userfaultfd.c 17.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
/*
 * Stress userfaultfd syscall.
 *
 *  Copyright (C) 2015  Red Hat, Inc.
 *
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 *  the COPYING file in the top-level directory.
 *
 * This test allocates two virtual areas and bounces the physical
 * memory across the two virtual areas (from area_src to area_dst)
 * using userfaultfd.
 *
 * There are three threads running per CPU:
 *
 * 1) one per-CPU thread takes a per-page pthread_mutex in a random
 *    page of the area_dst (while the physical page may still be in
 *    area_src), and increments a per-page counter in the same page,
 *    and checks its value against a verification region.
 *
 * 2) another per-CPU thread handles the userfaults generated by
 *    thread 1 above. userfaultfd blocking reads or poll() modes are
 *    exercised interleaved.
 *
 * 3) one last per-CPU thread transfers the memory in the background
 *    at maximum bandwidth (if not already transferred by thread
 *    2). Each cpu thread takes cares of transferring a portion of the
 *    area.
 *
 * When all threads of type 3 completed the transfer, one bounce is
 * complete. area_src and area_dst are then swapped. All threads are
 * respawned and so the bounce is immediately restarted in the
 * opposite direction.
 *
 * per-CPU threads 1 by triggering userfaults inside
 * pthread_mutex_lock will also verify the atomicity of the memory
 * transfer (UFFDIO_COPY).
 *
 * The program takes two parameters: the amounts of physical memory in
 * megabytes (MiB) of the area and the number of bounces to execute.
 *
 * # 100MiB 99999 bounces
 * ./userfaultfd 100 99999
 *
 * # 1GiB 99 bounces
 * ./userfaultfd 1000 99
 *
 * # 10MiB-~6GiB 999 bounces, continue forever unless an error triggers
 * while ./userfaultfd $[RANDOM % 6000 + 10] 999; do true; done
 */

#define _GNU_SOURCE
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <time.h>
#include <signal.h>
#include <poll.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <sys/ioctl.h>
#include <pthread.h>
#include <linux/userfaultfd.h>

#ifdef __NR_userfaultfd

static unsigned long nr_cpus, nr_pages, nr_pages_per_cpu, page_size;

#define BOUNCE_RANDOM		(1<<0)
#define BOUNCE_RACINGFAULTS	(1<<1)
#define BOUNCE_VERIFY		(1<<2)
#define BOUNCE_POLL		(1<<3)
static int bounces;

static unsigned long long *count_verify;
static int uffd, finished, *pipefd;
static char *area_src, *area_dst;
static char *zeropage;
pthread_attr_t attr;

/* pthread_mutex_t starts at page offset 0 */
#define area_mutex(___area, ___nr)					\
	((pthread_mutex_t *) ((___area) + (___nr)*page_size))
/*
 * count is placed in the page after pthread_mutex_t naturally aligned
 * to avoid non alignment faults on non-x86 archs.
 */
#define area_count(___area, ___nr)					\
	((volatile unsigned long long *) ((unsigned long)		\
				 ((___area) + (___nr)*page_size +	\
				  sizeof(pthread_mutex_t) +		\
				  sizeof(unsigned long long) - 1) &	\
				 ~(unsigned long)(sizeof(unsigned long long) \
						  -  1)))

static int my_bcmp(char *str1, char *str2, size_t n)
{
	unsigned long i;
	for (i = 0; i < n; i++)
		if (str1[i] != str2[i])
			return 1;
	return 0;
}

static void *locking_thread(void *arg)
{
	unsigned long cpu = (unsigned long) arg;
	struct random_data rand;
	unsigned long page_nr = *(&(page_nr)); /* uninitialized warning */
	int32_t rand_nr;
	unsigned long long count;
	char randstate[64];
	unsigned int seed;
	time_t start;

	if (bounces & BOUNCE_RANDOM) {
		seed = (unsigned int) time(NULL) - bounces;
		if (!(bounces & BOUNCE_RACINGFAULTS))
			seed += cpu;
		bzero(&rand, sizeof(rand));
		bzero(&randstate, sizeof(randstate));
		if (initstate_r(seed, randstate, sizeof(randstate), &rand))
			fprintf(stderr, "srandom_r error\n"), exit(1);
	} else {
		page_nr = -bounces;
		if (!(bounces & BOUNCE_RACINGFAULTS))
			page_nr += cpu * nr_pages_per_cpu;
	}

