4965-calib.c 30 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
 * USA
 *
 * The full GNU General Public License is included in this distribution
 * in the file called LICENSE.GPL.
 *
 * Contact Information:
 *  Intel Linux Wireless <ilw@linux.intel.com>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/

#include <linux/slab.h>
#include <net/mac80211.h>

#include "common.h"
#include "4965.h"

/*****************************************************************************
 * INIT calibrations framework
 *****************************************************************************/

struct stats_general_data {
	u32 beacon_silence_rssi_a;
	u32 beacon_silence_rssi_b;
	u32 beacon_silence_rssi_c;
	u32 beacon_energy_a;
	u32 beacon_energy_b;
	u32 beacon_energy_c;
};

/*****************************************************************************
 * RUNTIME calibrations framework
 *****************************************************************************/

/* "false alarms" are signals that our DSP tries to lock onto,
 *   but then determines that they are either noise, or transmissions
 *   from a distant wireless network (also "noise", really) that get
 *   "stepped on" by stronger transmissions within our own network.
 * This algorithm attempts to set a sensitivity level that is high
 *   enough to receive all of our own network traffic, but not so
 *   high that our DSP gets too busy trying to lock onto non-network
 *   activity/noise. */
static int
il4965_sens_energy_cck(struct il_priv *il, u32 norm_fa, u32 rx_enable_time,
		       struct stats_general_data *rx_info)
{
	u32 max_nrg_cck = 0;
	int i = 0;
	u8 max_silence_rssi = 0;
	u32 silence_ref = 0;
	u8 silence_rssi_a = 0;
	u8 silence_rssi_b = 0;
	u8 silence_rssi_c = 0;
	u32 val;

	/* "false_alarms" values below are cross-multiplications to assess the
	 *   numbers of false alarms within the measured period of actual Rx
	 *   (Rx is off when we're txing), vs the min/max expected false alarms
	 *   (some should be expected if rx is sensitive enough) in a
	 *   hypothetical listening period of 200 time units (TU), 204.8 msec:
	 *
	 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
	 *
	 * */
	u32 false_alarms = norm_fa * 200 * 1024;
	u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
	u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
	struct il_sensitivity_data *data = NULL;
	const struct il_sensitivity_ranges *ranges = il->hw_params.sens;

	data = &(il->sensitivity_data);

	data->nrg_auto_corr_silence_diff = 0;

	/* Find max silence rssi among all 3 receivers.
	 * This is background noise, which may include transmissions from other
	 *    networks, measured during silence before our network's beacon */
	silence_rssi_a =
	    (u8) ((rx_info->beacon_silence_rssi_a & ALL_BAND_FILTER) >> 8);
	silence_rssi_b =
	    (u8) ((rx_info->beacon_silence_rssi_b & ALL_BAND_FILTER) >> 8);
	silence_rssi_c =
	    (u8) ((rx_info->beacon_silence_rssi_c & ALL_BAND_FILTER) >> 8);

	val = max(silence_rssi_b, silence_rssi_c);
	max_silence_rssi = max(silence_rssi_a, (u8) val);

	/* Store silence rssi in 20-beacon history table */
	data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
	data->nrg_silence_idx++;
	if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
		data->nrg_silence_idx = 0;

	/* Find max silence rssi across 20 beacon history */
	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
		val = data->nrg_silence_rssi[i];
		silence_ref = max(silence_ref, val);
	}
	D_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n", silence_rssi_a,
		silence_rssi_b, silence_rssi_c, silence_ref);

	/* Find max rx energy (min value!) among all 3 receivers,
	 *   measured during beacon frame.
	 * Save it in 10-beacon history table. */
	i = data->nrg_energy_idx;
	val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
	data->nrg_value[i] = min(rx_info->beacon_energy_a, val);

	data->nrg_energy_idx++;
	if (data->nrg_energy_idx >= 10)
		data->nrg_energy_idx = 0;

