dfs_pri_detector.c 10.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
/*
 * Copyright (c) 2012 Neratec Solutions AG
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <linux/slab.h>
#include <linux/spinlock.h>

#include "ath.h"
#include "dfs_pattern_detector.h"
#include "dfs_pri_detector.h"

struct ath_dfs_pool_stats global_dfs_pool_stats = {};

#define DFS_POOL_STAT_INC(c) (global_dfs_pool_stats.c++)
#define DFS_POOL_STAT_DEC(c) (global_dfs_pool_stats.c--)
#define GET_PRI_TO_USE(MIN, MAX, RUNTIME) \
	(MIN + PRI_TOLERANCE == MAX - PRI_TOLERANCE ? \
	MIN + PRI_TOLERANCE : RUNTIME)

/**
 * struct pulse_elem - elements in pulse queue
 * @ts: time stamp in usecs
 */
struct pulse_elem {
	struct list_head head;
	u64 ts;
};

/**
 * pde_get_multiple() - get number of multiples considering a given tolerance
 * @return factor if abs(val - factor*fraction) <= tolerance, 0 otherwise
 */
static u32 pde_get_multiple(u32 val, u32 fraction, u32 tolerance)
{
	u32 remainder;
	u32 factor;
	u32 delta;

	if (fraction == 0)
		return 0;

	delta = (val < fraction) ? (fraction - val) : (val - fraction);

	if (delta <= tolerance)
		/* val and fraction are within tolerance */
		return 1;

	factor = val / fraction;
	remainder = val % fraction;
	if (remainder > tolerance) {
		/* no exact match */
		if ((fraction - remainder) <= tolerance)
			/* remainder is within tolerance */
			factor++;
		else
			factor = 0;
	}
	return factor;
}

/**
 * DOC: Singleton Pulse and Sequence Pools
 *
 * Instances of pri_sequence and pulse_elem are kept in singleton pools to
 * reduce the number of dynamic allocations. They are shared between all
 * instances and grow up to the peak number of simultaneously used objects.
 *
 * Memory is freed after all references to the pools are released.
 */
static u32 singleton_pool_references;
static LIST_HEAD(pulse_pool);
static LIST_HEAD(pseq_pool);
static DEFINE_SPINLOCK(pool_lock);

static void pool_register_ref(void)
{
	spin_lock_bh(&pool_lock);
	singleton_pool_references++;
	DFS_POOL_STAT_INC(pool_reference);
	spin_unlock_bh(&pool_lock);
}

static void pool_deregister_ref(void)
{
	spin_lock_bh(&pool_lock);
	singleton_pool_references--;
	DFS_POOL_STAT_DEC(pool_reference);
	if (singleton_pool_references == 0) {
		/* free singleton pools with no references left */
		struct pri_sequence *ps, *ps0;
		struct pulse_elem *p, *p0;

		list_for_each_entry_safe(p, p0, &pulse_pool, head) {
			list_del(&p->head);
			DFS_POOL_STAT_DEC(pulse_allocated);
			kfree(p);
		}
		list_for_each_entry_safe(ps, ps0, &pseq_pool, head) {
			list_del(&ps->head);
			DFS_POOL_STAT_DEC(pseq_allocated);
			kfree(ps);
		}
	}
	spin_unlock_bh(&pool_lock);
}

static void pool_put_pulse_elem(struct pulse_elem *pe)
{
	spin_lock_bh(&pool_lock);
	list_add(&pe->head, &pulse_pool);
	DFS_POOL_STAT_DEC(pulse_used);
	spin_unlock_bh(&pool_lock);
}

static void pool_put_pseq_elem(struct pri_sequence *pse)
{
	spin_lock_bh(&pool_lock);
	list_add(&pse->head, &pseq_pool);
	DFS_POOL_STAT_DEC(pseq_used);
	spin_unlock_bh(&pool_lock);
}

static struct pri_sequence *pool_get_pseq_elem(void)
{
	struct pri_sequence *pse = NULL;
	spin_lock_bh(&pool_lock);
	if (!list_empty(&pseq_pool)) {
		pse = list_first_entry(&pseq_pool, struct pri_sequence, head);
		list_del(&pse->head);
		DFS_POOL_STAT_INC(pseq_used);
	}
	spin_unlock_bh(&pool_lock);
	return pse;
}

