vgic.c 62.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/rculist.h>
#include <linux/uaccess.h>

#include <asm/kvm_emulate.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
#include <trace/events/kvm.h>
#include <asm/kvm.h>
#include <kvm/iodev.h>

#define CREATE_TRACE_POINTS
#include "trace.h"

/*
 * How the whole thing works (courtesy of Christoffer Dall):
 *
 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
 *   something is pending on the CPU interface.
 * - Interrupts that are pending on the distributor are stored on the
 *   vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
 *   ioctls and guest mmio ops, and other in-kernel peripherals such as the
 *   arch. timers).
 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
 *   recalculated
 * - To calculate the oracle, we need info for each cpu from
 *   compute_pending_for_cpu, which considers:
 *   - PPI: dist->irq_pending & dist->irq_enable
 *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
 *   - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
 *     registers, stored on each vcpu. We only keep one bit of
 *     information per interrupt, making sure that only one vcpu can
 *     accept the interrupt.
 * - If any of the above state changes, we must recalculate the oracle.
 * - The same is true when injecting an interrupt, except that we only
 *   consider a single interrupt at a time. The irq_spi_cpu array
 *   contains the target CPU for each SPI.
 *
 * The handling of level interrupts adds some extra complexity. We
 * need to track when the interrupt has been EOIed, so we can sample
 * the 'line' again. This is achieved as such:
 *
 * - When a level interrupt is moved onto a vcpu, the corresponding
 *   bit in irq_queued is set. As long as this bit is set, the line
 *   will be ignored for further interrupts. The interrupt is injected
 *   into the vcpu with the GICH_LR_EOI bit set (generate a
 *   maintenance interrupt on EOI).
 * - When the interrupt is EOIed, the maintenance interrupt fires,
 *   and clears the corresponding bit in irq_queued. This allows the
 *   interrupt line to be sampled again.
 * - Note that level-triggered interrupts can also be set to pending from
 *   writes to GICD_ISPENDRn and lowering the external input line does not
 *   cause the interrupt to become inactive in such a situation.
 *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
 *   inactive as long as the external input line is held high.
 *
 *
 * Initialization rules: there are multiple stages to the vgic
 * initialization, both for the distributor and the CPU interfaces.
 *
 * Distributor:
 *
 * - kvm_vgic_early_init(): initialization of static data that doesn't
 *   depend on any sizing information or emulation type. No allocation
 *   is allowed there.
 *
 * - vgic_init(): allocation and initialization of the generic data
 *   structures that depend on sizing information (number of CPUs,
 *   number of interrupts). Also initializes the vcpu specific data
 *   structures. Can be executed lazily for GICv2.
 *   [to be renamed to kvm_vgic_init??]
 *
 * CPU Interface:
 *
 * - kvm_vgic_cpu_early_init(): initialization of static data that
 *   doesn't depend on any sizing information or emulation type. No
 *   allocation is allowed there.
 */

#include "vgic.h"

static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu);
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
static u64 vgic_get_elrsr(struct kvm_vcpu *vcpu);
static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
						int virt_irq);
static int compute_pending_for_cpu(struct kvm_vcpu *vcpu);

static const struct vgic_ops *vgic_ops;
static const struct vgic_params *vgic;

static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
{
	vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
}

static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
{
	return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
}

int kvm_vgic_map_resources(struct kvm *kvm)
{
	return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
}

/*
 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
 * extracts u32s out of them.
 *
 * This does not work on 64-bit BE systems, because the bitmap access
 * will store two consecutive 32-bit words with the higher-addressed
 * register's bits at the lower index and the lower-addressed register's
 * bits at the higher index.
 *
 * Therefore, swizzle the register index when accessing the 32-bit word
 * registers to access the right register's value.
 */
#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
#define REG_OFFSET_SWIZZLE	1
#else
#define REG_OFFSET_SWIZZLE	0
#endif

static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
{
	int nr_longs;

	nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);

	b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
	if (!b->private)
		return -ENOMEM;

	b->shared = b->private + nr_cpus;

	return 0;
}

static void vgic_free_bitmap(struct vgic_bitmap *b)
{
	kfree(b->private);
	b->private = NULL;
	b->shared = NULL;
}

/*
 * Call this function to convert a u64 value to an unsigned long * bitmask
 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
 *
 * Warning: Calling this function may modify *val.
 */
static unsigned long *u64_to_bitmask(u64 *val)
{
#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
	*val = (*val >> 32) | (*val << 32);
#endif
	return (unsigned long *)val;
}

u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
{
	offset >>= 2;
	if (!offset)
		return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
	else
		return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
}

static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
				   int cpuid, int irq)
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
		return test_bit(irq, x->private + cpuid);

	return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
}

void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
			     int irq, int val)
{
	unsigned long *reg;

	if (irq < VGIC_NR_PRIVATE_IRQS) {
		reg = x->private + cpuid;
	} else {
		reg = x->shared;
		irq -= VGIC_NR_PRIVATE_IRQS;
	}

	if (val)
		set_bit(irq, reg);
	else
		clear_bit(irq, reg);
}

static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
{
	return x->private + cpuid;
}

unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
{
	return x->shared;
}

static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
{
	int size;

	size  = nr_cpus * VGIC_NR_PRIVATE_IRQS;
	size += nr_irqs - VGIC_NR_PRIVATE_IRQS;

	x->private = kzalloc(size, GFP_KERNEL);
	if (!x->private)
		return -ENOMEM;

	x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
	return 0;
}

static void vgic_free_bytemap(struct vgic_bytemap *b)
{
	kfree(b->private);
	b->private = NULL;
	b->shared = NULL;
}

u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
{
	u32 *reg;

	if (offset < VGIC_NR_PRIVATE_IRQS) {
		reg = x->private;
		offset += cpuid * VGIC_NR_PRIVATE_IRQS;
	} else {
		reg = x->shared;
		offset -= VGIC_NR_PRIVATE_IRQS;
	}

	return reg + (offset / sizeof(u32));
}

#define VGIC_CFG_LEVEL	0
#define VGIC_CFG_EDGE	1

static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int irq_val;

	irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
	return irq_val == VGIC_CFG_EDGE;
}

static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
}

static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
}

static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
}

static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
}

static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
}

static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
}

static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
}

static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
}

static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
}

static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
}

static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
}

static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
	if (!vgic_dist_irq_get_level(vcpu, irq)) {
		vgic_dist_irq_clear_pending(vcpu, irq);
		if (!compute_pending_for_cpu(vcpu))
			clear_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
	}
}

static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
}

void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
}

void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
}

static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
		set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
	else
		set_bit(irq - VGIC_NR_PRIVATE_IRQS,
			vcpu->arch.vgic_cpu.pending_shared);
}

void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
		clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
	else
		clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
			  vcpu->arch.vgic_cpu.pending_shared);
}

static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
{
	return !vgic_irq_is_queued(vcpu, irq);
}

/**
 * vgic_reg_access - access vgic register
 * @mmio:   pointer to the data describing the mmio access
 * @reg:    pointer to the virtual backing of vgic distributor data
 * @offset: least significant 2 bits used for word offset
 * @mode:   ACCESS_ mode (see defines above)
 *
 * Helper to make vgic register access easier using one of the access
 * modes defined for vgic register access
 * (read,raz,write-ignored,setbit,clearbit,write)
 */
void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
		     phys_addr_t offset, int mode)
{
	int word_offset = (offset & 3) * 8;
	u32 mask = (1UL << (mmio->len * 8)) - 1;
	u32 regval;

