *
	 * The repositioned event is to notify about the completion of a
	 * xdg_popup.reposition request. The token argument is the token
	 * passed in the xdg_popup.reposition request.
	 *
	 * Immediately after this event is emitted, xdg_popup.configure and
	 * xdg_surface.configure will be sent with the updated size and
	 * position, as well as a new configure serial.
	 *
	 * The client should optionally update the content of the popup,
	 * but must acknowledge the new popup configuration for the new
	 * position to take effect. See xdg_surface.ack_configure for
	 * details.
	 * @param token reposition request token
	 * @since 3
	 */
	void (*repositioned)(void *data,
			struct xdg_popup  *xdg_popup,
			uint32_t           token);
};

/**
 * @ingroup iface_xdg_popup
 */
static inline int
xdg_popup_add_listener(struct xdg_popup *xdg_popup,
		const struct xdg_popup_listener *listener, void *data)
{
	return wl_proxy_add_listener((struct wl_proxy *) xdg_popup,
				   (void(* *) (void))listener, data);
}

#define XDG_POPUP_DESTROY    0
#define XDG_POPUP_GRAB       1
#define XDG_POPUP_REPOSITION 2

/**
 * @ingroup iface_xdg_popup
 */
#define XDG_POPUP_CONFIGURE_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_popup
 */
#define XDG_POPUP_POPUP_DONE_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_popup
 */
#define XDG_POPUP_REPOSITIONED_SINCE_VERSION 3

/**
 * @ingroup iface_xdg_popup
 */
#define XDG_POPUP_DESTROY_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_popup
 */
#define XDG_POPUP_GRAB_SINCE_VERSION 1
/**
 * @ingroup iface_xdg_popup
 */
#define XDG_POPUP_REPOSITION_SINCE_VERSION 3

/** @ingroup iface_xdg_popup */
static inline void
xdg_popup_set_user_data(struct xdg_popup *xdg_popup, void *user_data)
{
	wl_proxy_set_user_data((struct wl_proxy *) xdg_popup, user_data);
}

/** @ingroup iface_xdg_popup */
static inline void *
xdg_popup_get_user_data(struct xdg_popup *xdg_popup)
{
	return wl_proxy_get_user_data((struct wl_proxy *) xdg_popup);
}

static inline uint32_t
xdg_popup_get_version(struct xdg_popup *xdg_popup)
{
	return wl_proxy_get_version((struct wl_proxy *) xdg_popup);
}

/**
 * @ingroup iface_xdg_popup
 *
 * This destroys the popup. Explicitly destroying the xdg_popup
 * object will also dismiss the popup, and unmap the surface.
 *
 * If this xdg_popup is not the "topmost" popup, a protocol error
 * will be sent.
 */
static inline void
xdg_popup_destroy(struct xdg_popup *xdg_popup)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_popup,
			XDG_POPUP_DESTROY);

	wl_proxy_destroy((struct wl_proxy *) xdg_popup);
}

/**
 * @ingroup iface_xdg_popup
 *
 * This request makes the created popup take an explicit grab. An explicit
 * grab will be dismissed when the user dismisses the popup, or when the
 * client destroys the xdg_popup. This can be done by the user clicking
 * outside the surface, using the keyboard, or even locking the screen
 * through closing the lid or a timeout.
 *
 * If the compositor denies the grab, the popup will be immediately
 * dismissed.
 *
 * This request must be used in response to some sort of user action like a
 * button press, key press, or touch down event. The serial number of the
 * event should be passed as 'serial'.
 *
 * The parent of a grabbing popup must either be an xdg_toplevel surface or
 * another xdg_popup with an explicit grab. If the parent is another
 * xdg_popup it means that the popups are nested, with this popup now being
 * the topmost popup.
 *
 * Nested popups must be destroyed in the reverse order they were created
 * in, e.g. the only popup you are allowed to destroy at all times is the
 * topmost one.
 *
 * When compositors choose to dismiss a popup, they may dismiss every
 * nested grabbing popup as well. When a compositor dismisses popups, it
 * will follow the same dismissing order as required from the client.
 *
 * The parent of a grabbing popup must either be another xdg_popup with an
 * active explicit grab, or an xdg_popup or xdg_toplevel, if there are no
 * explicit grabs already taken.
 *
 * If the topmost grabbing popup is destroyed, the grab will be returned to
 * the parent of the popup, if that parent previously had an explicit grab.
 *
 * If the parent is a grabbing popup which has already been dismissed, this
 * popup will be immediately dismissed. If the parent is a popup that did
 * not take an explicit grab, an error will be raised.
 *
 * During a popup grab, the client owning the grab will receive pointer
 * and touch events for all their surfaces as normal (similar to an
 * "owner-events" grab in X11 parlance), while the top most grabbing popup
 * will always have keyboard focus.
 */
static inline void
xdg_popup_grab(struct xdg_popup *xdg_popup, struct wl_seat *seat, uint32_t serial)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_popup,
			XDG_POPUP_GRAB, seat, serial);
}

/**
 * @ingroup iface_xdg_popup
 *
 * Reposition an already-mapped popup. The popup will be placed given the
 * details in the passed xdg_positioner object, and a
 * xdg_popup.repositioned followed by xdg_popup.configure and
 * xdg_surface.configure will be emitted in response. Any parameters set
 * by the previous positioner will be discarded.
 *
 * The passed token will be sent in the corresponding
 * xdg_popup.repositioned event. The new popup position will not take
 * effect until the corresponding configure event is acknowledged by the
 * client. See xdg_popup.repositioned for details. The token itself is
 * opaque, and has no other special meaning.
 *
 * If multiple reposition requests are sent, the compositor may skip all
 * but the last one.
 *
 * If the popup is repositioned in response to a configure event for its
 * parent, the client should send an xdg_positioner.set_parent_configure
 * and possibly a xdg_positioner.set_parent_size request to allow the
 * compositor to properly constrain the popup.
 *
 * If the popup is repositioned together with a parent that is being
 * resized, but not in response to a configure event, the client should
 * send a xdg_positioner.set_parent_size request.
 */
static inline void
xdg_popup_reposition(struct xdg_popup *xdg_popup, struct xdg_positioner *positioner, uint32_t token)
{
	wl_proxy_marshal((struct wl_proxy *) xdg_popup,
			XDG_POPUP_REPOSITION, positioner, token);
}

#ifdef  __cplusplus
}
#endif

#endif