cpts.c 20.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
/*
 * TI Common Platform Time Sync
 *
 * Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include <linux/err.h>
#include <linux/if.h>
#include <linux/hrtimer.h>
#include <linux/module.h>
#include <linux/net_tstamp.h>
#include <linux/ptp_classify.h>
#include <linux/time.h>
#include <linux/uaccess.h>
#include <linux/workqueue.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>

#include "cpts.h"

#define CPTS_TS_COMP_PULSE_LENGTH_DEF	3

#define cpts_read32(c, r)	readl_relaxed(&c->reg->r)
#define cpts_write32(c, v, r)	writel_relaxed(v, &c->reg->r)

static int cpts_report_ts_events(struct cpts *cpts, bool pps_reload);

static int cpts_event_port(struct cpts_event *event)
{
	return (event->high >> PORT_NUMBER_SHIFT) & PORT_NUMBER_MASK;
}

static int event_expired(struct cpts_event *event)
{
	return time_after(jiffies, event->tmo);
}

static int event_type(struct cpts_event *event)
{
	return (event->high >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
}

static int cpts_fifo_pop(struct cpts *cpts, u32 *high, u32 *low)
{
	u32 r = cpts_read32(cpts, intstat_raw);

	if (r & TS_PEND_RAW) {
		*high = cpts_read32(cpts, event_high);
		*low  = cpts_read32(cpts, event_low);
		cpts_write32(cpts, EVENT_POP, event_pop);
		return 0;
	}
	return -1;
}

static int cpts_purge_events(struct cpts *cpts)
{
	struct list_head *this, *next;
	struct cpts_event *event;
	int removed = 0;

	list_for_each_safe(this, next, &cpts->events) {
		event = list_entry(this, struct cpts_event, list);
		if (event_expired(event)) {
			list_del_init(&event->list);
			list_add(&event->list, &cpts->pool);
			++removed;
		}
	}

	if (removed)
		dev_dbg(cpts->dev, "cpts: event pool cleaned up %d\n", removed);
	return removed ? 0 : -1;
}

/*
 * Returns zero if matching event type was found.
 */
static int cpts_fifo_read(struct cpts *cpts, int match)
{
	int i, type = -1;
	u32 hi, lo;
	struct cpts_event *event;

	for (i = 0; i < CPTS_FIFO_DEPTH; i++) {
		if (cpts_fifo_pop(cpts, &hi, &lo))
			break;

		if (list_empty(&cpts->pool) && cpts_purge_events(cpts)) {
			dev_err(cpts->dev, "cpts: event pool empty\n");
			return -1;
		}

		event = list_first_entry(&cpts->pool, struct cpts_event, list);
		event->tmo = jiffies +
			     msecs_to_jiffies(CPTS_EVENT_RX_TX_TIMEOUT);
		event->high = hi;
		event->low = lo;
		type = event_type(event);
		switch (type) {
		case CPTS_EV_HW:
		case CPTS_EV_COMP:
			event->tmo +=
				msecs_to_jiffies(CPTS_EVENT_HWSTAMP_TIMEOUT);
		case CPTS_EV_PUSH:
		case CPTS_EV_RX:
		case CPTS_EV_TX:
			list_del_init(&event->list);
			list_add_tail(&event->list, &cpts->events);
			break;
		case CPTS_EV_ROLL:
		case CPTS_EV_HALF:
			break;
		default:
			pr_err("cpts: unknown event type\n");
			break;
		}
		if (type == match)
			break;
	}
	return type == match ? 0 : -1;
}

static cycle_t cpts_systim_read(const struct cyclecounter *cc)
{
	u64 val = 0;
	struct cpts_event *event;
	struct list_head *this, *next;
	struct cpts *cpts = container_of(cc, struct cpts, cc);

	cpts_write32(cpts, TS_PUSH, ts_push);
	if (cpts_fifo_read(cpts, CPTS_EV_PUSH))
		pr_err("cpts: unable to obtain a time stamp\n");

