vgic-v3-emul.c 26.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
/*
 * GICv3 distributor and redistributor emulation
 *
 * GICv3 emulation is currently only supported on a GICv3 host (because
 * we rely on the hardware's CPU interface virtualization support), but
 * supports both hardware with or without the optional GICv2 backwards
 * compatibility features.
 *
 * Limitations of the emulation:
 * (RAZ/WI: read as zero, write ignore, RAO/WI: read as one, write ignore)
 * - We do not support LPIs (yet). TYPER.LPIS is reported as 0 and is RAZ/WI.
 * - We do not support the message based interrupts (MBIs) triggered by
 *   writes to the GICD_{SET,CLR}SPI_* registers. TYPER.MBIS is reported as 0.
 * - We do not support the (optional) backwards compatibility feature.
 *   GICD_CTLR.ARE resets to 1 and is RAO/WI. If the _host_ GIC supports
 *   the compatiblity feature, you can use a GICv2 in the guest, though.
 * - We only support a single security state. GICD_CTLR.DS is 1 and is RAO/WI.
 * - Priorities are not emulated (same as the GICv2 emulation). Linux
 *   as a guest is fine with this, because it does not use priorities.
 * - We only support Group1 interrupts. Again Linux uses only those.
 *
 * Copyright (C) 2014 ARM Ltd.
 * Author: Andre Przywara <andre.przywara@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>

#include <linux/irqchip/arm-gic-v3.h>
#include <kvm/arm_vgic.h>

#include <asm/kvm_emulate.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>

#include "vgic.h"

static bool handle_mmio_rao_wi(struct kvm_vcpu *vcpu,
			       struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 reg = 0xffffffff;

	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);

	return false;
}

static bool handle_mmio_ctlr(struct kvm_vcpu *vcpu,
			     struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 reg = 0;

	/*
	 * Force ARE and DS to 1, the guest cannot change this.
	 * For the time being we only support Group1 interrupts.
	 */
	if (vcpu->kvm->arch.vgic.enabled)
		reg = GICD_CTLR_ENABLE_SS_G1;
	reg |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;

	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	if (mmio->is_write) {
		vcpu->kvm->arch.vgic.enabled = !!(reg & GICD_CTLR_ENABLE_SS_G1);
		vgic_update_state(vcpu->kvm);
		return true;
	}
	return false;
}

/*
 * As this implementation does not provide compatibility
 * with GICv2 (ARE==1), we report zero CPUs in bits [5..7].
 * Also LPIs and MBIs are not supported, so we set the respective bits to 0.
 * Also we report at most 2**10=1024 interrupt IDs (to match 1024 SPIs).
 */
#define INTERRUPT_ID_BITS 10
static bool handle_mmio_typer(struct kvm_vcpu *vcpu,
			      struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 reg;

	reg = (min(vcpu->kvm->arch.vgic.nr_irqs, 1024) >> 5) - 1;

	reg |= (INTERRUPT_ID_BITS - 1) << 19;

	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);

	return false;
}

static bool handle_mmio_iidr(struct kvm_vcpu *vcpu,
			     struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 reg;

	reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);

	return false;
}

static bool handle_mmio_set_enable_reg_dist(struct kvm_vcpu *vcpu,
					    struct kvm_exit_mmio *mmio,
					    phys_addr_t offset)
{
	if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
		return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
					      vcpu->vcpu_id,
					      ACCESS_WRITE_SETBIT);

	vgic_reg_access(mmio, NULL, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
	return false;
}

static bool handle_mmio_clear_enable_reg_dist(struct kvm_vcpu *vcpu,
					      struct kvm_exit_mmio *mmio,
					      phys_addr_t offset)
{
	if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
		return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
					      vcpu->vcpu_id,
					      ACCESS_WRITE_CLEARBIT);

	vgic_reg_access(mmio, NULL, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
	return false;
}

static bool handle_mmio_set_pending_reg_dist(struct kvm_vcpu *vcpu,
					     struct kvm_exit_mmio *mmio,
					     phys_addr_t offset)
{
	if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
		return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset,
						   vcpu->vcpu_id);

	vgic_reg_access(mmio, NULL, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
	return false;
}