	/* Find min rx energy (max value) across 10 beacon history.
	 * This is the minimum signal level that we want to receive well.
	 * Add backoff (margin so we don't miss slightly lower energy frames).
	 * This establishes an upper bound (min value) for energy threshold. */
	max_nrg_cck = data->nrg_value[0];
	for (i = 1; i < 10; i++)
		max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
	max_nrg_cck += 6;

	D_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
		rx_info->beacon_energy_a, rx_info->beacon_energy_b,
		rx_info->beacon_energy_c, max_nrg_cck - 6);

	/* Count number of consecutive beacons with fewer-than-desired
	 *   false alarms. */
	if (false_alarms < min_false_alarms)
		data->num_in_cck_no_fa++;
	else
		data->num_in_cck_no_fa = 0;
	D_CALIB("consecutive bcns with few false alarms = %u\n",
		data->num_in_cck_no_fa);

	/* If we got too many false alarms this time, reduce sensitivity */
	if (false_alarms > max_false_alarms &&
	    data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK) {
		D_CALIB("norm FA %u > max FA %u\n", false_alarms,
			max_false_alarms);
		D_CALIB("... reducing sensitivity\n");
		data->nrg_curr_state = IL_FA_TOO_MANY;
		/* Store for "fewer than desired" on later beacon */
		data->nrg_silence_ref = silence_ref;

		/* increase energy threshold (reduce nrg value)
		 *   to decrease sensitivity */
		data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
		/* Else if we got fewer than desired, increase sensitivity */
	} else if (false_alarms < min_false_alarms) {
		data->nrg_curr_state = IL_FA_TOO_FEW;

		/* Compare silence level with silence level for most recent
		 *   healthy number or too many false alarms */
		data->nrg_auto_corr_silence_diff =
		    (s32) data->nrg_silence_ref - (s32) silence_ref;

		D_CALIB("norm FA %u < min FA %u, silence diff %d\n",
			false_alarms, min_false_alarms,
			data->nrg_auto_corr_silence_diff);

		/* Increase value to increase sensitivity, but only if:
		 * 1a) previous beacon did *not* have *too many* false alarms
		 * 1b) AND there's a significant difference in Rx levels
		 *      from a previous beacon with too many, or healthy # FAs
		 * OR 2) We've seen a lot of beacons (100) with too few
		 *       false alarms */
		if (data->nrg_prev_state != IL_FA_TOO_MANY &&
		    (data->nrg_auto_corr_silence_diff > NRG_DIFF ||
		     data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) {

			D_CALIB("... increasing sensitivity\n");
			/* Increase nrg value to increase sensitivity */
			val = data->nrg_th_cck + NRG_STEP_CCK;
			data->nrg_th_cck = min((u32) ranges->min_nrg_cck, val);
		} else {
			D_CALIB("... but not changing sensitivity\n");
		}

		/* Else we got a healthy number of false alarms, keep status quo */
	} else {
		D_CALIB(" FA in safe zone\n");
		data->nrg_curr_state = IL_FA_GOOD_RANGE;

		/* Store for use in "fewer than desired" with later beacon */
		data->nrg_silence_ref = silence_ref;

		/* If previous beacon had too many false alarms,
		 *   give it some extra margin by reducing sensitivity again
		 *   (but don't go below measured energy of desired Rx) */
		if (IL_FA_TOO_MANY == data->nrg_prev_state) {
			D_CALIB("... increasing margin\n");
			if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
				data->nrg_th_cck -= NRG_MARGIN;
			else
				data->nrg_th_cck = max_nrg_cck;
		}
	}

	/* Make sure the energy threshold does not go above the measured
	 * energy of the desired Rx signals (reduced by backoff margin),
	 * or else we might start missing Rx frames.
	 * Lower value is higher energy, so we use max()!
	 */
	data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
	D_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck);

	data->nrg_prev_state = data->nrg_curr_state;