	list_for_each_safe(this, next, &cpts->events) {
		event = list_entry(this, struct cpts_event, list);
		if (event_type(event) == CPTS_EV_PUSH) {
			list_del_init(&event->list);
			list_add(&event->list, &cpts->pool);
			val = event->low;
			break;
		}
	}

	return val;
}

static cycle_t cpts_cc_ns2cyc(struct cpts *cpts, u64 nsecs)
{
	cycle_t cyc = (nsecs << cpts->cc.shift) + nsecs;

	do_div(cyc, cpts->cc.mult);

	return cyc;
}

static void cpts_ts_comp_disable(struct cpts *cpts)
{
	cpts_write32(cpts, 0, ts_comp_length);
}

static void cpts_ts_comp_enable(struct cpts *cpts)
{
	/* TS_COMP_LENGTH should be 0 while the TS_COMP_VAL value is
	 * being written
	 */
	cpts_write32(cpts, 0, ts_comp_length);
	cpts_write32(cpts, cpts->ts_comp_next, ts_comp_val);
	cpts_write32(cpts, cpts->ts_comp_length, ts_comp_length);
}

static void cpts_ts_comp_add_ns(struct cpts *cpts, s64 add_ns)
{
	cycle_t cyc_next;

	if (add_ns == NSEC_PER_SEC)
		/* avoid calculation */
		cyc_next = cpts->ts_comp_one_sec_cycs;
	else
		cyc_next = cpts_cc_ns2cyc(cpts, add_ns);

	cyc_next += cpts->ts_comp_next;
	cpts->ts_comp_next = cyc_next & cpts->cc.mask;
	pr_debug("cpts comp ts_comp_next: %u\n", cpts->ts_comp_next);
}

static void cpts_ts_comp_settime(struct cpts *cpts, s64 now_ns)
{
	struct timespec64 ts;

	if (cpts->ts_comp_enabled) {
		ts = ns_to_timespec64(now_ns);

		/* align pulse to next sec boundary and add one sec */
		cpts_ts_comp_add_ns(cpts, NSEC_PER_SEC - ts.tv_nsec);

		/* enable ts_comp pulse */
		cpts_ts_comp_enable(cpts);
	}
}

/* PTP clock operations */

static int cpts_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
{
	u64 adj;
	u32 diff, mult;
	int neg_adj = 0;
	unsigned long flags;
	struct cpts *cpts = container_of(ptp, struct cpts, info);
	u64 ns;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	mult = cpts->cc_mult;
	adj = mult;
	adj *= ppb;
	diff = div_u64(adj, 1000000000ULL);

	mutex_lock(&cpts->ptp_clk_mutex);

	spin_lock_irqsave(&cpts->lock, flags);
	if (cpts->ts_comp_enabled) {
		cpts_ts_comp_disable(cpts);
		/* if any, report existing pulse before adj */
		cpts_fifo_read(cpts, CPTS_EV_COMP);
		/* if any, report existing pulse before adj */
		cpts_report_ts_events(cpts, false);
	}

	timecounter_read(&cpts->tc);

	cpts->cc.mult = neg_adj ? mult - diff : mult + diff;
	/* get updated time with adj */
	ns = timecounter_read(&cpts->tc);
	cpts->ts_comp_next = cpts->tc.cycle_last;
	spin_unlock_irqrestore(&cpts->lock, flags);

	if (cpts->ts_comp_enabled)
		cpts->ts_comp_one_sec_cycs = cpts_cc_ns2cyc(cpts, NSEC_PER_SEC);
	cpts_ts_comp_settime(cpts, ns);

	mutex_unlock(&cpts->ptp_clk_mutex);

	return 0;
}

static int cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
	unsigned long flags;
	struct cpts *cpts = container_of(ptp, struct cpts, info);
	u64 ns;

