msi001.c 12.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/*
 * Mirics MSi001 silicon tuner driver
 *
 * Copyright (C) 2013 Antti Palosaari <crope@iki.fi>
 * Copyright (C) 2014 Antti Palosaari <crope@iki.fi>
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 */

#include <linux/module.h>
#include <linux/gcd.h>
#include <media/v4l2-device.h>
#include <media/v4l2-ctrls.h>

static const struct v4l2_frequency_band bands[] = {
	{
		.type = V4L2_TUNER_RF,
		.index = 0,
		.capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
		.rangelow   =   49000000,
		.rangehigh  =  263000000,
	}, {
		.type = V4L2_TUNER_RF,
		.index = 1,
		.capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
		.rangelow   =  390000000,
		.rangehigh  =  960000000,
	},
};

struct msi001_dev {
	struct spi_device *spi;
	struct v4l2_subdev sd;

	/* Controls */
	struct v4l2_ctrl_handler hdl;
	struct v4l2_ctrl *bandwidth_auto;
	struct v4l2_ctrl *bandwidth;
	struct v4l2_ctrl *lna_gain;
	struct v4l2_ctrl *mixer_gain;
	struct v4l2_ctrl *if_gain;

	unsigned int f_tuner;
};

static inline struct msi001_dev *sd_to_msi001_dev(struct v4l2_subdev *sd)
{
	return container_of(sd, struct msi001_dev, sd);
}

static int msi001_wreg(struct msi001_dev *dev, u32 data)
{
	/* Register format: 4 bits addr + 20 bits value */
	return spi_write(dev->spi, &data, 3);
};

static int msi001_set_gain(struct msi001_dev *dev, int lna_gain, int mixer_gain,
			   int if_gain)
{
	struct spi_device *spi = dev->spi;
	int ret;
	u32 reg;

	dev_dbg(&spi->dev, "lna=%d mixer=%d if=%d\n",
		lna_gain, mixer_gain, if_gain);

	reg = 1 << 0;
	reg |= (59 - if_gain) << 4;
	reg |= 0 << 10;
	reg |= (1 - mixer_gain) << 12;
	reg |= (1 - lna_gain) << 13;
	reg |= 4 << 14;
	reg |= 0 << 17;
	ret = msi001_wreg(dev, reg);
	if (ret)
		goto err;

	return 0;
err:
	dev_dbg(&spi->dev, "failed %d\n", ret);
	return ret;
};

static int msi001_set_tuner(struct msi001_dev *dev)
{
	struct spi_device *spi = dev->spi;
	int ret, i;
	unsigned int uitmp, div_n, k, k_thresh, k_frac, div_lo, f_if1;
	u32 reg;
	u64 f_vco;
	u8 mode, filter_mode;

	static const struct {
		u32 rf;
		u8 mode;
		u8 div_lo;
	} band_lut[] = {
		{ 50000000, 0xe1, 16}, /* AM_MODE2, antenna 2 */
		{108000000, 0x42, 32}, /* VHF_MODE */
		{330000000, 0x44, 16}, /* B3_MODE */
		{960000000, 0x48,  4}, /* B45_MODE */
		{      ~0U, 0x50,  2}, /* BL_MODE */
	};
	static const struct {
		u32 freq;
		u8 filter_mode;
	} if_freq_lut[] = {
		{      0, 0x03}, /* Zero IF */
		{ 450000, 0x02}, /* 450 kHz IF */
		{1620000, 0x01}, /* 1.62 MHz IF */
		{2048000, 0x00}, /* 2.048 MHz IF */
	};
	static const struct {
		u32 freq;
		u8 val;
	} bandwidth_lut[] = {
		{ 200000, 0x00}, /* 200 kHz */
		{ 300000, 0x01}, /* 300 kHz */
		{ 600000, 0x02}, /* 600 kHz */
		{1536000, 0x03}, /* 1.536 MHz */
		{5000000, 0x04}, /* 5 MHz */
		{6000000, 0x05}, /* 6 MHz */
		{7000000, 0x06}, /* 7 MHz */
		{8000000, 0x07}, /* 8 MHz */
	};

	unsigned int f_rf = dev->f_tuner;

	/*
	 * bandwidth (Hz)
	 * 200000, 300000, 600000, 1536000, 5000000, 6000000, 7000000, 8000000
	 */
	unsigned int bandwidth;