	/* Auto-correlation CCK algorithm */
	if (false_alarms > min_false_alarms) {

		/* increase auto_corr values to decrease sensitivity
		 * so the DSP won't be disturbed by the noise
		 */
		if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
			data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
		else {
			val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
			data->auto_corr_cck =
			    min((u32) ranges->auto_corr_max_cck, val);
		}
		val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
		data->auto_corr_cck_mrc =
		    min((u32) ranges->auto_corr_max_cck_mrc, val);
	} else if (false_alarms < min_false_alarms &&
		   (data->nrg_auto_corr_silence_diff > NRG_DIFF ||
		    data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) {

		/* Decrease auto_corr values to increase sensitivity */
		val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
		data->auto_corr_cck = max((u32) ranges->auto_corr_min_cck, val);
		val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
		data->auto_corr_cck_mrc =
		    max((u32) ranges->auto_corr_min_cck_mrc, val);
	}

	return 0;
}

static int
il4965_sens_auto_corr_ofdm(struct il_priv *il, u32 norm_fa, u32 rx_enable_time)
{
	u32 val;
	u32 false_alarms = norm_fa * 200 * 1024;
	u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
	u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
	struct il_sensitivity_data *data = NULL;
	const struct il_sensitivity_ranges *ranges = il->hw_params.sens;

	data = &(il->sensitivity_data);

	/* If we got too many false alarms this time, reduce sensitivity */
	if (false_alarms > max_false_alarms) {

		D_CALIB("norm FA %u > max FA %u)\n", false_alarms,
			max_false_alarms);

		val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm =
		    min((u32) ranges->auto_corr_max_ofdm, val);

		val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm_mrc =
		    min((u32) ranges->auto_corr_max_ofdm_mrc, val);

		val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm_x1 =
		    min((u32) ranges->auto_corr_max_ofdm_x1, val);

		val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm_mrc_x1 =
		    min((u32) ranges->auto_corr_max_ofdm_mrc_x1, val);
	}

	/* Else if we got fewer than desired, increase sensitivity */
	else if (false_alarms < min_false_alarms) {

		D_CALIB("norm FA %u < min FA %u\n", false_alarms,
			min_false_alarms);

		val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm =
		    max((u32) ranges->auto_corr_min_ofdm, val);

		val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm_mrc =
		    max((u32) ranges->auto_corr_min_ofdm_mrc, val);

		val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm_x1 =
		    max((u32) ranges->auto_corr_min_ofdm_x1, val);

		val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm_mrc_x1 =
		    max((u32) ranges->auto_corr_min_ofdm_mrc_x1, val);
	} else {
		D_CALIB("min FA %u < norm FA %u < max FA %u OK\n",
			min_false_alarms, false_alarms, max_false_alarms);
	}
	return 0;
}

static void
il4965_prepare_legacy_sensitivity_tbl(struct il_priv *il,
				      struct il_sensitivity_data *data,
				      __le16 *tbl)
{
	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_IDX] =
	    cpu_to_le16((u16) data->auto_corr_ofdm);
	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_IDX] =
	    cpu_to_le16((u16) data->auto_corr_ofdm_mrc);
	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_IDX] =
	    cpu_to_le16((u16) data->auto_corr_ofdm_x1);
	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_IDX] =
	    cpu_to_le16((u16) data->auto_corr_ofdm_mrc_x1);

	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX] =
	    cpu_to_le16((u16) data->auto_corr_cck);
	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX] =
	    cpu_to_le16((u16) data->auto_corr_cck_mrc);

	tbl[HD_MIN_ENERGY_CCK_DET_IDX] = cpu_to_le16((u16) data->nrg_th_cck);
	tbl[HD_MIN_ENERGY_OFDM_DET_IDX] = cpu_to_le16((u16) data->nrg_th_ofdm);

	tbl[HD_BARKER_CORR_TH_ADD_MIN_IDX] =
	    cpu_to_le16(data->barker_corr_th_min);
	tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_IDX] =
	    cpu_to_le16(data->barker_corr_th_min_mrc);
	tbl[HD_OFDM_ENERGY_TH_IN_IDX] = cpu_to_le16(data->nrg_th_cca);