static bool handle_mmio_clear_pending_reg_dist(struct kvm_vcpu *vcpu,
					       struct kvm_exit_mmio *mmio,
					       phys_addr_t offset)
{
	if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
		return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset,
						     vcpu->vcpu_id);

	vgic_reg_access(mmio, NULL, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
	return false;
}

static bool handle_mmio_set_active_reg_dist(struct kvm_vcpu *vcpu,
					    struct kvm_exit_mmio *mmio,
					    phys_addr_t offset)
{
	if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
		return vgic_handle_set_active_reg(vcpu->kvm, mmio, offset,
						   vcpu->vcpu_id);

	vgic_reg_access(mmio, NULL, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
	return false;
}

static bool handle_mmio_clear_active_reg_dist(struct kvm_vcpu *vcpu,
					      struct kvm_exit_mmio *mmio,
					      phys_addr_t offset)
{
	if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
		return vgic_handle_clear_active_reg(vcpu->kvm, mmio, offset,
						    vcpu->vcpu_id);

	vgic_reg_access(mmio, NULL, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
	return false;
}

static bool handle_mmio_priority_reg_dist(struct kvm_vcpu *vcpu,
					  struct kvm_exit_mmio *mmio,
					  phys_addr_t offset)
{
	u32 *reg;

	if (unlikely(offset < VGIC_NR_PRIVATE_IRQS)) {
		vgic_reg_access(mmio, NULL, offset,
				ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
		return false;
	}

	reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
				   vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
		ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	return false;
}

static bool handle_mmio_cfg_reg_dist(struct kvm_vcpu *vcpu,
				     struct kvm_exit_mmio *mmio,
				     phys_addr_t offset)
{
	u32 *reg;

	if (unlikely(offset < VGIC_NR_PRIVATE_IRQS / 4)) {
		vgic_reg_access(mmio, NULL, offset,
				ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
		return false;
	}

	reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
				  vcpu->vcpu_id, offset >> 1);

	return vgic_handle_cfg_reg(reg, mmio, offset);
}

/*
 * We use a compressed version of the MPIDR (all 32 bits in one 32-bit word)
 * when we store the target MPIDR written by the guest.
 */
static u32 compress_mpidr(unsigned long mpidr)
{
	u32 ret;

	ret = MPIDR_AFFINITY_LEVEL(mpidr, 0);
	ret |= MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8;
	ret |= MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16;
	ret |= MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24;

	return ret;
}

static unsigned long uncompress_mpidr(u32 value)
{
	unsigned long mpidr;

	mpidr  = ((value >>  0) & 0xFF) << MPIDR_LEVEL_SHIFT(0);
	mpidr |= ((value >>  8) & 0xFF) << MPIDR_LEVEL_SHIFT(1);
	mpidr |= ((value >> 16) & 0xFF) << MPIDR_LEVEL_SHIFT(2);
	mpidr |= (u64)((value >> 24) & 0xFF) << MPIDR_LEVEL_SHIFT(3);

	return mpidr;
}

/*
 * Lookup the given MPIDR value to get the vcpu_id (if there is one)
 * and store that in the irq_spi_cpu[] array.
 * This limits the number of VCPUs to 255 for now, extending the data
 * type (or storing kvm_vcpu pointers) should lift the limit.
 * Store the original MPIDR value in an extra array to support read-as-written.
 * Unallocated MPIDRs are translated to a special value and caught
 * before any array accesses.
 */
static bool handle_mmio_route_reg(struct kvm_vcpu *vcpu,
				  struct kvm_exit_mmio *mmio,
				  phys_addr_t offset)
{
	struct kvm *kvm = vcpu->kvm;
	struct vgic_dist *dist = &kvm->arch.vgic;
	int spi;
	u32 reg;
	int vcpu_id;
	unsigned long *bmap, mpidr;

	/*
	 * The upper 32 bits of each 64 bit register are zero,
	 * as we don't support Aff3.
	 */
	if ((offset & 4)) {
		vgic_reg_access(mmio, NULL, offset,
				ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
		return false;
	}

	/* This region only covers SPIs, so no handling of private IRQs here. */
	spi = offset / 8;

	/* get the stored MPIDR for this IRQ */
	mpidr = uncompress_mpidr(dist->irq_spi_mpidr[spi]);
	reg = mpidr;