	/*
	 * Any alignment fault should have been delivered to the guest
	 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
	 */

	if (reg) {
		regval = *reg;
	} else {
		BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
		regval = 0;
	}

	if (mmio->is_write) {
		u32 data = mmio_data_read(mmio, mask) << word_offset;
		switch (ACCESS_WRITE_MASK(mode)) {
		case ACCESS_WRITE_IGNORED:
			return;

		case ACCESS_WRITE_SETBIT:
			regval |= data;
			break;

		case ACCESS_WRITE_CLEARBIT:
			regval &= ~data;
			break;

		case ACCESS_WRITE_VALUE:
			regval = (regval & ~(mask << word_offset)) | data;
			break;
		}
		*reg = regval;
	} else {
		switch (ACCESS_READ_MASK(mode)) {
		case ACCESS_READ_RAZ:
			regval = 0;
			/* fall through */

		case ACCESS_READ_VALUE:
			mmio_data_write(mmio, mask, regval >> word_offset);
		}
	}
}

bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
			phys_addr_t offset)
{
	vgic_reg_access(mmio, NULL, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
	return false;
}

bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
			    phys_addr_t offset, int vcpu_id, int access)
{
	u32 *reg;
	int mode = ACCESS_READ_VALUE | access;
	struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);

	reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset, mode);
	if (mmio->is_write) {
		if (access & ACCESS_WRITE_CLEARBIT) {
			if (offset < 4) /* Force SGI enabled */
				*reg |= 0xffff;
			vgic_retire_disabled_irqs(target_vcpu);
		}
		vgic_update_state(kvm);
		return true;
	}

	return false;
}

bool vgic_handle_set_pending_reg(struct kvm *kvm,
				 struct kvm_exit_mmio *mmio,
				 phys_addr_t offset, int vcpu_id)
{
	u32 *reg, orig;
	u32 level_mask;
	int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
	struct vgic_dist *dist = &kvm->arch.vgic;

	reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
	level_mask = (~(*reg));

	/* Mark both level and edge triggered irqs as pending */
	reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
	orig = *reg;
	vgic_reg_access(mmio, reg, offset, mode);

	if (mmio->is_write) {
		/* Set the soft-pending flag only for level-triggered irqs */
		reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
					  vcpu_id, offset);
		vgic_reg_access(mmio, reg, offset, mode);
		*reg &= level_mask;

		/* Ignore writes to SGIs */
		if (offset < 2) {
			*reg &= ~0xffff;
			*reg |= orig & 0xffff;
		}

		vgic_update_state(kvm);
		return true;
	}

	return false;
}

bool vgic_handle_clear_pending_reg(struct kvm *kvm,
				   struct kvm_exit_mmio *mmio,
				   phys_addr_t offset, int vcpu_id)
{
	u32 *level_active;
	u32 *reg, orig;
	int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
	struct vgic_dist *dist = &kvm->arch.vgic;

	reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
	orig = *reg;
	vgic_reg_access(mmio, reg, offset, mode);
	if (mmio->is_write) {
		/* Re-set level triggered level-active interrupts */
		level_active = vgic_bitmap_get_reg(&dist->irq_level,
					  vcpu_id, offset);
		reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
		*reg |= *level_active;

		/* Ignore writes to SGIs */
		if (offset < 2) {
			*reg &= ~0xffff;
			*reg |= orig & 0xffff;
		}

		/* Clear soft-pending flags */
		reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
					  vcpu_id, offset);
		vgic_reg_access(mmio, reg, offset, mode);

		vgic_update_state(kvm);
		return true;
	}
	return false;
}

bool vgic_handle_set_active_reg(struct kvm *kvm,
				struct kvm_exit_mmio *mmio,
				phys_addr_t offset, int vcpu_id)
{
	u32 *reg;
	struct vgic_dist *dist = &kvm->arch.vgic;

	reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);

	if (mmio->is_write) {
		vgic_update_state(kvm);
		return true;
	}

	return false;
}

bool vgic_handle_clear_active_reg(struct kvm *kvm,
				  struct kvm_exit_mmio *mmio,
				  phys_addr_t offset, int vcpu_id)
{
	u32 *reg;
	struct vgic_dist *dist = &kvm->arch.vgic;

	reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);

	if (mmio->is_write) {
		vgic_update_state(kvm);
		return true;
	}

	return false;
}

static u32 vgic_cfg_expand(u16 val)
{
	u32 res = 0;
	int i;

	/*
	 * Turn a 16bit value like abcd...mnop into a 32bit word
	 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
	 */
	for (i = 0; i < 16; i++)
		res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);

	return res;
}

static u16 vgic_cfg_compress(u32 val)
{
	u16 res = 0;
	int i;

	/*
	 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
	 * abcd...mnop which is what we really care about.
	 */
	for (i = 0; i < 16; i++)
		res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;

	return res;
}

/*
 * The distributor uses 2 bits per IRQ for the CFG register, but the
 * LSB is always 0. As such, we only keep the upper bit, and use the
 * two above functions to compress/expand the bits
 */
bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
			 phys_addr_t offset)
{
	u32 val;

	if (offset & 4)
		val = *reg >> 16;
	else
		val = *reg & 0xffff;

	val = vgic_cfg_expand(val);
	vgic_reg_access(mmio, &val, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	if (mmio->is_write) {
		/* Ignore writes to read-only SGI and PPI bits */
		if (offset < 8)
			return false;

		val = vgic_cfg_compress(val);
		if (offset & 4) {
			*reg &= 0xffff;
			*reg |= val << 16;
		} else {
			*reg &= 0xffff << 16;
			*reg |= val;
		}
	}

	return false;
}

/**
 * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
 *
 * Move any IRQs that have already been assigned to LRs back to the
 * emulated distributor state so that the complete emulated state can be read
 * from the main emulation structures without investigating the LRs.
 */
void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	u64 elrsr = vgic_get_elrsr(vcpu);
	unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
	int i;

	for_each_clear_bit(i, elrsr_ptr, vgic_cpu->nr_lr) {
		struct vgic_lr lr = vgic_get_lr(vcpu, i);

		/*
		 * There are three options for the state bits:
		 *
		 * 01: pending
		 * 10: active
		 * 11: pending and active
		 */
		BUG_ON(!(lr.state & LR_STATE_MASK));

		/* Reestablish SGI source for pending and active IRQs */
		if (lr.irq < VGIC_NR_SGIS)
			add_sgi_source(vcpu, lr.irq, lr.source);

		/*
		 * If the LR holds an active (10) or a pending and active (11)
		 * interrupt then move the active state to the
		 * distributor tracking bit.
		 */
		if (lr.state & LR_STATE_ACTIVE)
			vgic_irq_set_active(vcpu, lr.irq);

		/*
		 * Reestablish the pending state on the distributor and the
		 * CPU interface and mark the LR as free for other use.
		 */
		vgic_retire_lr(i, vcpu);