	D_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
		data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
		data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
		data->nrg_th_ofdm);

	D_CALIB("cck: ac %u mrc %u thresh %u\n", data->auto_corr_cck,
		data->auto_corr_cck_mrc, data->nrg_th_cck);
}

/* Prepare a C_SENSITIVITY, send to uCode if values have changed */
static int
il4965_sensitivity_write(struct il_priv *il)
{
	struct il_sensitivity_cmd cmd;
	struct il_sensitivity_data *data = NULL;
	struct il_host_cmd cmd_out = {
		.id = C_SENSITIVITY,
		.len = sizeof(struct il_sensitivity_cmd),
		.flags = CMD_ASYNC,
		.data = &cmd,
	};

	data = &(il->sensitivity_data);

	memset(&cmd, 0, sizeof(cmd));

	il4965_prepare_legacy_sensitivity_tbl(il, data, &cmd.table[0]);

	/* Update uCode's "work" table, and copy it to DSP */
	cmd.control = C_SENSITIVITY_CONTROL_WORK_TBL;

	/* Don't send command to uCode if nothing has changed */
	if (!memcmp
	    (&cmd.table[0], &(il->sensitivity_tbl[0]),
	     sizeof(u16) * HD_TBL_SIZE)) {
		D_CALIB("No change in C_SENSITIVITY\n");
		return 0;
	}

	/* Copy table for comparison next time */
	memcpy(&(il->sensitivity_tbl[0]), &(cmd.table[0]),
	       sizeof(u16) * HD_TBL_SIZE);

	return il_send_cmd(il, &cmd_out);
}

void
il4965_init_sensitivity(struct il_priv *il)
{
	int ret = 0;
	int i;
	struct il_sensitivity_data *data = NULL;
	const struct il_sensitivity_ranges *ranges = il->hw_params.sens;

	if (il->disable_sens_cal)
		return;

	D_CALIB("Start il4965_init_sensitivity\n");

	/* Clear driver's sensitivity algo data */
	data = &(il->sensitivity_data);

	if (ranges == NULL)
		return;

	memset(data, 0, sizeof(struct il_sensitivity_data));

	data->num_in_cck_no_fa = 0;
	data->nrg_curr_state = IL_FA_TOO_MANY;
	data->nrg_prev_state = IL_FA_TOO_MANY;
	data->nrg_silence_ref = 0;
	data->nrg_silence_idx = 0;
	data->nrg_energy_idx = 0;

	for (i = 0; i < 10; i++)
		data->nrg_value[i] = 0;

	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
		data->nrg_silence_rssi[i] = 0;

	data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
	data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
	data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
	data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
	data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
	data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
	data->nrg_th_cck = ranges->nrg_th_cck;
	data->nrg_th_ofdm = ranges->nrg_th_ofdm;
	data->barker_corr_th_min = ranges->barker_corr_th_min;
	data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
	data->nrg_th_cca = ranges->nrg_th_cca;

	data->last_bad_plcp_cnt_ofdm = 0;
	data->last_fa_cnt_ofdm = 0;
	data->last_bad_plcp_cnt_cck = 0;
	data->last_fa_cnt_cck = 0;

	ret |= il4965_sensitivity_write(il);
	D_CALIB("<<return 0x%X\n", ret);
}

void
il4965_sensitivity_calibration(struct il_priv *il, void *resp)
{
	u32 rx_enable_time;
	u32 fa_cck;
	u32 fa_ofdm;
	u32 bad_plcp_cck;
	u32 bad_plcp_ofdm;
	u32 norm_fa_ofdm;
	u32 norm_fa_cck;
	struct il_sensitivity_data *data = NULL;
	struct stats_rx_non_phy *rx_info;
	struct stats_rx_phy *ofdm, *cck;
	unsigned long flags;
	struct stats_general_data statis;

	if (il->disable_sens_cal)
		return;

	data = &(il->sensitivity_data);

	if (!il_is_any_associated(il)) {
		D_CALIB("<< - not associated\n");
		return;
	}

	spin_lock_irqsave(&il->lock, flags);

	rx_info = &(((struct il_notif_stats *)resp)->rx.general);
	ofdm = &(((struct il_notif_stats *)resp)->rx.ofdm);
	cck = &(((struct il_notif_stats *)resp)->rx.cck);