	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);

	if (!mmio->is_write)
		return false;

	/*
	 * Now clear the currently assigned vCPU from the map, making room
	 * for the new one to be written below
	 */
	vcpu = kvm_mpidr_to_vcpu(kvm, mpidr);
	if (likely(vcpu)) {
		vcpu_id = vcpu->vcpu_id;
		bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]);
		__clear_bit(spi, bmap);
	}

	dist->irq_spi_mpidr[spi] = compress_mpidr(reg);
	vcpu = kvm_mpidr_to_vcpu(kvm, reg & MPIDR_HWID_BITMASK);

	/*
	 * The spec says that non-existent MPIDR values should not be
	 * forwarded to any existent (v)CPU, but should be able to become
	 * pending anyway. We simply keep the irq_spi_target[] array empty, so
	 * the interrupt will never be injected.
	 * irq_spi_cpu[irq] gets a magic value in this case.
	 */
	if (likely(vcpu)) {
		vcpu_id = vcpu->vcpu_id;
		dist->irq_spi_cpu[spi] = vcpu_id;
		bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]);
		__set_bit(spi, bmap);
	} else {
		dist->irq_spi_cpu[spi] = VCPU_NOT_ALLOCATED;
	}

	vgic_update_state(kvm);

	return true;
}

/*
 * We should be careful about promising too much when a guest reads
 * this register. Don't claim to be like any hardware implementation,
 * but just report the GIC as version 3 - which is what a Linux guest
 * would check.
 */
static bool handle_mmio_idregs(struct kvm_vcpu *vcpu,
			       struct kvm_exit_mmio *mmio,
			       phys_addr_t offset)
{
	u32 reg = 0;

	switch (offset + GICD_IDREGS) {
	case GICD_PIDR2:
		reg = 0x3b;
		break;
	}

	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);

	return false;
}

static const struct vgic_io_range vgic_v3_dist_ranges[] = {
	{
		.base           = GICD_CTLR,
		.len            = 0x04,
		.bits_per_irq   = 0,
		.handle_mmio    = handle_mmio_ctlr,
	},
	{
		.base           = GICD_TYPER,
		.len            = 0x04,
		.bits_per_irq   = 0,
		.handle_mmio    = handle_mmio_typer,
	},
	{
		.base           = GICD_IIDR,
		.len            = 0x04,
		.bits_per_irq   = 0,
		.handle_mmio    = handle_mmio_iidr,
	},
	{
		/* this register is optional, it is RAZ/WI if not implemented */
		.base           = GICD_STATUSR,
		.len            = 0x04,
		.bits_per_irq   = 0,
		.handle_mmio    = handle_mmio_raz_wi,
	},
	{
		/* this write only register is WI when TYPER.MBIS=0 */
		.base		= GICD_SETSPI_NSR,
		.len		= 0x04,
		.bits_per_irq	= 0,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		/* this write only register is WI when TYPER.MBIS=0 */
		.base		= GICD_CLRSPI_NSR,
		.len		= 0x04,
		.bits_per_irq	= 0,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		/* this is RAZ/WI when DS=1 */
		.base		= GICD_SETSPI_SR,
		.len		= 0x04,
		.bits_per_irq	= 0,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		/* this is RAZ/WI when DS=1 */
		.base		= GICD_CLRSPI_SR,
		.len		= 0x04,
		.bits_per_irq	= 0,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GICD_IGROUPR,
		.len		= 0x80,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_rao_wi,
	},
	{
		.base		= GICD_ISENABLER,
		.len		= 0x80,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_set_enable_reg_dist,
	},
	{
		.base		= GICD_ICENABLER,
		.len		= 0x80,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_clear_enable_reg_dist,
	},
	{
		.base		= GICD_ISPENDR,
		.len		= 0x80,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_set_pending_reg_dist,
	},
	{
		.base		= GICD_ICPENDR,
		.len		= 0x80,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_clear_pending_reg_dist,
	},
	{
		.base		= GICD_ISACTIVER,
		.len		= 0x80,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_set_active_reg_dist,
	},
	{
		.base		= GICD_ICACTIVER,
		.len		= 0x80,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_clear_active_reg_dist,
	},
	{
		.base		= GICD_IPRIORITYR,
		.len		= 0x400,
		.bits_per_irq	= 8,
		.handle_mmio	= handle_mmio_priority_reg_dist,
	},
	{
		/* TARGETSRn is RES0 when ARE=1 */
		.base		= GICD_ITARGETSR,
		.len		= 0x400,
		.bits_per_irq	= 8,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GICD_ICFGR,
		.len		= 0x100,
		.bits_per_irq	= 2,
		.handle_mmio	= handle_mmio_cfg_reg_dist,
	},
	{
		/* this is RAZ/WI when DS=1 */
		.base		= GICD_IGRPMODR,
		.len		= 0x80,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		/* this is RAZ/WI when DS=1 */
		.base		= GICD_NSACR,
		.len		= 0x100,
		.bits_per_irq	= 2,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		/* this is RAZ/WI when ARE=1 */
		.base		= GICD_SGIR,
		.len		= 0x04,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		/* this is RAZ/WI when ARE=1 */
		.base		= GICD_CPENDSGIR,
		.len		= 0x10,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		/* this is RAZ/WI when ARE=1 */
		.base           = GICD_SPENDSGIR,
		.len            = 0x10,
		.handle_mmio    = handle_mmio_raz_wi,
	},
	{
		.base		= GICD_IROUTER + 0x100,
		.len		= 0x1ee0,
		.bits_per_irq	= 64,
		.handle_mmio	= handle_mmio_route_reg,
	},
	{
		.base           = GICD_IDREGS,
		.len            = 0x30,
		.bits_per_irq   = 0,
		.handle_mmio    = handle_mmio_idregs,
	},
	{},
};