		/* Finally update the VGIC state. */
		vgic_update_state(vcpu->kvm);
	}
}

const
struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
				      int len, gpa_t offset)
{
	while (ranges->len) {
		if (offset >= ranges->base &&
		    (offset + len) <= (ranges->base + ranges->len))
			return ranges;
		ranges++;
	}

	return NULL;
}

static bool vgic_validate_access(const struct vgic_dist *dist,
				 const struct vgic_io_range *range,
				 unsigned long offset)
{
	int irq;

	if (!range->bits_per_irq)
		return true;	/* Not an irq-based access */

	irq = offset * 8 / range->bits_per_irq;
	if (irq >= dist->nr_irqs)
		return false;

	return true;
}

/*
 * Call the respective handler function for the given range.
 * We split up any 64 bit accesses into two consecutive 32 bit
 * handler calls and merge the result afterwards.
 * We do this in a little endian fashion regardless of the host's
 * or guest's endianness, because the GIC is always LE and the rest of
 * the code (vgic_reg_access) also puts it in a LE fashion already.
 * At this point we have already identified the handle function, so
 * range points to that one entry and offset is relative to this.
 */
static bool call_range_handler(struct kvm_vcpu *vcpu,
			       struct kvm_exit_mmio *mmio,
			       unsigned long offset,
			       const struct vgic_io_range *range)
{
	struct kvm_exit_mmio mmio32;
	bool ret;

	if (likely(mmio->len <= 4))
		return range->handle_mmio(vcpu, mmio, offset);

	/*
	 * Any access bigger than 4 bytes (that we currently handle in KVM)
	 * is actually 8 bytes long, caused by a 64-bit access
	 */

	mmio32.len = 4;
	mmio32.is_write = mmio->is_write;
	mmio32.private = mmio->private;

	mmio32.phys_addr = mmio->phys_addr + 4;
	mmio32.data = &((u32 *)mmio->data)[1];
	ret = range->handle_mmio(vcpu, &mmio32, offset + 4);

	mmio32.phys_addr = mmio->phys_addr;
	mmio32.data = &((u32 *)mmio->data)[0];
	ret |= range->handle_mmio(vcpu, &mmio32, offset);

	return ret;
}

/**
 * vgic_handle_mmio_access - handle an in-kernel MMIO access
 * This is called by the read/write KVM IO device wrappers below.
 * @vcpu:	pointer to the vcpu performing the access
 * @this:	pointer to the KVM IO device in charge
 * @addr:	guest physical address of the access
 * @len:	size of the access
 * @val:	pointer to the data region
 * @is_write:	read or write access
 *
 * returns true if the MMIO access could be performed
 */
static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
				   struct kvm_io_device *this, gpa_t addr,
				   int len, void *val, bool is_write)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	struct vgic_io_device *iodev = container_of(this,
						    struct vgic_io_device, dev);
	struct kvm_run *run = vcpu->run;
	const struct vgic_io_range *range;
	struct kvm_exit_mmio mmio;
	bool updated_state;
	gpa_t offset;

	offset = addr - iodev->addr;
	range = vgic_find_range(iodev->reg_ranges, len, offset);
	if (unlikely(!range || !range->handle_mmio)) {
		pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
		return -ENXIO;
	}

	mmio.phys_addr = addr;
	mmio.len = len;
	mmio.is_write = is_write;
	mmio.data = val;
	mmio.private = iodev->redist_vcpu;

	spin_lock(&dist->lock);
	offset -= range->base;
	if (vgic_validate_access(dist, range, offset)) {
		updated_state = call_range_handler(vcpu, &mmio, offset, range);
	} else {
		if (!is_write)
			memset(val, 0, len);
		updated_state = false;
	}
	spin_unlock(&dist->lock);
	run->mmio.is_write	= is_write;
	run->mmio.len		= len;
	run->mmio.phys_addr	= addr;
	memcpy(run->mmio.data, val, len);

	kvm_handle_mmio_return(vcpu, run);

	if (updated_state)
		vgic_kick_vcpus(vcpu->kvm);

	return 0;
}

static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
				 struct kvm_io_device *this,
				 gpa_t addr, int len, void *val)
{
	return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
}

static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
				  struct kvm_io_device *this,
				  gpa_t addr, int len, const void *val)
{
	return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
				       true);
}

struct kvm_io_device_ops vgic_io_ops = {
	.read	= vgic_handle_mmio_read,
	.write	= vgic_handle_mmio_write,
};

/**
 * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
 * @kvm:            The VM structure pointer
 * @base:           The (guest) base address for the register frame
 * @len:            Length of the register frame window
 * @ranges:         Describing the handler functions for each register
 * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
 * @iodev:          Points to memory to be passed on to the handler
 *
 * @iodev stores the parameters of this function to be usable by the handler
 * respectively the dispatcher function (since the KVM I/O bus framework lacks
 * an opaque parameter). Initialization is done in this function, but the
 * reference should be valid and unique for the whole VGIC lifetime.
 * If the register frame is not mapped for a specific VCPU, pass -1 to
 * @redist_vcpu_id.
 */
int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
			     const struct vgic_io_range *ranges,
			     int redist_vcpu_id,
			     struct vgic_io_device *iodev)
{
	struct kvm_vcpu *vcpu = NULL;
	int ret;

	if (redist_vcpu_id >= 0)
		vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);

	iodev->addr		= base;
	iodev->len		= len;
	iodev->reg_ranges	= ranges;
	iodev->redist_vcpu	= vcpu;

	kvm_iodevice_init(&iodev->dev, &vgic_io_ops);

	mutex_lock(&kvm->slots_lock);

	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
				      &iodev->dev);
	mutex_unlock(&kvm->slots_lock);

	/* Mark the iodev as invalid if registration fails. */
	if (ret)
		iodev->dev.ops = NULL;

	return ret;
}

static int vgic_nr_shared_irqs(struct vgic_dist *dist)
{
	return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
}

static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	unsigned long *active, *enabled, *act_percpu, *act_shared;
	unsigned long active_private, active_shared;
	int nr_shared = vgic_nr_shared_irqs(dist);
	int vcpu_id;

	vcpu_id = vcpu->vcpu_id;
	act_percpu = vcpu->arch.vgic_cpu.active_percpu;
	act_shared = vcpu->arch.vgic_cpu.active_shared;

	active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
	enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
	bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);

	active = vgic_bitmap_get_shared_map(&dist->irq_active);
	enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
	bitmap_and(act_shared, active, enabled, nr_shared);
	bitmap_and(act_shared, act_shared,
		   vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
		   nr_shared);

	active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
	active_shared = find_first_bit(act_shared, nr_shared);

	return (active_private < VGIC_NR_PRIVATE_IRQS ||
		active_shared < nr_shared);
}

static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
	unsigned long pending_private, pending_shared;
	int nr_shared = vgic_nr_shared_irqs(dist);
	int vcpu_id;

	vcpu_id = vcpu->vcpu_id;
	pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
	pend_shared = vcpu->arch.vgic_cpu.pending_shared;

	if (!dist->enabled) {
		bitmap_zero(pend_percpu, VGIC_NR_PRIVATE_IRQS);
		bitmap_zero(pend_shared, nr_shared);
		return 0;
	}

	pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
	enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
	bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);

	pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
	enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
	bitmap_and(pend_shared, pending, enabled, nr_shared);
	bitmap_and(pend_shared, pend_shared,
		   vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
		   nr_shared);

	pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
	pending_shared = find_first_bit(pend_shared, nr_shared);
	return (pending_private < VGIC_NR_PRIVATE_IRQS ||
		pending_shared < vgic_nr_shared_irqs(dist));
}