	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
		D_CALIB("<< invalid data.\n");
		spin_unlock_irqrestore(&il->lock, flags);
		return;
	}

	/* Extract Statistics: */
	rx_enable_time = le32_to_cpu(rx_info->channel_load);
	fa_cck = le32_to_cpu(cck->false_alarm_cnt);
	fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
	bad_plcp_cck = le32_to_cpu(cck->plcp_err);
	bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);

	statis.beacon_silence_rssi_a =
	    le32_to_cpu(rx_info->beacon_silence_rssi_a);
	statis.beacon_silence_rssi_b =
	    le32_to_cpu(rx_info->beacon_silence_rssi_b);
	statis.beacon_silence_rssi_c =
	    le32_to_cpu(rx_info->beacon_silence_rssi_c);
	statis.beacon_energy_a = le32_to_cpu(rx_info->beacon_energy_a);
	statis.beacon_energy_b = le32_to_cpu(rx_info->beacon_energy_b);
	statis.beacon_energy_c = le32_to_cpu(rx_info->beacon_energy_c);

	spin_unlock_irqrestore(&il->lock, flags);

	D_CALIB("rx_enable_time = %u usecs\n", rx_enable_time);

	if (!rx_enable_time) {
		D_CALIB("<< RX Enable Time == 0!\n");
		return;
	}

	/* These stats increase monotonically, and do not reset
	 *   at each beacon.  Calculate difference from last value, or just
	 *   use the new stats value if it has reset or wrapped around. */
	if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
		data->last_bad_plcp_cnt_cck = bad_plcp_cck;
	else {
		bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
		data->last_bad_plcp_cnt_cck += bad_plcp_cck;
	}

	if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
		data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
	else {
		bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
		data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
	}

	if (data->last_fa_cnt_ofdm > fa_ofdm)
		data->last_fa_cnt_ofdm = fa_ofdm;
	else {
		fa_ofdm -= data->last_fa_cnt_ofdm;
		data->last_fa_cnt_ofdm += fa_ofdm;
	}

	if (data->last_fa_cnt_cck > fa_cck)
		data->last_fa_cnt_cck = fa_cck;
	else {
		fa_cck -= data->last_fa_cnt_cck;
		data->last_fa_cnt_cck += fa_cck;
	}

	/* Total aborted signal locks */
	norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
	norm_fa_cck = fa_cck + bad_plcp_cck;

	D_CALIB("cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
		bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);

	il4965_sens_auto_corr_ofdm(il, norm_fa_ofdm, rx_enable_time);
	il4965_sens_energy_cck(il, norm_fa_cck, rx_enable_time, &statis);

	il4965_sensitivity_write(il);
}

static inline u8
il4965_find_first_chain(u8 mask)
{
	if (mask & ANT_A)
		return CHAIN_A;
	if (mask & ANT_B)
		return CHAIN_B;
	return CHAIN_C;
}