	mutex_lock(&cpts->ptp_clk_mutex);

	spin_lock_irqsave(&cpts->lock, flags);
	if (cpts->ts_comp_enabled) {
		cpts_ts_comp_disable(cpts);
		/* if any, report existing pulse before adj */
		cpts_fifo_read(cpts, CPTS_EV_COMP);
		/* if any, report existing pulse before adj */
		cpts_report_ts_events(cpts, false);
	}

	timecounter_adjtime(&cpts->tc, delta);
	ns = timecounter_read(&cpts->tc);
	cpts->ts_comp_next = cpts->tc.cycle_last;
	spin_unlock_irqrestore(&cpts->lock, flags);

	cpts_ts_comp_settime(cpts, ns);

	mutex_unlock(&cpts->ptp_clk_mutex);

	return 0;
}

static int cpts_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
{
	u64 ns;
	unsigned long flags;
	struct cpts *cpts = container_of(ptp, struct cpts, info);

	spin_lock_irqsave(&cpts->lock, flags);
	ns = timecounter_read(&cpts->tc);
	spin_unlock_irqrestore(&cpts->lock, flags);

	*ts = ns_to_timespec64(ns);

	return 0;
}

static int cpts_ptp_settime(struct ptp_clock_info *ptp,
			    const struct timespec64 *ts)
{
	struct cpts *cpts = container_of(ptp, struct cpts, info);
	unsigned long flags;
	u64 ns;

	ns = timespec64_to_ns(ts);

	mutex_lock(&cpts->ptp_clk_mutex);

	spin_lock_irqsave(&cpts->lock, flags);
	if (cpts->ts_comp_enabled) {
		cpts_ts_comp_disable(cpts);
		/* if any, get existing pulse event before adj */
		cpts_fifo_read(cpts, CPTS_EV_COMP);
		/* if any, report existing pulse before adj */
		cpts_report_ts_events(cpts, false);
	}

	timecounter_init(&cpts->tc, &cpts->cc, ns);
	cpts->ts_comp_next = cpts->tc.cycle_last;
	spin_unlock_irqrestore(&cpts->lock, flags);

	cpts_ts_comp_settime(cpts, ns);

	mutex_unlock(&cpts->ptp_clk_mutex);

	return 0;
}

static int cpts_pps_enable(struct cpts *cpts, int on)
{
	struct timespec64 ts;
	unsigned long flags;
	u64 ns;

	if (cpts->ts_comp_enabled == on)
		return 0;

	mutex_lock(&cpts->ptp_clk_mutex);
	cpts->ts_comp_enabled = on;

	if (!on) {
		cpts_ts_comp_disable(cpts);
		mutex_unlock(&cpts->ptp_clk_mutex);
		return 0;
	}

	/* get current counter value */
	spin_lock_irqsave(&cpts->lock, flags);
	ns = timecounter_read(&cpts->tc);
	cpts->ts_comp_next = cpts->tc.cycle_last;
	spin_unlock_irqrestore(&cpts->lock, flags);

	ts = ns_to_timespec64(ns);
	/* align to next sec boundary and add one sec to avoid the situation
	 * when the current time is very close to the next second point and
	 * it might be possible that ts_comp_val will be configured to
	 * the time in the past.
	 */
	cpts_ts_comp_add_ns(cpts, 2 * NSEC_PER_SEC - ts.tv_nsec);