/*
 * Update the interrupt state and determine which CPUs have pending
 * or active interrupts. Must be called with distributor lock held.
 */
void vgic_update_state(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int c;

	kvm_for_each_vcpu(c, vcpu, kvm) {
		if (compute_pending_for_cpu(vcpu))
			set_bit(c, dist->irq_pending_on_cpu);

		if (compute_active_for_cpu(vcpu))
			set_bit(c, dist->irq_active_on_cpu);
		else
			clear_bit(c, dist->irq_active_on_cpu);
	}
}

static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
{
	return vgic_ops->get_lr(vcpu, lr);
}

static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
			       struct vgic_lr vlr)
{
	vgic_ops->set_lr(vcpu, lr, vlr);
}

static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
{
	return vgic_ops->get_elrsr(vcpu);
}

static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
{
	return vgic_ops->get_eisr(vcpu);
}

static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
{
	vgic_ops->clear_eisr(vcpu);
}

static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
{
	return vgic_ops->get_interrupt_status(vcpu);
}

static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
{
	vgic_ops->enable_underflow(vcpu);
}

static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
{
	vgic_ops->disable_underflow(vcpu);
}

void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
{
	vgic_ops->get_vmcr(vcpu, vmcr);
}

void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
{
	vgic_ops->set_vmcr(vcpu, vmcr);
}

static inline void vgic_enable(struct kvm_vcpu *vcpu)
{
	vgic_ops->enable(vcpu);
}

static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu)
{
	struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);

	vgic_irq_clear_queued(vcpu, vlr.irq);

	/*
	 * We must transfer the pending state back to the distributor before
	 * retiring the LR, otherwise we may loose edge-triggered interrupts.
	 */
	if (vlr.state & LR_STATE_PENDING) {
		vgic_dist_irq_set_pending(vcpu, vlr.irq);
		vlr.hwirq = 0;
	}

	vlr.state = 0;
	vgic_set_lr(vcpu, lr_nr, vlr);
}

static bool dist_active_irq(struct kvm_vcpu *vcpu)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
}

bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, struct irq_phys_map *map)
{
	int i;

	for (i = 0; i < vcpu->arch.vgic_cpu.nr_lr; i++) {
		struct vgic_lr vlr = vgic_get_lr(vcpu, i);

		if (vlr.irq == map->virt_irq && vlr.state & LR_STATE_ACTIVE)
			return true;
	}

	return vgic_irq_is_active(vcpu, map->virt_irq);
}

/*
 * An interrupt may have been disabled after being made pending on the
 * CPU interface (the classic case is a timer running while we're
 * rebooting the guest - the interrupt would kick as soon as the CPU
 * interface gets enabled, with deadly consequences).
 *
 * The solution is to examine already active LRs, and check the
 * interrupt is still enabled. If not, just retire it.
 */
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
{
	u64 elrsr = vgic_get_elrsr(vcpu);
	unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
	int lr;

	for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) {
		struct vgic_lr vlr = vgic_get_lr(vcpu, lr);

		if (!vgic_irq_is_enabled(vcpu, vlr.irq))
			vgic_retire_lr(lr, vcpu);
	}
}

static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
				 int lr_nr, struct vgic_lr vlr)
{
	if (vgic_irq_is_active(vcpu, irq)) {
		vlr.state |= LR_STATE_ACTIVE;
		kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
		vgic_irq_clear_active(vcpu, irq);
		vgic_update_state(vcpu->kvm);
	} else {
		WARN_ON(!vgic_dist_irq_is_pending(vcpu, irq));
		vlr.state |= LR_STATE_PENDING;
		kvm_debug("Set pending: 0x%x\n", vlr.state);
	}

	if (!vgic_irq_is_edge(vcpu, irq))
		vlr.state |= LR_EOI_INT;

	if (vlr.irq >= VGIC_NR_SGIS) {
		struct irq_phys_map *map;
		map = vgic_irq_map_search(vcpu, irq);

		if (map) {
			vlr.hwirq = map->phys_irq;
			vlr.state |= LR_HW;
			vlr.state &= ~LR_EOI_INT;

			/*
			 * Make sure we're not going to sample this
			 * again, as a HW-backed interrupt cannot be
			 * in the PENDING_ACTIVE stage.
			 */
			vgic_irq_set_queued(vcpu, irq);
		}
	}

	vgic_set_lr(vcpu, lr_nr, vlr);
}

/*
 * Queue an interrupt to a CPU virtual interface. Return true on success,
 * or false if it wasn't possible to queue it.
 * sgi_source must be zero for any non-SGI interrupts.
 */
bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	u64 elrsr = vgic_get_elrsr(vcpu);
	unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
	struct vgic_lr vlr;
	int lr;

	/* Sanitize the input... */
	BUG_ON(sgi_source_id & ~7);
	BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
	BUG_ON(irq >= dist->nr_irqs);

	kvm_debug("Queue IRQ%d\n", irq);

	/* Do we have an active interrupt for the same CPUID? */
	for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) {
		vlr = vgic_get_lr(vcpu, lr);
		if (vlr.irq == irq && vlr.source == sgi_source_id) {
			kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
			vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
			return true;
		}
	}

	/* Try to use another LR for this interrupt */
	lr = find_first_bit(elrsr_ptr, vgic->nr_lr);
	if (lr >= vgic->nr_lr)
		return false;

	kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);

	vlr.irq = irq;
	vlr.source = sgi_source_id;
	vlr.state = 0;
	vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);

	return true;
}

static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
{
	if (!vgic_can_sample_irq(vcpu, irq))
		return true; /* level interrupt, already queued */

	if (vgic_queue_irq(vcpu, 0, irq)) {
		if (vgic_irq_is_edge(vcpu, irq)) {
			vgic_dist_irq_clear_pending(vcpu, irq);
			vgic_cpu_irq_clear(vcpu, irq);
		} else {
			vgic_irq_set_queued(vcpu, irq);
		}

		return true;
	}

	return false;
}

/*
 * Fill the list registers with pending interrupts before running the
 * guest.
 */
static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	unsigned long *pa_percpu, *pa_shared;
	int i, vcpu_id;
	int overflow = 0;
	int nr_shared = vgic_nr_shared_irqs(dist);

	vcpu_id = vcpu->vcpu_id;

	pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
	pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;

	bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
		  VGIC_NR_PRIVATE_IRQS);
	bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
		  nr_shared);
	/*
	 * We may not have any pending interrupt, or the interrupts
	 * may have been serviced from another vcpu. In all cases,
	 * move along.
	 */
	if (!kvm_vgic_vcpu_pending_irq(vcpu) && !dist_active_irq(vcpu))
		goto epilog;

	/* SGIs */
	for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
		if (!queue_sgi(vcpu, i))
			overflow = 1;
	}

	/* PPIs */
	for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
		if (!vgic_queue_hwirq(vcpu, i))
			overflow = 1;
	}

	/* SPIs */
	for_each_set_bit(i, pa_shared, nr_shared) {
		if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
			overflow = 1;
	}




epilog:
	if (overflow) {
		vgic_enable_underflow(vcpu);
	} else {
		vgic_disable_underflow(vcpu);
		/*
		 * We're about to run this VCPU, and we've consumed
		 * everything the distributor had in store for
		 * us. Claim we don't have anything pending. We'll
		 * adjust that if needed while exiting.
		 */
		clear_bit(vcpu_id, dist->irq_pending_on_cpu);
	}
}

static int process_queued_irq(struct kvm_vcpu *vcpu,
				   int lr, struct vgic_lr vlr)
{
	int pending = 0;