/**
 * Run disconnected antenna algorithm to find out which antennas are
 * disconnected.
 */
static void
il4965_find_disconn_antenna(struct il_priv *il, u32 * average_sig,
			    struct il_chain_noise_data *data)
{
	u32 active_chains = 0;
	u32 max_average_sig;
	u16 max_average_sig_antenna_i;
	u8 num_tx_chains;
	u8 first_chain;
	u16 i = 0;

	average_sig[0] =
	    data->chain_signal_a /
	    il->cfg->chain_noise_num_beacons;
	average_sig[1] =
	    data->chain_signal_b /
	    il->cfg->chain_noise_num_beacons;
	average_sig[2] =
	    data->chain_signal_c /
	    il->cfg->chain_noise_num_beacons;

	if (average_sig[0] >= average_sig[1]) {
		max_average_sig = average_sig[0];
		max_average_sig_antenna_i = 0;
		active_chains = (1 << max_average_sig_antenna_i);
	} else {
		max_average_sig = average_sig[1];
		max_average_sig_antenna_i = 1;
		active_chains = (1 << max_average_sig_antenna_i);
	}

	if (average_sig[2] >= max_average_sig) {
		max_average_sig = average_sig[2];
		max_average_sig_antenna_i = 2;
		active_chains = (1 << max_average_sig_antenna_i);
	}

	D_CALIB("average_sig: a %d b %d c %d\n", average_sig[0], average_sig[1],
		average_sig[2]);
	D_CALIB("max_average_sig = %d, antenna %d\n", max_average_sig,
		max_average_sig_antenna_i);

	/* Compare signal strengths for all 3 receivers. */
	for (i = 0; i < NUM_RX_CHAINS; i++) {
		if (i != max_average_sig_antenna_i) {
			s32 rssi_delta = (max_average_sig - average_sig[i]);

			/* If signal is very weak, compared with
			 * strongest, mark it as disconnected. */
			if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
				data->disconn_array[i] = 1;
			else
				active_chains |= (1 << i);
			D_CALIB("i = %d  rssiDelta = %d  "
				"disconn_array[i] = %d\n", i, rssi_delta,
				data->disconn_array[i]);
		}
	}

	/*
	 * The above algorithm sometimes fails when the ucode
	 * reports 0 for all chains. It's not clear why that
	 * happens to start with, but it is then causing trouble
	 * because this can make us enable more chains than the
	 * hardware really has.
	 *
	 * To be safe, simply mask out any chains that we know
	 * are not on the device.
	 */
	active_chains &= il->hw_params.valid_rx_ant;

	num_tx_chains = 0;
	for (i = 0; i < NUM_RX_CHAINS; i++) {
		/* loops on all the bits of
		 * il->hw_setting.valid_tx_ant */
		u8 ant_msk = (1 << i);
		if (!(il->hw_params.valid_tx_ant & ant_msk))
			continue;

		num_tx_chains++;
		if (data->disconn_array[i] == 0)
			/* there is a Tx antenna connected */
			break;
		if (num_tx_chains == il->hw_params.tx_chains_num &&
		    data->disconn_array[i]) {
			/*
			 * If all chains are disconnected
			 * connect the first valid tx chain
			 */
			first_chain =
			    il4965_find_first_chain(il->cfg->valid_tx_ant);
			data->disconn_array[first_chain] = 0;
			active_chains |= BIT(first_chain);
			D_CALIB("All Tx chains are disconnected"
				"- declare %d as connected\n", first_chain);
			break;
		}
	}

	if (active_chains != il->hw_params.valid_rx_ant &&
	    active_chains != il->chain_noise_data.active_chains)
		D_CALIB("Detected that not all antennas are connected! "
			"Connected: %#x, valid: %#x.\n", active_chains,
			il->hw_params.valid_rx_ant);

	/* Save for use within RXON, TX, SCAN commands, etc. */
	data->active_chains = active_chains;
	D_CALIB("active_chains (bitwise) = 0x%x\n", active_chains);
}

static void
il4965_gain_computation(struct il_priv *il, u32 * average_noise,
			u16 min_average_noise_antenna_i, u32 min_average_noise,
			u8 default_chain)
{
	int i, ret;
	struct il_chain_noise_data *data = &il->chain_noise_data;

	data->delta_gain_code[min_average_noise_antenna_i] = 0;

	for (i = default_chain; i < NUM_RX_CHAINS; i++) {
		s32 delta_g = 0;