static struct pulse_elem *pool_get_pulse_elem(void)
{
	struct pulse_elem *pe = NULL;
	spin_lock_bh(&pool_lock);
	if (!list_empty(&pulse_pool)) {
		pe = list_first_entry(&pulse_pool, struct pulse_elem, head);
		list_del(&pe->head);
		DFS_POOL_STAT_INC(pulse_used);
	}
	spin_unlock_bh(&pool_lock);
	return pe;
}

static struct pulse_elem *pulse_queue_get_tail(struct pri_detector *pde)
{
	struct list_head *l = &pde->pulses;
	if (list_empty(l))
		return NULL;
	return list_entry(l->prev, struct pulse_elem, head);
}

static bool pulse_queue_dequeue(struct pri_detector *pde)
{
	struct pulse_elem *p = pulse_queue_get_tail(pde);
	if (p != NULL) {
		list_del_init(&p->head);
		pde->count--;
		/* give it back to pool */
		pool_put_pulse_elem(p);
	}
	return (pde->count > 0);
}

/* remove pulses older than window */
static void pulse_queue_check_window(struct pri_detector *pde)
{
	u64 min_valid_ts;
	struct pulse_elem *p;

	/* there is no delta time with less than 2 pulses */
	if (pde->count < 2)
		return;

	if (pde->last_ts <= pde->window_size)
		return;

	min_valid_ts = pde->last_ts - pde->window_size;
	while ((p = pulse_queue_get_tail(pde)) != NULL) {
		if (p->ts >= min_valid_ts)
			return;
		pulse_queue_dequeue(pde);
	}
}

static bool pulse_queue_enqueue(struct pri_detector *pde, u64 ts)
{
	struct pulse_elem *p = pool_get_pulse_elem();
	if (p == NULL) {
		p = kmalloc(sizeof(*p), GFP_ATOMIC);
		if (p == NULL) {
			DFS_POOL_STAT_INC(pulse_alloc_error);
			return false;
		}
		DFS_POOL_STAT_INC(pulse_allocated);
		DFS_POOL_STAT_INC(pulse_used);
	}
	INIT_LIST_HEAD(&p->head);
	p->ts = ts;
	list_add(&p->head, &pde->pulses);
	pde->count++;
	pde->last_ts = ts;
	pulse_queue_check_window(pde);
	if (pde->count >= pde->max_count)
		pulse_queue_dequeue(pde);
	return true;
}

static bool pseq_handler_create_sequences(struct pri_detector *pde,
					  u64 ts, u32 min_count)
{
	struct pulse_elem *p;
	list_for_each_entry(p, &pde->pulses, head) {
		struct pri_sequence ps, *new_ps;
		struct pulse_elem *p2;
		u32 tmp_false_count;
		u64 min_valid_ts;
		u32 delta_ts = ts - p->ts;

		if (delta_ts < pde->rs->pri_min)
			/* ignore too small pri */
			continue;

		if (delta_ts > pde->rs->pri_max)
			/* stop on too large pri (sorted list) */
			break;

		/* build a new sequence with new potential pri */
		ps.count = 2;
		ps.count_falses = 0;
		ps.first_ts = p->ts;
		ps.last_ts = ts;
		ps.pri = GET_PRI_TO_USE(pde->rs->pri_min,
			pde->rs->pri_max, ts - p->ts);
		ps.dur = ps.pri * (pde->rs->ppb - 1)
				+ 2 * pde->rs->max_pri_tolerance;

		p2 = p;
		tmp_false_count = 0;
		min_valid_ts = ts - ps.dur;
		/* check which past pulses are candidates for new sequence */
		list_for_each_entry_continue(p2, &pde->pulses, head) {
			u32 factor;
			if (p2->ts < min_valid_ts)
				/* stop on crossing window border */
				break;
			/* check if pulse match (multi)PRI */
			factor = pde_get_multiple(ps.last_ts - p2->ts, ps.pri,
						  pde->rs->max_pri_tolerance);
			if (factor > 0) {
				ps.count++;
				ps.first_ts = p2->ts;
				/*
				 * on match, add the intermediate falses
				 * and reset counter
				 */
				ps.count_falses += tmp_false_count;
				tmp_false_count = 0;
			} else {
				/* this is a potential false one */
				tmp_false_count++;
			}
		}
		if (ps.count <= min_count)
			/* did not reach minimum count, drop sequence */
			continue;