	/*
	 * If the IRQ was EOIed (called from vgic_process_maintenance) or it
	 * went from active to non-active (called from vgic_sync_hwirq) it was
	 * also ACKed and we we therefore assume we can clear the soft pending
	 * state (should it had been set) for this interrupt.
	 *
	 * Note: if the IRQ soft pending state was set after the IRQ was
	 * acked, it actually shouldn't be cleared, but we have no way of
	 * knowing that unless we start trapping ACKs when the soft-pending
	 * state is set.
	 */
	vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);

	/*
	 * Tell the gic to start sampling this interrupt again.
	 */
	vgic_irq_clear_queued(vcpu, vlr.irq);

	/* Any additional pending interrupt? */
	if (vgic_irq_is_edge(vcpu, vlr.irq)) {
		BUG_ON(!(vlr.state & LR_HW));
		pending = vgic_dist_irq_is_pending(vcpu, vlr.irq);
	} else {
		if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
			vgic_cpu_irq_set(vcpu, vlr.irq);
			pending = 1;
		} else {
			vgic_dist_irq_clear_pending(vcpu, vlr.irq);
			vgic_cpu_irq_clear(vcpu, vlr.irq);
		}
	}

	/*
	 * Despite being EOIed, the LR may not have
	 * been marked as empty.
	 */
	vlr.state = 0;
	vlr.hwirq = 0;
	vgic_set_lr(vcpu, lr, vlr);

	return pending;
}

static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
{
	u32 status = vgic_get_interrupt_status(vcpu);
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	struct kvm *kvm = vcpu->kvm;
	int level_pending = 0;

	kvm_debug("STATUS = %08x\n", status);

	if (status & INT_STATUS_EOI) {
		/*
		 * Some level interrupts have been EOIed. Clear their
		 * active bit.
		 */
		u64 eisr = vgic_get_eisr(vcpu);
		unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
		int lr;

		for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
			struct vgic_lr vlr = vgic_get_lr(vcpu, lr);

			WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
			WARN_ON(vlr.state & LR_STATE_MASK);


			/*
			 * kvm_notify_acked_irq calls kvm_set_irq()
			 * to reset the IRQ level, which grabs the dist->lock
			 * so we call this before taking the dist->lock.
			 */
			kvm_notify_acked_irq(kvm, 0,
					     vlr.irq - VGIC_NR_PRIVATE_IRQS);

			spin_lock(&dist->lock);
			level_pending |= process_queued_irq(vcpu, lr, vlr);
			spin_unlock(&dist->lock);
		}
	}

	if (status & INT_STATUS_UNDERFLOW)
		vgic_disable_underflow(vcpu);

	/*
	 * In the next iterations of the vcpu loop, if we sync the vgic state
	 * after flushing it, but before entering the guest (this happens for
	 * pending signals and vmid rollovers), then make sure we don't pick
	 * up any old maintenance interrupts here.
	 */
	vgic_clear_eisr(vcpu);

	return level_pending;
}

/*
 * Save the physical active state, and reset it to inactive.
 *
 * Return true if there's a pending forwarded interrupt to queue.
 */
static bool vgic_sync_hwirq(struct kvm_vcpu *vcpu, int lr, struct vgic_lr vlr)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	bool level_pending;

	if (!(vlr.state & LR_HW))
		return false;

	if (vlr.state & LR_STATE_ACTIVE)
		return false;

	spin_lock(&dist->lock);
	level_pending = process_queued_irq(vcpu, lr, vlr);
	spin_unlock(&dist->lock);
	return level_pending;
}

/* Sync back the VGIC state after a guest run */
static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	u64 elrsr;
	unsigned long *elrsr_ptr;
	int lr, pending;
	bool level_pending;

	level_pending = vgic_process_maintenance(vcpu);

	/* Deal with HW interrupts, and clear mappings for empty LRs */
	for (lr = 0; lr < vgic->nr_lr; lr++) {
		struct vgic_lr vlr = vgic_get_lr(vcpu, lr);

		level_pending |= vgic_sync_hwirq(vcpu, lr, vlr);
		BUG_ON(vlr.irq >= dist->nr_irqs);
	}

	/* Check if we still have something up our sleeve... */
	elrsr = vgic_get_elrsr(vcpu);
	elrsr_ptr = u64_to_bitmask(&elrsr);
	pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
	if (level_pending || pending < vgic->nr_lr)
		set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
}

void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	if (!irqchip_in_kernel(vcpu->kvm))
		return;

	spin_lock(&dist->lock);
	__kvm_vgic_flush_hwstate(vcpu);
	spin_unlock(&dist->lock);
}

void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
{
	if (!irqchip_in_kernel(vcpu->kvm))
		return;

	__kvm_vgic_sync_hwstate(vcpu);
}

int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	if (!irqchip_in_kernel(vcpu->kvm))
		return 0;

	return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
}

void vgic_kick_vcpus(struct kvm *kvm)
{
	struct kvm_vcpu *vcpu;
	int c;

	/*
	 * We've injected an interrupt, time to find out who deserves
	 * a good kick...
	 */
	kvm_for_each_vcpu(c, vcpu, kvm) {
		if (kvm_vgic_vcpu_pending_irq(vcpu))
			kvm_vcpu_kick(vcpu);
	}
}

static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
{
	int edge_triggered = vgic_irq_is_edge(vcpu, irq);

	/*
	 * Only inject an interrupt if:
	 * - edge triggered and we have a rising edge
	 * - level triggered and we change level
	 */
	if (edge_triggered) {
		int state = vgic_dist_irq_is_pending(vcpu, irq);
		return level > state;
	} else {
		int state = vgic_dist_irq_get_level(vcpu, irq);
		return level != state;
	}
}

static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
				   struct irq_phys_map *map,
				   unsigned int irq_num, bool level)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int edge_triggered, level_triggered;
	int enabled;
	bool ret = true, can_inject = true;

	trace_vgic_update_irq_pending(cpuid, irq_num, level);

	if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
		return -EINVAL;

	spin_lock(&dist->lock);

	vcpu = kvm_get_vcpu(kvm, cpuid);
	edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
	level_triggered = !edge_triggered;

	if (!vgic_validate_injection(vcpu, irq_num, level)) {
		ret = false;
		goto out;
	}

	if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
		cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
		if (cpuid == VCPU_NOT_ALLOCATED) {
			/* Pretend we use CPU0, and prevent injection */
			cpuid = 0;
			can_inject = false;
		}
		vcpu = kvm_get_vcpu(kvm, cpuid);
	}

	kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);

	if (level) {
		if (level_triggered)
			vgic_dist_irq_set_level(vcpu, irq_num);
		vgic_dist_irq_set_pending(vcpu, irq_num);
	} else {
		if (level_triggered) {
			vgic_dist_irq_clear_level(vcpu, irq_num);
			if (!vgic_dist_irq_soft_pend(vcpu, irq_num)) {
				vgic_dist_irq_clear_pending(vcpu, irq_num);
				vgic_cpu_irq_clear(vcpu, irq_num);
				if (!compute_pending_for_cpu(vcpu))
					clear_bit(cpuid, dist->irq_pending_on_cpu);
			}
		}

		ret = false;
		goto out;
	}

	enabled = vgic_irq_is_enabled(vcpu, irq_num);

	if (!enabled || !can_inject) {
		ret = false;
		goto out;
	}

	if (!vgic_can_sample_irq(vcpu, irq_num)) {
		/*
		 * Level interrupt in progress, will be picked up
		 * when EOId.
		 */
		ret = false;
		goto out;
	}