		if (!data->disconn_array[i] &&
		    data->delta_gain_code[i] ==
		    CHAIN_NOISE_DELTA_GAIN_INIT_VAL) {
			delta_g = average_noise[i] - min_average_noise;
			data->delta_gain_code[i] = (u8) ((delta_g * 10) / 15);
			data->delta_gain_code[i] =
			    min(data->delta_gain_code[i],
				(u8) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);

			data->delta_gain_code[i] =
			    (data->delta_gain_code[i] | (1 << 2));
		} else {
			data->delta_gain_code[i] = 0;
		}
	}
	D_CALIB("delta_gain_codes: a %d b %d c %d\n", data->delta_gain_code[0],
		data->delta_gain_code[1], data->delta_gain_code[2]);

	/* Differential gain gets sent to uCode only once */
	if (!data->radio_write) {
		struct il_calib_diff_gain_cmd cmd;
		data->radio_write = 1;

		memset(&cmd, 0, sizeof(cmd));
		cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD;
		cmd.diff_gain_a = data->delta_gain_code[0];
		cmd.diff_gain_b = data->delta_gain_code[1];
		cmd.diff_gain_c = data->delta_gain_code[2];
		ret = il_send_cmd_pdu(il, C_PHY_CALIBRATION, sizeof(cmd), &cmd);
		if (ret)
			D_CALIB("fail sending cmd " "C_PHY_CALIBRATION\n");

		/* TODO we might want recalculate
		 * rx_chain in rxon cmd */

		/* Mark so we run this algo only once! */
		data->state = IL_CHAIN_NOISE_CALIBRATED;
	}
}

/*
 * Accumulate 16 beacons of signal and noise stats for each of
 *   3 receivers/antennas/rx-chains, then figure out:
 * 1)  Which antennas are connected.
 * 2)  Differential rx gain settings to balance the 3 receivers.
 */
void
il4965_chain_noise_calibration(struct il_priv *il, void *stat_resp)
{
	struct il_chain_noise_data *data = NULL;

	u32 chain_noise_a;
	u32 chain_noise_b;
	u32 chain_noise_c;
	u32 chain_sig_a;
	u32 chain_sig_b;
	u32 chain_sig_c;
	u32 average_sig[NUM_RX_CHAINS] = { INITIALIZATION_VALUE };
	u32 average_noise[NUM_RX_CHAINS] = { INITIALIZATION_VALUE };
	u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
	u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
	u16 i = 0;
	u16 rxon_chnum = INITIALIZATION_VALUE;
	u16 stat_chnum = INITIALIZATION_VALUE;
	u8 rxon_band24;
	u8 stat_band24;
	unsigned long flags;
	struct stats_rx_non_phy *rx_info;

	if (il->disable_chain_noise_cal)
		return;

	data = &(il->chain_noise_data);

	/*
	 * Accumulate just the first "chain_noise_num_beacons" after
	 * the first association, then we're done forever.
	 */
	if (data->state != IL_CHAIN_NOISE_ACCUMULATE) {
		if (data->state == IL_CHAIN_NOISE_ALIVE)
			D_CALIB("Wait for noise calib reset\n");
		return;
	}

	spin_lock_irqsave(&il->lock, flags);

	rx_info = &(((struct il_notif_stats *)stat_resp)->rx.general);

	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
		D_CALIB(" << Interference data unavailable\n");
		spin_unlock_irqrestore(&il->lock, flags);
		return;
	}

	rxon_band24 = !!(il->staging.flags & RXON_FLG_BAND_24G_MSK);
	rxon_chnum = le16_to_cpu(il->staging.channel);

	stat_band24 =
	    !!(((struct il_notif_stats *)stat_resp)->
	       flag & STATS_REPLY_FLG_BAND_24G_MSK);
	stat_chnum =
	    le32_to_cpu(((struct il_notif_stats *)stat_resp)->flag) >> 16;