		/* this is a valid one, add it */
		ps.deadline_ts = ps.first_ts + ps.dur;
		new_ps = pool_get_pseq_elem();
		if (new_ps == NULL) {
			new_ps = kmalloc(sizeof(*new_ps), GFP_ATOMIC);
			if (new_ps == NULL) {
				DFS_POOL_STAT_INC(pseq_alloc_error);
				return false;
			}
			DFS_POOL_STAT_INC(pseq_allocated);
			DFS_POOL_STAT_INC(pseq_used);
		}
		memcpy(new_ps, &ps, sizeof(ps));
		INIT_LIST_HEAD(&new_ps->head);
		list_add(&new_ps->head, &pde->sequences);
	}
	return true;
}

/* check new ts and add to all matching existing sequences */
static u32
pseq_handler_add_to_existing_seqs(struct pri_detector *pde, u64 ts)
{
	u32 max_count = 0;
	struct pri_sequence *ps, *ps2;
	list_for_each_entry_safe(ps, ps2, &pde->sequences, head) {
		u32 delta_ts;
		u32 factor;

		/* first ensure that sequence is within window */
		if (ts > ps->deadline_ts) {
			list_del_init(&ps->head);
			pool_put_pseq_elem(ps);
			continue;
		}

		delta_ts = ts - ps->last_ts;
		factor = pde_get_multiple(delta_ts, ps->pri,
					  pde->rs->max_pri_tolerance);
		if (factor > 0) {
			ps->last_ts = ts;
			ps->count++;

			if (max_count < ps->count)
				max_count = ps->count;
		} else {
			ps->count_falses++;
		}
	}
	return max_count;
}

static struct pri_sequence *
pseq_handler_check_detection(struct pri_detector *pde)
{
	struct pri_sequence *ps;

	if (list_empty(&pde->sequences))
		return NULL;

	list_for_each_entry(ps, &pde->sequences, head) {
		/*
		 * we assume to have enough matching confidence if we
		 * 1) have enough pulses
		 * 2) have more matching than false pulses
		 */
		if ((ps->count >= pde->rs->ppb_thresh) &&
		    (ps->count * pde->rs->num_pri >= ps->count_falses))
			return ps;
	}
	return NULL;
}


/* free pulse queue and sequences list and give objects back to pools */
static void pri_detector_reset(struct pri_detector *pde, u64 ts)
{
	struct pri_sequence *ps, *ps0;
	struct pulse_elem *p, *p0;
	list_for_each_entry_safe(ps, ps0, &pde->sequences, head) {
		list_del_init(&ps->head);
		pool_put_pseq_elem(ps);
	}
	list_for_each_entry_safe(p, p0, &pde->pulses, head) {
		list_del_init(&p->head);
		pool_put_pulse_elem(p);
	}
	pde->count = 0;
	pde->last_ts = ts;
}

static void pri_detector_exit(struct pri_detector *de)
{
	pri_detector_reset(de, 0);
	pool_deregister_ref();
	kfree(de);
}

static struct pri_sequence *pri_detector_add_pulse(struct pri_detector *de,
						   struct pulse_event *event)
{
	u32 max_updated_seq;
	struct pri_sequence *ps;
	u64 ts = event->ts;
	const struct radar_detector_specs *rs = de->rs;

	/* ignore pulses not within width range */
	if ((rs->width_min > event->width) || (rs->width_max < event->width))
		return NULL;

	if ((ts - de->last_ts) < rs->max_pri_tolerance)
		/* if delta to last pulse is too short, don't use this pulse */
		return NULL;
	/* radar detector spec needs chirp, but not detected */
	if (rs->chirp && rs->chirp != event->chirp)
		return NULL;

	de->last_ts = ts;

	max_updated_seq = pseq_handler_add_to_existing_seqs(de, ts);

	if (!pseq_handler_create_sequences(de, ts, max_updated_seq)) {
		pri_detector_reset(de, ts);
		return NULL;
	}

	ps = pseq_handler_check_detection(de);

	if (ps == NULL)
		pulse_queue_enqueue(de, ts);

	return ps;
}

struct pri_detector *pri_detector_init(const struct radar_detector_specs *rs)
{
	struct pri_detector *de;

	de = kzalloc(sizeof(*de), GFP_ATOMIC);
	if (de == NULL)
		return NULL;
	de->exit = pri_detector_exit;
	de->add_pulse = pri_detector_add_pulse;
	de->reset = pri_detector_reset;

	INIT_LIST_HEAD(&de->sequences);
	INIT_LIST_HEAD(&de->pulses);
	de->window_size = rs->pri_max * rs->ppb * rs->num_pri;
	de->max_count = rs->ppb * 2;
	de->rs = rs;

	pool_register_ref();
	return de;
}