	if (level) {
		vgic_cpu_irq_set(vcpu, irq_num);
		set_bit(cpuid, dist->irq_pending_on_cpu);
	}

out:
	spin_unlock(&dist->lock);

	if (ret) {
		/* kick the specified vcpu */
		kvm_vcpu_kick(kvm_get_vcpu(kvm, cpuid));
	}

	return 0;
}

static int vgic_lazy_init(struct kvm *kvm)
{
	int ret = 0;

	if (unlikely(!vgic_initialized(kvm))) {
		/*
		 * We only provide the automatic initialization of the VGIC
		 * for the legacy case of a GICv2. Any other type must
		 * be explicitly initialized once setup with the respective
		 * KVM device call.
		 */
		if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
			return -EBUSY;

		mutex_lock(&kvm->lock);
		ret = vgic_init(kvm);
		mutex_unlock(&kvm->lock);
	}

	return ret;
}

/**
 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
 * @kvm:     The VM structure pointer
 * @cpuid:   The CPU for PPIs
 * @irq_num: The IRQ number that is assigned to the device. This IRQ
 *           must not be mapped to a HW interrupt.
 * @level:   Edge-triggered:  true:  to trigger the interrupt
 *			      false: to ignore the call
 *	     Level-sensitive  true:  raise the input signal
 *			      false: lower the input signal
 *
 * The GIC is not concerned with devices being active-LOW or active-HIGH for
 * level-sensitive interrupts.  You can think of the level parameter as 1
 * being HIGH and 0 being LOW and all devices being active-HIGH.
 */
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
			bool level)
{
	struct irq_phys_map *map;
	int ret;

	ret = vgic_lazy_init(kvm);
	if (ret)
		return ret;

	map = vgic_irq_map_search(kvm_get_vcpu(kvm, cpuid), irq_num);
	if (map)
		return -EINVAL;

	return vgic_update_irq_pending(kvm, cpuid, NULL, irq_num, level);
}

/**
 * kvm_vgic_inject_mapped_irq - Inject a physically mapped IRQ to the vgic
 * @kvm:     The VM structure pointer
 * @cpuid:   The CPU for PPIs
 * @map:     Pointer to a irq_phys_map structure describing the mapping
 * @level:   Edge-triggered:  true:  to trigger the interrupt
 *			      false: to ignore the call
 *	     Level-sensitive  true:  raise the input signal
 *			      false: lower the input signal
 *
 * The GIC is not concerned with devices being active-LOW or active-HIGH for
 * level-sensitive interrupts.  You can think of the level parameter as 1
 * being HIGH and 0 being LOW and all devices being active-HIGH.
 */
int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid,
			       struct irq_phys_map *map, bool level)
{
	int ret;

	ret = vgic_lazy_init(kvm);
	if (ret)
		return ret;

	return vgic_update_irq_pending(kvm, cpuid, map, map->virt_irq, level);
}

static irqreturn_t vgic_maintenance_handler(int irq, void *data)
{
	/*
	 * We cannot rely on the vgic maintenance interrupt to be
	 * delivered synchronously. This means we can only use it to
	 * exit the VM, and we perform the handling of EOIed
	 * interrupts on the exit path (see vgic_process_maintenance).
	 */
	return IRQ_HANDLED;
}

static struct list_head *vgic_get_irq_phys_map_list(struct kvm_vcpu *vcpu,
						    int virt_irq)
{
	if (virt_irq < VGIC_NR_PRIVATE_IRQS)
		return &vcpu->arch.vgic_cpu.irq_phys_map_list;
	else
		return &vcpu->kvm->arch.vgic.irq_phys_map_list;
}

/**
 * kvm_vgic_map_phys_irq - map a virtual IRQ to a physical IRQ
 * @vcpu: The VCPU pointer
 * @virt_irq: The virtual irq number
 * @irq: The Linux IRQ number
 *
 * Establish a mapping between a guest visible irq (@virt_irq) and a
 * Linux irq (@irq). On injection, @virt_irq will be associated with
 * the physical interrupt represented by @irq. This mapping can be
 * established multiple times as long as the parameters are the same.
 *
 * Returns a valid pointer on success, and an error pointer otherwise
 */
struct irq_phys_map *kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu,
					   int virt_irq, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
	struct irq_phys_map *map;
	struct irq_phys_map_entry *entry;
	struct irq_desc *desc;
	struct irq_data *data;
	int phys_irq;

	desc = irq_to_desc(irq);
	if (!desc) {
		kvm_err("%s: no interrupt descriptor\n", __func__);
		return ERR_PTR(-EINVAL);
	}

	data = irq_desc_get_irq_data(desc);
	while (data->parent_data)
		data = data->parent_data;

	phys_irq = data->hwirq;

	/* Create a new mapping */
	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
	if (!entry)
		return ERR_PTR(-ENOMEM);

	spin_lock(&dist->irq_phys_map_lock);

	/* Try to match an existing mapping */
	map = vgic_irq_map_search(vcpu, virt_irq);
	if (map) {
		/* Make sure this mapping matches */
		if (map->phys_irq != phys_irq	||
		    map->irq      != irq)
			map = ERR_PTR(-EINVAL);

		/* Found an existing, valid mapping */
		goto out;
	}

	map           = &entry->map;
	map->virt_irq = virt_irq;
	map->phys_irq = phys_irq;
	map->irq      = irq;

	list_add_tail_rcu(&entry->entry, root);

out:
	spin_unlock(&dist->irq_phys_map_lock);
	/* If we've found a hit in the existing list, free the useless
	 * entry */
	if (IS_ERR(map) || map != &entry->map)
		kfree(entry);
	return map;
}

static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
						int virt_irq)
{
	struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
	struct irq_phys_map_entry *entry;
	struct irq_phys_map *map;

	rcu_read_lock();

	list_for_each_entry_rcu(entry, root, entry) {
		map = &entry->map;
		if (map->virt_irq == virt_irq) {
			rcu_read_unlock();
			return map;
		}
	}

	rcu_read_unlock();

	return NULL;
}

static void vgic_free_phys_irq_map_rcu(struct rcu_head *rcu)
{
	struct irq_phys_map_entry *entry;

	entry = container_of(rcu, struct irq_phys_map_entry, rcu);
	kfree(entry);
}

/**
 * kvm_vgic_unmap_phys_irq - Remove a virtual to physical IRQ mapping
 * @vcpu: The VCPU pointer
 * @map: The pointer to a mapping obtained through kvm_vgic_map_phys_irq
 *
 * Remove an existing mapping between virtual and physical interrupts.
 */
int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, struct irq_phys_map *map)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	struct irq_phys_map_entry *entry;
	struct list_head *root;

	if (!map)
		return -EINVAL;

	root = vgic_get_irq_phys_map_list(vcpu, map->virt_irq);

	spin_lock(&dist->irq_phys_map_lock);

	list_for_each_entry(entry, root, entry) {
		if (&entry->map == map) {
			list_del_rcu(&entry->entry);
			call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
			break;
		}
	}

	spin_unlock(&dist->irq_phys_map_lock);

	return 0;
}

static void vgic_destroy_irq_phys_map(struct kvm *kvm, struct list_head *root)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct irq_phys_map_entry *entry;

	spin_lock(&dist->irq_phys_map_lock);

	list_for_each_entry(entry, root, entry) {
		list_del_rcu(&entry->entry);
		call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
	}

	spin_unlock(&dist->irq_phys_map_lock);
}

void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;

	kfree(vgic_cpu->pending_shared);
	kfree(vgic_cpu->active_shared);
	kfree(vgic_cpu->pend_act_shared);
	vgic_destroy_irq_phys_map(vcpu->kvm, &vgic_cpu->irq_phys_map_list);
	vgic_cpu->pending_shared = NULL;
	vgic_cpu->active_shared = NULL;
	vgic_cpu->pend_act_shared = NULL;
}

static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	int nr_longs = BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
	int sz = nr_longs * sizeof(unsigned long);
	vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
	vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
	vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);

	if (!vgic_cpu->pending_shared
		|| !vgic_cpu->active_shared
		|| !vgic_cpu->pend_act_shared) {
		kvm_vgic_vcpu_destroy(vcpu);
		return -ENOMEM;
	}