	while (!finished) {
		if (bounces & BOUNCE_RANDOM) {
			if (random_r(&rand, &rand_nr))
				fprintf(stderr, "random_r 1 error\n"), exit(1);
			page_nr = rand_nr;
			if (sizeof(page_nr) > sizeof(rand_nr)) {
				if (random_r(&rand, &rand_nr))
					fprintf(stderr, "random_r 2 error\n"), exit(1);
				page_nr |= (((unsigned long) rand_nr) << 16) <<
					   16;
			}
		} else
			page_nr += 1;
		page_nr %= nr_pages;

		start = time(NULL);
		if (bounces & BOUNCE_VERIFY) {
			count = *area_count(area_dst, page_nr);
			if (!count)
				fprintf(stderr,
					"page_nr %lu wrong count %Lu %Lu\n",
					page_nr, count,
					count_verify[page_nr]), exit(1);


			/*
			 * We can't use bcmp (or memcmp) because that
			 * returns 0 erroneously if the memory is
			 * changing under it (even if the end of the
			 * page is never changing and always
			 * different).
			 */
#if 1
			if (!my_bcmp(area_dst + page_nr * page_size, zeropage,
				     page_size))
				fprintf(stderr,
					"my_bcmp page_nr %lu wrong count %Lu %Lu\n",
					page_nr, count,
					count_verify[page_nr]), exit(1);
#else
			unsigned long loops;

			loops = 0;
			/* uncomment the below line to test with mutex */
			/* pthread_mutex_lock(area_mutex(area_dst, page_nr)); */
			while (!bcmp(area_dst + page_nr * page_size, zeropage,
				     page_size)) {
				loops += 1;
				if (loops > 10)
					break;
			}
			/* uncomment below line to test with mutex */
			/* pthread_mutex_unlock(area_mutex(area_dst, page_nr)); */
			if (loops) {
				fprintf(stderr,
					"page_nr %lu all zero thread %lu %p %lu\n",
					page_nr, cpu, area_dst + page_nr * page_size,
					loops);
				if (loops > 10)
					exit(1);
			}
#endif
		}

		pthread_mutex_lock(area_mutex(area_dst, page_nr));
		count = *area_count(area_dst, page_nr);
		if (count != count_verify[page_nr]) {
			fprintf(stderr,
				"page_nr %lu memory corruption %Lu %Lu\n",
				page_nr, count,
				count_verify[page_nr]), exit(1);
		}
		count++;
		*area_count(area_dst, page_nr) = count_verify[page_nr] = count;
		pthread_mutex_unlock(area_mutex(area_dst, page_nr));

		if (time(NULL) - start > 1)
			fprintf(stderr,
				"userfault too slow %ld "
				"possible false positive with overcommit\n",
				time(NULL) - start);
	}

	return NULL;
}

static int copy_page(unsigned long offset)
{
	struct uffdio_copy uffdio_copy;

	if (offset >= nr_pages * page_size)
		fprintf(stderr, "unexpected offset %lu\n",
			offset), exit(1);
	uffdio_copy.dst = (unsigned long) area_dst + offset;
	uffdio_copy.src = (unsigned long) area_src + offset;
	uffdio_copy.len = page_size;
	uffdio_copy.mode = 0;
	uffdio_copy.copy = 0;
	if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy)) {
		/* real retval in ufdio_copy.copy */
		if (uffdio_copy.copy != -EEXIST)
			fprintf(stderr, "UFFDIO_COPY error %Ld\n",
				uffdio_copy.copy), exit(1);
	} else if (uffdio_copy.copy != page_size) {
		fprintf(stderr, "UFFDIO_COPY unexpected copy %Ld\n",
			uffdio_copy.copy), exit(1);
	} else
		return 1;
	return 0;
}

static void *uffd_poll_thread(void *arg)
{
	unsigned long cpu = (unsigned long) arg;
	struct pollfd pollfd[2];
	struct uffd_msg msg;
	int ret;
	unsigned long offset;
	char tmp_chr;
	unsigned long userfaults = 0;

	pollfd[0].fd = uffd;
	pollfd[0].events = POLLIN;
	pollfd[1].fd = pipefd[cpu*2];
	pollfd[1].events = POLLIN;