static bool handle_mmio_ctlr_redist(struct kvm_vcpu *vcpu,
				    struct kvm_exit_mmio *mmio,
				    phys_addr_t offset)
{
	/* since we don't support LPIs, this register is zero for now */
	vgic_reg_access(mmio, NULL, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
	return false;
}

static bool handle_mmio_typer_redist(struct kvm_vcpu *vcpu,
				     struct kvm_exit_mmio *mmio,
				     phys_addr_t offset)
{
	u32 reg;
	u64 mpidr;
	struct kvm_vcpu *redist_vcpu = mmio->private;
	int target_vcpu_id = redist_vcpu->vcpu_id;

	/* the upper 32 bits contain the affinity value */
	if ((offset & ~3) == 4) {
		mpidr = kvm_vcpu_get_mpidr_aff(redist_vcpu);
		reg = compress_mpidr(mpidr);

		vgic_reg_access(mmio, &reg, offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
		return false;
	}

	reg = redist_vcpu->vcpu_id << 8;
	if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1)
		reg |= GICR_TYPER_LAST;
	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
	return false;
}

static bool handle_mmio_set_enable_reg_redist(struct kvm_vcpu *vcpu,
					      struct kvm_exit_mmio *mmio,
					      phys_addr_t offset)
{
	struct kvm_vcpu *redist_vcpu = mmio->private;

	return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
				      redist_vcpu->vcpu_id,
				      ACCESS_WRITE_SETBIT);
}

static bool handle_mmio_clear_enable_reg_redist(struct kvm_vcpu *vcpu,
						struct kvm_exit_mmio *mmio,
						phys_addr_t offset)
{
	struct kvm_vcpu *redist_vcpu = mmio->private;

	return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
				      redist_vcpu->vcpu_id,
				      ACCESS_WRITE_CLEARBIT);
}

static bool handle_mmio_set_active_reg_redist(struct kvm_vcpu *vcpu,
					      struct kvm_exit_mmio *mmio,
					      phys_addr_t offset)
{
	struct kvm_vcpu *redist_vcpu = mmio->private;

	return vgic_handle_set_active_reg(vcpu->kvm, mmio, offset,
					  redist_vcpu->vcpu_id);
}

static bool handle_mmio_clear_active_reg_redist(struct kvm_vcpu *vcpu,
						struct kvm_exit_mmio *mmio,
						phys_addr_t offset)
{
	struct kvm_vcpu *redist_vcpu = mmio->private;

	return vgic_handle_clear_active_reg(vcpu->kvm, mmio, offset,
					     redist_vcpu->vcpu_id);
}