	/*
	 * intermediate frequency (Hz)
	 * 0, 450000, 1620000, 2048000
	 */
	unsigned int f_if = 0;
	#define F_REF 24000000
	#define DIV_PRE_N 4
	#define	F_VCO_STEP div_lo

	dev_dbg(&spi->dev, "f_rf=%d f_if=%d\n", f_rf, f_if);

	for (i = 0; i < ARRAY_SIZE(band_lut); i++) {
		if (f_rf <= band_lut[i].rf) {
			mode = band_lut[i].mode;
			div_lo = band_lut[i].div_lo;
			break;
		}
	}
	if (i == ARRAY_SIZE(band_lut)) {
		ret = -EINVAL;
		goto err;
	}

	/* AM_MODE is upconverted */
	if ((mode >> 0) & 0x1)
		f_if1 =  5 * F_REF;
	else
		f_if1 =  0;

	for (i = 0; i < ARRAY_SIZE(if_freq_lut); i++) {
		if (f_if == if_freq_lut[i].freq) {
			filter_mode = if_freq_lut[i].filter_mode;
			break;
		}
	}
	if (i == ARRAY_SIZE(if_freq_lut)) {
		ret = -EINVAL;
		goto err;
	}

	/* filters */
	bandwidth = dev->bandwidth->val;
	bandwidth = clamp(bandwidth, 200000U, 8000000U);

	for (i = 0; i < ARRAY_SIZE(bandwidth_lut); i++) {
		if (bandwidth <= bandwidth_lut[i].freq) {
			bandwidth = bandwidth_lut[i].val;
			break;
		}
	}
	if (i == ARRAY_SIZE(bandwidth_lut)) {
		ret = -EINVAL;
		goto err;
	}

	dev->bandwidth->val = bandwidth_lut[i].freq;

	dev_dbg(&spi->dev, "bandwidth selected=%d\n", bandwidth_lut[i].freq);

	/*
	 * Fractional-N synthesizer
	 *
	 *           +---------------------------------------+
	 *           v                                       |
	 *  Fref   +----+     +-------+         +----+     +------+     +---+
	 * ------> | PD | --> |  VCO  | ------> | /4 | --> | /N.F | <-- | K |
	 *         +----+     +-------+         +----+     +------+     +---+
	 *                      |
	 *                      |
	 *                      v
	 *                    +-------+  Fout
	 *                    | /Rout | ------>
	 *                    +-------+
	 */

	/* Calculate PLL integer and fractional control word. */
	f_vco = (u64) (f_rf + f_if + f_if1) * div_lo;
	div_n = div_u64_rem(f_vco, DIV_PRE_N * F_REF, &k);
	k_thresh = (DIV_PRE_N * F_REF) / F_VCO_STEP;
	k_frac = div_u64((u64) k * k_thresh, (DIV_PRE_N * F_REF));

	/* Find out greatest common divisor and divide to smaller. */
	uitmp = gcd(k_thresh, k_frac);
	k_thresh /= uitmp;
	k_frac /= uitmp;

	/* Force divide to reg max. Resolution will be reduced. */
	uitmp = DIV_ROUND_UP(k_thresh, 4095);
	k_thresh = DIV_ROUND_CLOSEST(k_thresh, uitmp);
	k_frac = DIV_ROUND_CLOSEST(k_frac, uitmp);

	/* Calculate real RF set. */
	uitmp = (unsigned int) F_REF * DIV_PRE_N * div_n;
	uitmp += (unsigned int) F_REF * DIV_PRE_N * k_frac / k_thresh;
	uitmp /= div_lo;

	dev_dbg(&spi->dev,
		"f_rf=%u:%u f_vco=%llu div_n=%u k_thresh=%u k_frac=%u div_lo=%u\n",
		f_rf, uitmp, f_vco, div_n, k_thresh, k_frac, div_lo);

	ret = msi001_wreg(dev, 0x00000e);
	if (ret)
		goto err;

	ret = msi001_wreg(dev, 0x000003);
	if (ret)
		goto err;

	reg = 0 << 0;
	reg |= mode << 4;
	reg |= filter_mode << 12;
	reg |= bandwidth << 14;
	reg |= 0x02 << 17;
	reg |= 0x00 << 20;
	ret = msi001_wreg(dev, reg);
	if (ret)
		goto err;

	reg = 5 << 0;
	reg |= k_thresh << 4;
	reg |= 1 << 19;
	reg |= 1 << 21;
	ret = msi001_wreg(dev, reg);
	if (ret)
		goto err;

	reg = 2 << 0;
	reg |= k_frac << 4;
	reg |= div_n << 16;
	ret = msi001_wreg(dev, reg);
	if (ret)
		goto err;

	ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
			      dev->mixer_gain->cur.val, dev->if_gain->cur.val);
	if (ret)
		goto err;

	reg = 6 << 0;
	reg |= 63 << 4;
	reg |= 4095 << 10;
	ret = msi001_wreg(dev, reg);
	if (ret)
		goto err;

	return 0;
err:
	dev_dbg(&spi->dev, "failed %d\n", ret);
	return ret;
}

static int msi001_s_power(struct v4l2_subdev *sd, int on)
{
	struct msi001_dev *dev = sd_to_msi001_dev(sd);
	struct spi_device *spi = dev->spi;
	int ret;

	dev_dbg(&spi->dev, "on=%d\n", on);

	if (on)
		ret = 0;
	else
		ret = msi001_wreg(dev, 0x000000);

	return ret;
}

static const struct v4l2_subdev_core_ops msi001_core_ops = {
	.s_power                  = msi001_s_power,
};

static int msi001_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *v)
{
	struct msi001_dev *dev = sd_to_msi001_dev(sd);
	struct spi_device *spi = dev->spi;

	dev_dbg(&spi->dev, "index=%d\n", v->index);

	strlcpy(v->name, "Mirics MSi001", sizeof(v->name));
	v->type = V4L2_TUNER_RF;
	v->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS;
	v->rangelow =    49000000;
	v->rangehigh =  960000000;

	return 0;
}

static int msi001_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *v)
{
	struct msi001_dev *dev = sd_to_msi001_dev(sd);
	struct spi_device *spi = dev->spi;

	dev_dbg(&spi->dev, "index=%d\n", v->index);
	return 0;
}

static int msi001_g_frequency(struct v4l2_subdev *sd, struct v4l2_frequency *f)
{
	struct msi001_dev *dev = sd_to_msi001_dev(sd);
	struct spi_device *spi = dev->spi;

	dev_dbg(&spi->dev, "tuner=%d\n", f->tuner);
	f->frequency = dev->f_tuner;
	return 0;
}

static int msi001_s_frequency(struct v4l2_subdev *sd,
			      const struct v4l2_frequency *f)
{
	struct msi001_dev *dev = sd_to_msi001_dev(sd);
	struct spi_device *spi = dev->spi;
	unsigned int band;

	dev_dbg(&spi->dev, "tuner=%d type=%d frequency=%u\n",
		f->tuner, f->type, f->frequency);

	if (f->frequency < ((bands[0].rangehigh + bands[1].rangelow) / 2))
		band = 0;
	else
		band = 1;
	dev->f_tuner = clamp_t(unsigned int, f->frequency,
			       bands[band].rangelow, bands[band].rangehigh);

	return msi001_set_tuner(dev);
}

static int msi001_enum_freq_bands(struct v4l2_subdev *sd,
				  struct v4l2_frequency_band *band)
{
	struct msi001_dev *dev = sd_to_msi001_dev(sd);
	struct spi_device *spi = dev->spi;

	dev_dbg(&spi->dev, "tuner=%d type=%d index=%d\n",
		band->tuner, band->type, band->index);

	if (band->index >= ARRAY_SIZE(bands))
		return -EINVAL;

	band->capability = bands[band->index].capability;
	band->rangelow = bands[band->index].rangelow;
	band->rangehigh = bands[band->index].rangehigh;

	return 0;
}

static const struct v4l2_subdev_tuner_ops msi001_tuner_ops = {
	.g_tuner                  = msi001_g_tuner,
	.s_tuner                  = msi001_s_tuner,
	.g_frequency              = msi001_g_frequency,
	.s_frequency              = msi001_s_frequency,
	.enum_freq_bands          = msi001_enum_freq_bands,
};

static const struct v4l2_subdev_ops msi001_ops = {
	.core                     = &msi001_core_ops,
	.tuner                    = &msi001_tuner_ops,
};