	for (;;) {
		ret = poll(pollfd, 2, -1);
		if (!ret)
			fprintf(stderr, "poll error %d\n", ret), exit(1);
		if (ret < 0)
			perror("poll"), exit(1);
		if (pollfd[1].revents & POLLIN) {
			if (read(pollfd[1].fd, &tmp_chr, 1) != 1)
				fprintf(stderr, "read pipefd error\n"),
					exit(1);
			break;
		}
		if (!(pollfd[0].revents & POLLIN))
			fprintf(stderr, "pollfd[0].revents %d\n",
				pollfd[0].revents), exit(1);
		ret = read(uffd, &msg, sizeof(msg));
		if (ret < 0) {
			if (errno == EAGAIN)
				continue;
			perror("nonblocking read error"), exit(1);
		}
		if (msg.event != UFFD_EVENT_PAGEFAULT)
			fprintf(stderr, "unexpected msg event %u\n",
				msg.event), exit(1);
		if (msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE)
			fprintf(stderr, "unexpected write fault\n"), exit(1);
		offset = (char *)(unsigned long)msg.arg.pagefault.address -
			 area_dst;
		offset &= ~(page_size-1);
		if (copy_page(offset))
			userfaults++;
	}
	return (void *)userfaults;
}

pthread_mutex_t uffd_read_mutex = PTHREAD_MUTEX_INITIALIZER;

static void *uffd_read_thread(void *arg)
{
	unsigned long *this_cpu_userfaults;
	struct uffd_msg msg;
	unsigned long offset;
	int ret;

	this_cpu_userfaults = (unsigned long *) arg;
	*this_cpu_userfaults = 0;

	pthread_mutex_unlock(&uffd_read_mutex);
	/* from here cancellation is ok */

	for (;;) {
		ret = read(uffd, &msg, sizeof(msg));
		if (ret != sizeof(msg)) {
			if (ret < 0)
				perror("blocking read error"), exit(1);
			else
				fprintf(stderr, "short read\n"), exit(1);
		}
		if (msg.event != UFFD_EVENT_PAGEFAULT)
			fprintf(stderr, "unexpected msg event %u\n",
				msg.event), exit(1);
		if (bounces & BOUNCE_VERIFY &&
		    msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE)
			fprintf(stderr, "unexpected write fault\n"), exit(1);
		offset = (char *)(unsigned long)msg.arg.pagefault.address -
			 area_dst;
		offset &= ~(page_size-1);
		if (copy_page(offset))
			(*this_cpu_userfaults)++;
	}
	return (void *)NULL;
}

static void *background_thread(void *arg)
{
	unsigned long cpu = (unsigned long) arg;
	unsigned long page_nr;

	for (page_nr = cpu * nr_pages_per_cpu;
	     page_nr < (cpu+1) * nr_pages_per_cpu;
	     page_nr++)
		copy_page(page_nr * page_size);

	return NULL;
}

static int stress(unsigned long *userfaults)
{
	unsigned long cpu;
	pthread_t locking_threads[nr_cpus];
	pthread_t uffd_threads[nr_cpus];
	pthread_t background_threads[nr_cpus];
	void **_userfaults = (void **) userfaults;

	finished = 0;
	for (cpu = 0; cpu < nr_cpus; cpu++) {
		if (pthread_create(&locking_threads[cpu], &attr,
				   locking_thread, (void *)cpu))
			return 1;
		if (bounces & BOUNCE_POLL) {
			if (pthread_create(&uffd_threads[cpu], &attr,
					   uffd_poll_thread, (void *)cpu))
				return 1;
		} else {
			if (pthread_create(&uffd_threads[cpu], &attr,
					   uffd_read_thread,
					   &_userfaults[cpu]))
				return 1;
			pthread_mutex_lock(&uffd_read_mutex);
		}
		if (pthread_create(&background_threads[cpu], &attr,
				   background_thread, (void *)cpu))
			return 1;
	}
	for (cpu = 0; cpu < nr_cpus; cpu++)
		if (pthread_join(background_threads[cpu], NULL))
			return 1;