static bool handle_mmio_set_pending_reg_redist(struct kvm_vcpu *vcpu,
					       struct kvm_exit_mmio *mmio,
					       phys_addr_t offset)
{
	struct kvm_vcpu *redist_vcpu = mmio->private;

	return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset,
					   redist_vcpu->vcpu_id);
}

static bool handle_mmio_clear_pending_reg_redist(struct kvm_vcpu *vcpu,
						 struct kvm_exit_mmio *mmio,
						 phys_addr_t offset)
{
	struct kvm_vcpu *redist_vcpu = mmio->private;

	return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset,
					     redist_vcpu->vcpu_id);
}

static bool handle_mmio_priority_reg_redist(struct kvm_vcpu *vcpu,
					    struct kvm_exit_mmio *mmio,
					    phys_addr_t offset)
{
	struct kvm_vcpu *redist_vcpu = mmio->private;
	u32 *reg;

	reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
				   redist_vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	return false;
}

static bool handle_mmio_cfg_reg_redist(struct kvm_vcpu *vcpu,
				       struct kvm_exit_mmio *mmio,
				       phys_addr_t offset)
{
	struct kvm_vcpu *redist_vcpu = mmio->private;

	u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
				       redist_vcpu->vcpu_id, offset >> 1);

	return vgic_handle_cfg_reg(reg, mmio, offset);
}

#define SGI_base(x) ((x) + SZ_64K)

static const struct vgic_io_range vgic_redist_ranges[] = {
	{
		.base           = GICR_CTLR,
		.len            = 0x04,
		.bits_per_irq   = 0,
		.handle_mmio    = handle_mmio_ctlr_redist,
	},
	{
		.base           = GICR_TYPER,
		.len            = 0x08,
		.bits_per_irq   = 0,
		.handle_mmio    = handle_mmio_typer_redist,
	},
	{
		.base           = GICR_IIDR,
		.len            = 0x04,
		.bits_per_irq   = 0,
		.handle_mmio    = handle_mmio_iidr,
	},
	{
		.base           = GICR_WAKER,
		.len            = 0x04,
		.bits_per_irq   = 0,
		.handle_mmio    = handle_mmio_raz_wi,
	},
	{
		.base           = GICR_IDREGS,
		.len            = 0x30,
		.bits_per_irq   = 0,
		.handle_mmio    = handle_mmio_idregs,
	},
	{
		.base		= SGI_base(GICR_IGROUPR0),
		.len		= 0x04,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_rao_wi,
	},
	{
		.base		= SGI_base(GICR_ISENABLER0),
		.len		= 0x04,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_set_enable_reg_redist,
	},
	{
		.base		= SGI_base(GICR_ICENABLER0),
		.len		= 0x04,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_clear_enable_reg_redist,
	},
	{
		.base		= SGI_base(GICR_ISPENDR0),
		.len		= 0x04,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_set_pending_reg_redist,
	},
	{
		.base		= SGI_base(GICR_ICPENDR0),
		.len		= 0x04,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_clear_pending_reg_redist,
	},
	{
		.base		= SGI_base(GICR_ISACTIVER0),
		.len		= 0x04,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_set_active_reg_redist,
	},
	{
		.base		= SGI_base(GICR_ICACTIVER0),
		.len		= 0x04,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_clear_active_reg_redist,
	},
	{
		.base		= SGI_base(GICR_IPRIORITYR0),
		.len		= 0x20,
		.bits_per_irq	= 8,
		.handle_mmio	= handle_mmio_priority_reg_redist,
	},
	{
		.base		= SGI_base(GICR_ICFGR0),
		.len		= 0x08,
		.bits_per_irq	= 2,
		.handle_mmio	= handle_mmio_cfg_reg_redist,
	},
	{
		.base		= SGI_base(GICR_IGRPMODR0),
		.len		= 0x04,
		.bits_per_irq	= 1,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= SGI_base(GICR_NSACR),
		.len		= 0x04,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{},
};

static bool vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, int irq)
{
	if (vgic_queue_irq(vcpu, 0, irq)) {
		vgic_dist_irq_clear_pending(vcpu, irq);
		vgic_cpu_irq_clear(vcpu, irq);
		return true;
	}

	return false;
}

static int vgic_v3_map_resources(struct kvm *kvm,
				 const struct vgic_params *params)
{
	int ret = 0;
	struct vgic_dist *dist = &kvm->arch.vgic;
	gpa_t rdbase = dist->vgic_redist_base;
	struct vgic_io_device *iodevs = NULL;
	int i;

	if (!irqchip_in_kernel(kvm))
		return 0;

	mutex_lock(&kvm->lock);

	if (vgic_ready(kvm))
		goto out;

	if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
	    IS_VGIC_ADDR_UNDEF(dist->vgic_redist_base)) {
		kvm_err("Need to set vgic distributor addresses first\n");
		ret = -ENXIO;
		goto out;
	}