static int msi001_s_ctrl(struct v4l2_ctrl *ctrl)
{
	struct msi001_dev *dev = container_of(ctrl->handler, struct msi001_dev, hdl);
	struct spi_device *spi = dev->spi;

	int ret;

	dev_dbg(&spi->dev, "id=%d name=%s val=%d min=%lld max=%lld step=%lld\n",
		ctrl->id, ctrl->name, ctrl->val, ctrl->minimum, ctrl->maximum,
		ctrl->step);

	switch (ctrl->id) {
	case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO:
	case V4L2_CID_RF_TUNER_BANDWIDTH:
		ret = msi001_set_tuner(dev);
		break;
	case  V4L2_CID_RF_TUNER_LNA_GAIN:
		ret = msi001_set_gain(dev, dev->lna_gain->val,
				      dev->mixer_gain->cur.val,
				      dev->if_gain->cur.val);
		break;
	case  V4L2_CID_RF_TUNER_MIXER_GAIN:
		ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
				      dev->mixer_gain->val,
				      dev->if_gain->cur.val);
		break;
	case  V4L2_CID_RF_TUNER_IF_GAIN:
		ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
				      dev->mixer_gain->cur.val,
				      dev->if_gain->val);
		break;
	default:
		dev_dbg(&spi->dev, "unknown control %d\n", ctrl->id);
		ret = -EINVAL;
	}

	return ret;
}

static const struct v4l2_ctrl_ops msi001_ctrl_ops = {
	.s_ctrl                   = msi001_s_ctrl,
};

static int msi001_probe(struct spi_device *spi)
{
	struct msi001_dev *dev;
	int ret;

	dev_dbg(&spi->dev, "\n");

	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev) {
		ret = -ENOMEM;
		goto err;
	}

	dev->spi = spi;
	dev->f_tuner = bands[0].rangelow;
	v4l2_spi_subdev_init(&dev->sd, spi, &msi001_ops);

	/* Register controls */
	v4l2_ctrl_handler_init(&dev->hdl, 5);
	dev->bandwidth_auto = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
			V4L2_CID_RF_TUNER_BANDWIDTH_AUTO, 0, 1, 1, 1);
	dev->bandwidth = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
			V4L2_CID_RF_TUNER_BANDWIDTH, 200000, 8000000, 1, 200000);
	v4l2_ctrl_auto_cluster(2, &dev->bandwidth_auto, 0, false);
	dev->lna_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
			V4L2_CID_RF_TUNER_LNA_GAIN, 0, 1, 1, 1);
	dev->mixer_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
			V4L2_CID_RF_TUNER_MIXER_GAIN, 0, 1, 1, 1);
	dev->if_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
			V4L2_CID_RF_TUNER_IF_GAIN, 0, 59, 1, 0);
	if (dev->hdl.error) {
		ret = dev->hdl.error;
		dev_err(&spi->dev, "Could not initialize controls\n");
		/* control init failed, free handler */
		goto err_ctrl_handler_free;
	}

	dev->sd.ctrl_handler = &dev->hdl;
	return 0;
err_ctrl_handler_free:
	v4l2_ctrl_handler_free(&dev->hdl);
	kfree(dev);
err:
	return ret;
}

static int msi001_remove(struct spi_device *spi)
{
	struct v4l2_subdev *sd = spi_get_drvdata(spi);
	struct msi001_dev *dev = sd_to_msi001_dev(sd);

	dev_dbg(&spi->dev, "\n");

	/*
	 * Registered by v4l2_spi_new_subdev() from master driver, but we must
	 * unregister it from here. Weird.
	 */
	v4l2_device_unregister_subdev(&dev->sd);
	v4l2_ctrl_handler_free(&dev->hdl);
	kfree(dev);
	return 0;
}

static const struct spi_device_id msi001_id_table[] = {
	{"msi001", 0},
	{}
};
MODULE_DEVICE_TABLE(spi, msi001_id_table);

static struct spi_driver msi001_driver = {
	.driver = {
		.name	= "msi001",
		.suppress_bind_attrs = true,
	},
	.probe		= msi001_probe,
	.remove		= msi001_remove,
	.id_table	= msi001_id_table,
};
module_spi_driver(msi001_driver);

MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_DESCRIPTION("Mirics MSi001");
MODULE_LICENSE("GPL");