	/* Make sure we accumulate data for just the associated channel
	 *   (even if scanning). */
	if (rxon_chnum != stat_chnum || rxon_band24 != stat_band24) {
		D_CALIB("Stats not from chan=%d, band24=%d\n", rxon_chnum,
			rxon_band24);
		spin_unlock_irqrestore(&il->lock, flags);
		return;
	}

	/*
	 *  Accumulate beacon stats values across
	 * "chain_noise_num_beacons"
	 */
	chain_noise_a =
	    le32_to_cpu(rx_info->beacon_silence_rssi_a) & IN_BAND_FILTER;
	chain_noise_b =
	    le32_to_cpu(rx_info->beacon_silence_rssi_b) & IN_BAND_FILTER;
	chain_noise_c =
	    le32_to_cpu(rx_info->beacon_silence_rssi_c) & IN_BAND_FILTER;

	chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
	chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
	chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;

	spin_unlock_irqrestore(&il->lock, flags);

	data->beacon_count++;

	data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
	data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
	data->chain_noise_c = (chain_noise_c + data->chain_noise_c);

	data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
	data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
	data->chain_signal_c = (chain_sig_c + data->chain_signal_c);

	D_CALIB("chan=%d, band24=%d, beacon=%d\n", rxon_chnum, rxon_band24,
		data->beacon_count);
	D_CALIB("chain_sig: a %d b %d c %d\n", chain_sig_a, chain_sig_b,
		chain_sig_c);
	D_CALIB("chain_noise: a %d b %d c %d\n", chain_noise_a, chain_noise_b,
		chain_noise_c);

	/* If this is the "chain_noise_num_beacons", determine:
	 * 1)  Disconnected antennas (using signal strengths)
	 * 2)  Differential gain (using silence noise) to balance receivers */
	if (data->beacon_count != il->cfg->chain_noise_num_beacons)
		return;

	/* Analyze signal for disconnected antenna */
	il4965_find_disconn_antenna(il, average_sig, data);

	/* Analyze noise for rx balance */
	average_noise[0] =
	    data->chain_noise_a / il->cfg->chain_noise_num_beacons;
	average_noise[1] =
	    data->chain_noise_b / il->cfg->chain_noise_num_beacons;
	average_noise[2] =
	    data->chain_noise_c / il->cfg->chain_noise_num_beacons;

	for (i = 0; i < NUM_RX_CHAINS; i++) {
		if (!data->disconn_array[i] &&
		    average_noise[i] <= min_average_noise) {
			/* This means that chain i is active and has
			 * lower noise values so far: */
			min_average_noise = average_noise[i];
			min_average_noise_antenna_i = i;
		}
	}

	D_CALIB("average_noise: a %d b %d c %d\n", average_noise[0],
		average_noise[1], average_noise[2]);

	D_CALIB("min_average_noise = %d, antenna %d\n", min_average_noise,
		min_average_noise_antenna_i);

	il4965_gain_computation(il, average_noise, min_average_noise_antenna_i,
				min_average_noise,
				il4965_find_first_chain(il->cfg->valid_rx_ant));

	/* Some power changes may have been made during the calibration.
	 * Update and commit the RXON
	 */
	if (il->ops->update_chain_flags)
		il->ops->update_chain_flags(il);

	data->state = IL_CHAIN_NOISE_DONE;
	il_power_update_mode(il, false);
}

void
il4965_reset_run_time_calib(struct il_priv *il)
{
	int i;
	memset(&(il->sensitivity_data), 0, sizeof(struct il_sensitivity_data));
	memset(&(il->chain_noise_data), 0, sizeof(struct il_chain_noise_data));
	for (i = 0; i < NUM_RX_CHAINS; i++)
		il->chain_noise_data.delta_gain_code[i] =
		    CHAIN_NOISE_DELTA_GAIN_INIT_VAL;

	/* Ask for stats now, the uCode will send notification
	 * periodically after association */
	il_send_stats_request(il, CMD_ASYNC, true);
}