	/*
	 * For a VGICv3 we require the userland to explicitly initialize
	 * the VGIC before we need to use it.
	 */
	if (!vgic_initialized(kvm)) {
		ret = -EBUSY;
		goto out;
	}

	ret = vgic_register_kvm_io_dev(kvm, dist->vgic_dist_base,
				       GIC_V3_DIST_SIZE, vgic_v3_dist_ranges,
				       -1, &dist->dist_iodev);
	if (ret)
		goto out;

	iodevs = kcalloc(dist->nr_cpus, sizeof(iodevs[0]), GFP_KERNEL);
	if (!iodevs) {
		ret = -ENOMEM;
		goto out_unregister;
	}

	for (i = 0; i < dist->nr_cpus; i++) {
		ret = vgic_register_kvm_io_dev(kvm, rdbase,
					       SZ_128K, vgic_redist_ranges,
					       i, &iodevs[i]);
		if (ret)
			goto out_unregister;
		rdbase += GIC_V3_REDIST_SIZE;
	}

	dist->redist_iodevs = iodevs;
	dist->ready = true;
	goto out;

out_unregister:
	kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, &dist->dist_iodev.dev);
	if (iodevs) {
		for (i = 0; i < dist->nr_cpus; i++) {
			if (iodevs[i].dev.ops)
				kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
							  &iodevs[i].dev);
		}
	}

out:
	if (ret)
		kvm_vgic_destroy(kvm);
	mutex_unlock(&kvm->lock);
	return ret;
}

static int vgic_v3_init_model(struct kvm *kvm)
{
	int i;
	u32 mpidr;
	struct vgic_dist *dist = &kvm->arch.vgic;
	int nr_spis = dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;

	dist->irq_spi_mpidr = kcalloc(nr_spis, sizeof(dist->irq_spi_mpidr[0]),
				      GFP_KERNEL);

	if (!dist->irq_spi_mpidr)
		return -ENOMEM;

	/* Initialize the target VCPUs for each IRQ to VCPU 0 */
	mpidr = compress_mpidr(kvm_vcpu_get_mpidr_aff(kvm_get_vcpu(kvm, 0)));
	for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i++) {
		dist->irq_spi_cpu[i - VGIC_NR_PRIVATE_IRQS] = 0;
		dist->irq_spi_mpidr[i - VGIC_NR_PRIVATE_IRQS] = mpidr;
		vgic_bitmap_set_irq_val(dist->irq_spi_target, 0, i, 1);
	}

	return 0;
}

/* GICv3 does not keep track of SGI sources anymore. */
static void vgic_v3_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
{
}

void vgic_v3_init_emulation(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;

	dist->vm_ops.queue_sgi = vgic_v3_queue_sgi;
	dist->vm_ops.add_sgi_source = vgic_v3_add_sgi_source;
	dist->vm_ops.init_model = vgic_v3_init_model;
	dist->vm_ops.map_resources = vgic_v3_map_resources;

	kvm->arch.max_vcpus = KVM_MAX_VCPUS;
}

/*
 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
 * generation register ICC_SGI1R_EL1) with a given VCPU.
 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
 * return -1.
 */
static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
{
	unsigned long affinity;
	int level0;

	/*
	 * Split the current VCPU's MPIDR into affinity level 0 and the
	 * rest as this is what we have to compare against.
	 */
	affinity = kvm_vcpu_get_mpidr_aff(vcpu);
	level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
	affinity &= ~MPIDR_LEVEL_MASK;

	/* bail out if the upper three levels don't match */
	if (sgi_aff != affinity)
		return -1;