	/*
	 * Store the number of LRs per vcpu, so we don't have to go
	 * all the way to the distributor structure to find out. Only
	 * assembly code should use this one.
	 */
	vgic_cpu->nr_lr = vgic->nr_lr;

	return 0;
}

/**
 * kvm_vgic_vcpu_early_init - Earliest possible per-vcpu vgic init stage
 *
 * No memory allocation should be performed here, only static init.
 */
void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	INIT_LIST_HEAD(&vgic_cpu->irq_phys_map_list);
}

/**
 * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
 *
 * The host's GIC naturally limits the maximum amount of VCPUs a guest
 * can use.
 */
int kvm_vgic_get_max_vcpus(void)
{
	return vgic->max_gic_vcpus;
}

void kvm_vgic_destroy(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int i;

	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_vgic_vcpu_destroy(vcpu);

	vgic_free_bitmap(&dist->irq_enabled);
	vgic_free_bitmap(&dist->irq_level);
	vgic_free_bitmap(&dist->irq_pending);
	vgic_free_bitmap(&dist->irq_soft_pend);
	vgic_free_bitmap(&dist->irq_queued);
	vgic_free_bitmap(&dist->irq_cfg);
	vgic_free_bytemap(&dist->irq_priority);
	if (dist->irq_spi_target) {
		for (i = 0; i < dist->nr_cpus; i++)
			vgic_free_bitmap(&dist->irq_spi_target[i]);
	}
	kfree(dist->irq_sgi_sources);
	kfree(dist->irq_spi_cpu);
	kfree(dist->irq_spi_mpidr);
	kfree(dist->irq_spi_target);
	kfree(dist->irq_pending_on_cpu);
	kfree(dist->irq_active_on_cpu);
	vgic_destroy_irq_phys_map(kvm, &dist->irq_phys_map_list);
	dist->irq_sgi_sources = NULL;
	dist->irq_spi_cpu = NULL;
	dist->irq_spi_target = NULL;
	dist->irq_pending_on_cpu = NULL;
	dist->irq_active_on_cpu = NULL;
	dist->nr_cpus = 0;
}

/*
 * Allocate and initialize the various data structures. Must be called
 * with kvm->lock held!
 */
int vgic_init(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int nr_cpus, nr_irqs;
	int ret, i, vcpu_id;

	if (vgic_initialized(kvm))
		return 0;

	nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
	if (!nr_cpus)		/* No vcpus? Can't be good... */
		return -ENODEV;

	/*
	 * If nobody configured the number of interrupts, use the
	 * legacy one.
	 */
	if (!dist->nr_irqs)
		dist->nr_irqs = VGIC_NR_IRQS_LEGACY;

	nr_irqs = dist->nr_irqs;

	ret  = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
	ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);

	if (ret)
		goto out;

	dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
	dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
	dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
				       GFP_KERNEL);
	dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
					   GFP_KERNEL);
	dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
					   GFP_KERNEL);
	if (!dist->irq_sgi_sources ||
	    !dist->irq_spi_cpu ||
	    !dist->irq_spi_target ||
	    !dist->irq_pending_on_cpu ||
	    !dist->irq_active_on_cpu) {
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < nr_cpus; i++)
		ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
					nr_cpus, nr_irqs);

	if (ret)
		goto out;

	ret = kvm->arch.vgic.vm_ops.init_model(kvm);
	if (ret)
		goto out;

	kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
		ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
		if (ret) {
			kvm_err("VGIC: Failed to allocate vcpu memory\n");
			break;
		}

		/*
		 * Enable and configure all SGIs to be edge-triggere and
		 * configure all PPIs as level-triggered.
		 */
		for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
			if (i < VGIC_NR_SGIS) {
				/* SGIs */
				vgic_bitmap_set_irq_val(&dist->irq_enabled,
							vcpu->vcpu_id, i, 1);
				vgic_bitmap_set_irq_val(&dist->irq_cfg,
							vcpu->vcpu_id, i,
							VGIC_CFG_EDGE);
			} else if (i < VGIC_NR_PRIVATE_IRQS) {
				/* PPIs */
				vgic_bitmap_set_irq_val(&dist->irq_cfg,
							vcpu->vcpu_id, i,
							VGIC_CFG_LEVEL);
			}
		}

		vgic_enable(vcpu);
	}

out:
	if (ret)
		kvm_vgic_destroy(kvm);

	return ret;
}

static int init_vgic_model(struct kvm *kvm, int type)
{
	switch (type) {
	case KVM_DEV_TYPE_ARM_VGIC_V2:
		vgic_v2_init_emulation(kvm);
		break;
#ifdef CONFIG_KVM_ARM_VGIC_V3
	case KVM_DEV_TYPE_ARM_VGIC_V3:
		vgic_v3_init_emulation(kvm);
		break;
#endif
	default:
		return -ENODEV;
	}

	if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
		return -E2BIG;

	return 0;
}

/**
 * kvm_vgic_early_init - Earliest possible vgic initialization stage
 *
 * No memory allocation should be performed here, only static init.
 */
void kvm_vgic_early_init(struct kvm *kvm)
{
	spin_lock_init(&kvm->arch.vgic.lock);
	spin_lock_init(&kvm->arch.vgic.irq_phys_map_lock);
	INIT_LIST_HEAD(&kvm->arch.vgic.irq_phys_map_list);
}

int kvm_vgic_create(struct kvm *kvm, u32 type)
{
	int i, vcpu_lock_idx = -1, ret;
	struct kvm_vcpu *vcpu;

	mutex_lock(&kvm->lock);

	if (irqchip_in_kernel(kvm)) {
		ret = -EEXIST;
		goto out;
	}

	/*
	 * This function is also called by the KVM_CREATE_IRQCHIP handler,
	 * which had no chance yet to check the availability of the GICv2
	 * emulation. So check this here again. KVM_CREATE_DEVICE does
	 * the proper checks already.
	 */
	if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
		ret = -ENODEV;
		goto out;
	}

	/*
	 * Any time a vcpu is run, vcpu_load is called which tries to grab the
	 * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
	 * that no other VCPUs are run while we create the vgic.
	 */
	ret = -EBUSY;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (!mutex_trylock(&vcpu->mutex))
			goto out_unlock;
		vcpu_lock_idx = i;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (vcpu->arch.has_run_once)
			goto out_unlock;
	}
	ret = 0;

	ret = init_vgic_model(kvm, type);
	if (ret)
		goto out_unlock;

	kvm->arch.vgic.in_kernel = true;
	kvm->arch.vgic.vgic_model = type;
	kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
	kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
	kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
	kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;

out_unlock:
	for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
		vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
		mutex_unlock(&vcpu->mutex);
	}

out:
	mutex_unlock(&kvm->lock);
	return ret;
}

static int vgic_ioaddr_overlap(struct kvm *kvm)
{
	phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
	phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;

	if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
		return 0;
	if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
	    (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
		return -EBUSY;
	return 0;
}

static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
			      phys_addr_t addr, phys_addr_t size)
{
	int ret;

	if (addr & ~KVM_PHYS_MASK)
		return -E2BIG;

	if (addr & (SZ_4K - 1))
		return -EINVAL;

	if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
		return -EEXIST;
	if (addr + size < addr)
		return -EINVAL;