	/*
	 * Be strict and immediately zap area_src, the whole area has
	 * been transferred already by the background treads. The
	 * area_src could then be faulted in in a racy way by still
	 * running uffdio_threads reading zeropages after we zapped
	 * area_src (but they're guaranteed to get -EEXIST from
	 * UFFDIO_COPY without writing zero pages into area_dst
	 * because the background threads already completed).
	 */
	if (madvise(area_src, nr_pages * page_size, MADV_DONTNEED)) {
		perror("madvise");
		return 1;
	}

	for (cpu = 0; cpu < nr_cpus; cpu++) {
		char c;
		if (bounces & BOUNCE_POLL) {
			if (write(pipefd[cpu*2+1], &c, 1) != 1) {
				fprintf(stderr, "pipefd write error\n");
				return 1;
			}
			if (pthread_join(uffd_threads[cpu], &_userfaults[cpu]))
				return 1;
		} else {
			if (pthread_cancel(uffd_threads[cpu]))
				return 1;
			if (pthread_join(uffd_threads[cpu], NULL))
				return 1;
		}
	}

	finished = 1;
	for (cpu = 0; cpu < nr_cpus; cpu++)
		if (pthread_join(locking_threads[cpu], NULL))
			return 1;

	return 0;
}

static int userfaultfd_stress(void)
{
	void *area;
	char *tmp_area;
	unsigned long nr;
	struct uffdio_register uffdio_register;
	struct uffdio_api uffdio_api;
	unsigned long cpu;
	int uffd_flags, err;
	unsigned long userfaults[nr_cpus];

	if (posix_memalign(&area, page_size, nr_pages * page_size)) {
		fprintf(stderr, "out of memory\n");
		return 1;
	}
	area_src = area;
	if (posix_memalign(&area, page_size, nr_pages * page_size)) {
		fprintf(stderr, "out of memory\n");
		return 1;
	}
	area_dst = area;

	uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
	if (uffd < 0) {
		fprintf(stderr,
			"userfaultfd syscall not available in this kernel\n");
		return 1;
	}
	uffd_flags = fcntl(uffd, F_GETFD, NULL);

	uffdio_api.api = UFFD_API;
	uffdio_api.features = 0;
	if (ioctl(uffd, UFFDIO_API, &uffdio_api)) {
		fprintf(stderr, "UFFDIO_API\n");
		return 1;
	}
	if (uffdio_api.api != UFFD_API) {
		fprintf(stderr, "UFFDIO_API error %Lu\n", uffdio_api.api);
		return 1;
	}

	count_verify = malloc(nr_pages * sizeof(unsigned long long));
	if (!count_verify) {
		perror("count_verify");
		return 1;
	}

	for (nr = 0; nr < nr_pages; nr++) {
		*area_mutex(area_src, nr) = (pthread_mutex_t)
			PTHREAD_MUTEX_INITIALIZER;
		count_verify[nr] = *area_count(area_src, nr) = 1;
		/*
		 * In the transition between 255 to 256, powerpc will
		 * read out of order in my_bcmp and see both bytes as
		 * zero, so leave a placeholder below always non-zero
		 * after the count, to avoid my_bcmp to trigger false
		 * positives.
		 */
		*(area_count(area_src, nr) + 1) = 1;
	}

	pipefd = malloc(sizeof(int) * nr_cpus * 2);
	if (!pipefd) {
		perror("pipefd");
		return 1;
	}
	for (cpu = 0; cpu < nr_cpus; cpu++) {
		if (pipe2(&pipefd[cpu*2], O_CLOEXEC | O_NONBLOCK)) {
			perror("pipe");
			return 1;
		}
	}

	if (posix_memalign(&area, page_size, page_size)) {
		fprintf(stderr, "out of memory\n");
		return 1;
	}
	zeropage = area;
	bzero(zeropage, page_size);

	pthread_mutex_lock(&uffd_read_mutex);

	pthread_attr_init(&attr);
	pthread_attr_setstacksize(&attr, 16*1024*1024);

	err = 0;
	while (bounces--) {
		unsigned long expected_ioctls;

		printf("bounces: %d, mode:", bounces);
		if (bounces & BOUNCE_RANDOM)
			printf(" rnd");
		if (bounces & BOUNCE_RACINGFAULTS)
			printf(" racing");
		if (bounces & BOUNCE_VERIFY)
			printf(" ver");
		if (bounces & BOUNCE_POLL)
			printf(" poll");
		printf(", ");
		fflush(stdout);

		if (bounces & BOUNCE_POLL)
			fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK);
		else
			fcntl(uffd, F_SETFL, uffd_flags & ~O_NONBLOCK);