	/* Is this VCPU's bit set in the mask ? */
	if (!(sgi_cpu_mask & BIT(level0)))
		return -1;

	return level0;
}

#define SGI_AFFINITY_LEVEL(reg, level) \
	((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
	>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))

/**
 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
 * @vcpu: The VCPU requesting a SGI
 * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
 *
 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
 * This will trap in sys_regs.c and call this function.
 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
 * target processors as well as a bitmask of 16 Aff0 CPUs.
 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
 * check for matching ones. If this bit is set, we signal all, but not the
 * calling VCPU.
 */
void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
{
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *c_vcpu;
	struct vgic_dist *dist = &kvm->arch.vgic;
	u16 target_cpus;
	u64 mpidr;
	int sgi, c;
	int vcpu_id = vcpu->vcpu_id;
	bool broadcast;
	int updated = 0;

	sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
	broadcast = reg & BIT(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
	target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
	mpidr = SGI_AFFINITY_LEVEL(reg, 3);
	mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
	mpidr |= SGI_AFFINITY_LEVEL(reg, 1);

	/*
	 * We take the dist lock here, because we come from the sysregs
	 * code path and not from the MMIO one (which already takes the lock).
	 */
	spin_lock(&dist->lock);

	/*
	 * We iterate over all VCPUs to find the MPIDRs matching the request.
	 * If we have handled one CPU, we clear it's bit to detect early
	 * if we are already finished. This avoids iterating through all
	 * VCPUs when most of the times we just signal a single VCPU.
	 */
	kvm_for_each_vcpu(c, c_vcpu, kvm) {

		/* Exit early if we have dealt with all requested CPUs */
		if (!broadcast && target_cpus == 0)
			break;

		 /* Don't signal the calling VCPU */
		if (broadcast && c == vcpu_id)
			continue;

		if (!broadcast) {
			int level0;

			level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
			if (level0 == -1)
				continue;

			/* remove this matching VCPU from the mask */
			target_cpus &= ~BIT(level0);
		}

		/* Flag the SGI as pending */
		vgic_dist_irq_set_pending(c_vcpu, sgi);
		updated = 1;
		kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
	}
	if (updated)
		vgic_update_state(vcpu->kvm);
	spin_unlock(&dist->lock);
	if (updated)
		vgic_kick_vcpus(vcpu->kvm);
}

static int vgic_v3_create(struct kvm_device *dev, u32 type)
{
	return kvm_vgic_create(dev->kvm, type);
}

static void vgic_v3_destroy(struct kvm_device *dev)
{
	kfree(dev);
}

static int vgic_v3_set_attr(struct kvm_device *dev,
			    struct kvm_device_attr *attr)
{
	int ret;

	ret = vgic_set_common_attr(dev, attr);
	if (ret != -ENXIO)
		return ret;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
		return -ENXIO;
	}

	return -ENXIO;
}

static int vgic_v3_get_attr(struct kvm_device *dev,
			    struct kvm_device_attr *attr)
{
	int ret;

	ret = vgic_get_common_attr(dev, attr);
	if (ret != -ENXIO)
		return ret;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
		return -ENXIO;
	}

	return -ENXIO;
}

static int vgic_v3_has_attr(struct kvm_device *dev,
			    struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR:
		switch (attr->attr) {
		case KVM_VGIC_V2_ADDR_TYPE_DIST:
		case KVM_VGIC_V2_ADDR_TYPE_CPU:
			return -ENXIO;
		case KVM_VGIC_V3_ADDR_TYPE_DIST:
		case KVM_VGIC_V3_ADDR_TYPE_REDIST:
			return 0;
		}
		break;
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
		return -ENXIO;
	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
		return 0;
	case KVM_DEV_ARM_VGIC_GRP_CTRL:
		switch (attr->attr) {
		case KVM_DEV_ARM_VGIC_CTRL_INIT:
			return 0;
		}
	}
	return -ENXIO;
}

struct kvm_device_ops kvm_arm_vgic_v3_ops = {
	.name = "kvm-arm-vgic-v3",
	.create = vgic_v3_create,
	.destroy = vgic_v3_destroy,
	.set_attr = vgic_v3_set_attr,
	.get_attr = vgic_v3_get_attr,
	.has_attr = vgic_v3_has_attr,
};