	*ioaddr = addr;
	ret = vgic_ioaddr_overlap(kvm);
	if (ret)
		*ioaddr = VGIC_ADDR_UNDEF;

	return ret;
}

/**
 * kvm_vgic_addr - set or get vgic VM base addresses
 * @kvm:   pointer to the vm struct
 * @type:  the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
 * @addr:  pointer to address value
 * @write: if true set the address in the VM address space, if false read the
 *          address
 *
 * Set or get the vgic base addresses for the distributor and the virtual CPU
 * interface in the VM physical address space.  These addresses are properties
 * of the emulated core/SoC and therefore user space initially knows this
 * information.
 */
int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
{
	int r = 0;
	struct vgic_dist *vgic = &kvm->arch.vgic;
	int type_needed;
	phys_addr_t *addr_ptr, block_size;
	phys_addr_t alignment;

	mutex_lock(&kvm->lock);
	switch (type) {
	case KVM_VGIC_V2_ADDR_TYPE_DIST:
		type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
		addr_ptr = &vgic->vgic_dist_base;
		block_size = KVM_VGIC_V2_DIST_SIZE;
		alignment = SZ_4K;
		break;
	case KVM_VGIC_V2_ADDR_TYPE_CPU:
		type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
		addr_ptr = &vgic->vgic_cpu_base;
		block_size = KVM_VGIC_V2_CPU_SIZE;
		alignment = SZ_4K;
		break;
#ifdef CONFIG_KVM_ARM_VGIC_V3
	case KVM_VGIC_V3_ADDR_TYPE_DIST:
		type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
		addr_ptr = &vgic->vgic_dist_base;
		block_size = KVM_VGIC_V3_DIST_SIZE;
		alignment = SZ_64K;
		break;
	case KVM_VGIC_V3_ADDR_TYPE_REDIST:
		type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
		addr_ptr = &vgic->vgic_redist_base;
		block_size = KVM_VGIC_V3_REDIST_SIZE;
		alignment = SZ_64K;
		break;
#endif
	default:
		r = -ENODEV;
		goto out;
	}

	if (vgic->vgic_model != type_needed) {
		r = -ENODEV;
		goto out;
	}

	if (write) {
		if (!IS_ALIGNED(*addr, alignment))
			r = -EINVAL;
		else
			r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
					       block_size);
	} else {
		*addr = *addr_ptr;
	}

out:
	mutex_unlock(&kvm->lock);
	return r;
}

int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	int r;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		u64 addr;
		unsigned long type = (unsigned long)attr->attr;

		if (copy_from_user(&addr, uaddr, sizeof(addr)))
			return -EFAULT;

		r = kvm_vgic_addr(dev->kvm, type, &addr, true);
		return (r == -ENODEV) ? -ENXIO : r;
	}
	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
		u32 __user *uaddr = (u32 __user *)(long)attr->addr;
		u32 val;
		int ret = 0;

		if (get_user(val, uaddr))
			return -EFAULT;

		/*
		 * We require:
		 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
		 * - at most 1024 interrupts
		 * - a multiple of 32 interrupts
		 */
		if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
		    val > VGIC_MAX_IRQS ||
		    (val & 31))
			return -EINVAL;

		mutex_lock(&dev->kvm->lock);

		if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
			ret = -EBUSY;
		else
			dev->kvm->arch.vgic.nr_irqs = val;

		mutex_unlock(&dev->kvm->lock);

		return ret;
	}
	case KVM_DEV_ARM_VGIC_GRP_CTRL: {
		switch (attr->attr) {
		case KVM_DEV_ARM_VGIC_CTRL_INIT:
			r = vgic_init(dev->kvm);
			return r;
		}
		break;
	}
	}

	return -ENXIO;
}

int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	int r = -ENXIO;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		u64 addr;
		unsigned long type = (unsigned long)attr->attr;

		r = kvm_vgic_addr(dev->kvm, type, &addr, false);
		if (r)
			return (r == -ENODEV) ? -ENXIO : r;

		if (copy_to_user(uaddr, &addr, sizeof(addr)))
			return -EFAULT;
		break;
	}
	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
		u32 __user *uaddr = (u32 __user *)(long)attr->addr;

		r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
		break;
	}

	}

	return r;
}

int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
{
	if (vgic_find_range(ranges, 4, offset))
		return 0;
	else
		return -ENXIO;
}

static void vgic_init_maintenance_interrupt(void *info)
{
	enable_percpu_irq(vgic->maint_irq, 0);
}

static int vgic_cpu_notify(struct notifier_block *self,
			   unsigned long action, void *cpu)
{
	switch (action) {
	case CPU_STARTING:
	case CPU_STARTING_FROZEN:
		vgic_init_maintenance_interrupt(NULL);
		break;
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		disable_percpu_irq(vgic->maint_irq);
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block vgic_cpu_nb = {
	.notifier_call = vgic_cpu_notify,
};

static const struct of_device_id vgic_ids[] = {
	{ .compatible = "arm,cortex-a15-gic",	.data = vgic_v2_probe, },
	{ .compatible = "arm,cortex-a7-gic",	.data = vgic_v2_probe, },
	{ .compatible = "arm,gic-400",		.data = vgic_v2_probe, },
	{ .compatible = "arm,gic-v3",		.data = vgic_v3_probe, },
	{},
};

int kvm_vgic_hyp_init(void)
{
	const struct of_device_id *matched_id;
	const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
				const struct vgic_params **);
	struct device_node *vgic_node;
	int ret;

	vgic_node = of_find_matching_node_and_match(NULL,
						    vgic_ids, &matched_id);
	if (!vgic_node) {
		kvm_err("error: no compatible GIC node found\n");
		return -ENODEV;
	}

	vgic_probe = matched_id->data;
	ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
	if (ret)
		return ret;

	ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
				 "vgic", kvm_get_running_vcpus());
	if (ret) {
		kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
		return ret;
	}

	ret = __register_cpu_notifier(&vgic_cpu_nb);
	if (ret) {
		kvm_err("Cannot register vgic CPU notifier\n");
		goto out_free_irq;
	}

	on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);

	return 0;

out_free_irq:
	free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
	return ret;
}

int kvm_irq_map_gsi(struct kvm *kvm,
		    struct kvm_kernel_irq_routing_entry *entries,
		    int gsi)
{
	return 0;
}

int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
{
	return pin;
}

int kvm_set_irq(struct kvm *kvm, int irq_source_id,
		u32 irq, int level, bool line_status)
{
	unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;

	trace_kvm_set_irq(irq, level, irq_source_id);

	BUG_ON(!vgic_initialized(kvm));

	return kvm_vgic_inject_irq(kvm, 0, spi, level);
}

/* MSI not implemented yet */
int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
		struct kvm *kvm, int irq_source_id,
		int level, bool line_status)
{
	return 0;
}