		/* register */
		uffdio_register.range.start = (unsigned long) area_dst;
		uffdio_register.range.len = nr_pages * page_size;
		uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING;
		if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) {
			fprintf(stderr, "register failure\n");
			return 1;
		}
		expected_ioctls = (1 << _UFFDIO_WAKE) |
				  (1 << _UFFDIO_COPY) |
				  (1 << _UFFDIO_ZEROPAGE);
		if ((uffdio_register.ioctls & expected_ioctls) !=
		    expected_ioctls) {
			fprintf(stderr,
				"unexpected missing ioctl for anon memory\n");
			return 1;
		}

		/*
		 * The madvise done previously isn't enough: some
		 * uffd_thread could have read userfaults (one of
		 * those already resolved by the background thread)
		 * and it may be in the process of calling
		 * UFFDIO_COPY. UFFDIO_COPY will read the zapped
		 * area_src and it would map a zero page in it (of
		 * course such a UFFDIO_COPY is perfectly safe as it'd
		 * return -EEXIST). The problem comes at the next
		 * bounce though: that racing UFFDIO_COPY would
		 * generate zeropages in the area_src, so invalidating
		 * the previous MADV_DONTNEED. Without this additional
		 * MADV_DONTNEED those zeropages leftovers in the
		 * area_src would lead to -EEXIST failure during the
		 * next bounce, effectively leaving a zeropage in the
		 * area_dst.
		 *
		 * Try to comment this out madvise to see the memory
		 * corruption being caught pretty quick.
		 *
		 * khugepaged is also inhibited to collapse THP after
		 * MADV_DONTNEED only after the UFFDIO_REGISTER, so it's
		 * required to MADV_DONTNEED here.
		 */
		if (madvise(area_dst, nr_pages * page_size, MADV_DONTNEED)) {
			perror("madvise 2");
			return 1;
		}

		/* bounce pass */
		if (stress(userfaults))
			return 1;

		/* unregister */
		if (ioctl(uffd, UFFDIO_UNREGISTER, &uffdio_register.range)) {
			fprintf(stderr, "register failure\n");
			return 1;
		}

		/* verification */
		if (bounces & BOUNCE_VERIFY) {
			for (nr = 0; nr < nr_pages; nr++) {
				if (*area_count(area_dst, nr) != count_verify[nr]) {
					fprintf(stderr,
						"error area_count %Lu %Lu %lu\n",
						*area_count(area_src, nr),
						count_verify[nr],
						nr);
					err = 1;
					bounces = 0;
				}
			}
		}

		/* prepare next bounce */
		tmp_area = area_src;
		area_src = area_dst;
		area_dst = tmp_area;

		printf("userfaults:");
		for (cpu = 0; cpu < nr_cpus; cpu++)
			printf(" %lu", userfaults[cpu]);
		printf("\n");
	}

	return err;
}

int main(int argc, char **argv)
{
	if (argc < 3)
		fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1);
	nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
	page_size = sysconf(_SC_PAGE_SIZE);
	if ((unsigned long) area_count(NULL, 0) + sizeof(unsigned long long) * 2
	    > page_size)
		fprintf(stderr, "Impossible to run this test\n"), exit(2);
	nr_pages_per_cpu = atol(argv[1]) * 1024*1024 / page_size /
		nr_cpus;
	if (!nr_pages_per_cpu) {
		fprintf(stderr, "invalid MiB\n");
		fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1);
	}
	bounces = atoi(argv[2]);
	if (bounces <= 0) {
		fprintf(stderr, "invalid bounces\n");
		fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1);
	}
	nr_pages = nr_pages_per_cpu * nr_cpus;
	printf("nr_pages: %lu, nr_pages_per_cpu: %lu\n",
	       nr_pages, nr_pages_per_cpu);
	return userfaultfd_stress();
}

#else /* __NR_userfaultfd */

#warning "missing __NR_userfaultfd definition"

int main(void)
{
	printf("skip: Skipping userfaultfd test (missing __NR_userfaultfd)\n");
	return 0;
}

#endif /* __NR_userfaultfd */