	/* enable ts_comp pulse */
	cpts_ts_comp_enable(cpts);

	if (cpts->ts_comp_enabled)
		/* poll for events faster - evry 200 ms */
		cpts->ov_check_period =
			msecs_to_jiffies(CPTS_EVENT_HWSTAMP_TIMEOUT);
	else if (!cpts->hw_ts_enable)
		cpts->ov_check_period = cpts->ov_check_period_slow;

	mod_delayed_work(system_wq, &cpts->overflow_work,
			 cpts->ov_check_period);

	mutex_unlock(&cpts->ptp_clk_mutex);

	return 0;
}

static int cpts_report_ts_events(struct cpts *cpts, bool pps_reload)
{
	struct list_head *this, *next;
	struct ptp_clock_event pevent;
	struct cpts_event *event;
	int reported = 0, ev;
	u64 ns;

	list_for_each_safe(this, next, &cpts->events) {
		event = list_entry(this, struct cpts_event, list);
		ev = event_type(event);
		if (ev == CPTS_EV_HW) {
			list_del_init(&event->list);
			list_add(&event->list, &cpts->pool);
			/* report the event */
			pevent.timestamp =
				timecounter_cyc2time(&cpts->tc, event->low);
			pevent.type = PTP_CLOCK_EXTTS;
			pevent.index = cpts_event_port(event) - 1;
			ptp_clock_event(cpts->clock, &pevent);
			++reported;
			continue;
		}

		if (event_type(event) == CPTS_EV_COMP) {
			list_del_init(&event->list);
			list_add(&event->list, &cpts->pool);
			if (cpts->ts_comp_next != event->low) {
				pr_err("cpts ts_comp mismatch: %08x %08x\n",
				       cpts->ts_comp_next, event->low);
				continue;
			} else
				pr_debug("cpts comp ev tstamp: %u\n",
					 event->low);

			/* report the event */
			ns = timecounter_cyc2time(&cpts->tc, event->low);
			pevent.type = PTP_CLOCK_PPSUSR;
			pevent.pps_times.ts_real = ns_to_timespec64(ns);
			ptp_clock_event(cpts->clock, &pevent);

			if (pps_reload) {
				/* reload: add ns to ts_comp */
				cpts_ts_comp_add_ns(cpts, NSEC_PER_SEC);
				/* enable ts_comp pulse with new val */
				cpts_ts_comp_enable(cpts);
			}
			++reported;
			continue;
		}
	}
	return reported;
}

/* HW TS */
static int cpts_extts_enable(struct cpts *cpts, u32 index, int on)
{
	unsigned long flags;
	u32 v;

	if (index >= cpts->info.n_ext_ts)
		return -ENXIO;

	if (((cpts->hw_ts_enable & BIT(index)) >> index) == on)
		return 0;

	mutex_lock(&cpts->ptp_clk_mutex);

	spin_lock_irqsave(&cpts->lock, flags);

	v = cpts_read32(cpts, control);
	if (on) {
		v |= BIT(8 + index);
		cpts->hw_ts_enable |= BIT(index);
	} else {
		v &= ~BIT(8 + index);
		cpts->hw_ts_enable &= ~BIT(index);
	}
	cpts_write32(cpts, v, control);

	spin_unlock_irqrestore(&cpts->lock, flags);

	if (cpts->hw_ts_enable)
		/* poll for events faster - evry 200 ms */
		cpts->ov_check_period =
			msecs_to_jiffies(CPTS_EVENT_HWSTAMP_TIMEOUT);
	else if (!cpts->ts_comp_enabled)
		cpts->ov_check_period = cpts->ov_check_period_slow;

	mod_delayed_work(system_wq, &cpts->overflow_work,
			 cpts->ov_check_period);
	mutex_unlock(&cpts->ptp_clk_mutex);
	return 0;
}

static int cpts_ptp_enable(struct ptp_clock_info *ptp,
			   struct ptp_clock_request *rq, int on)
{
	struct cpts *cpts = container_of(ptp, struct cpts, info);

	switch (rq->type) {
	case PTP_CLK_REQ_EXTTS:
		return cpts_extts_enable(cpts, rq->extts.index, on);
	case PTP_CLK_REQ_PPS:
		return cpts_pps_enable(cpts, on);
	default:
		break;
	}

	return -EOPNOTSUPP;
}

static struct ptp_clock_info cpts_info = {
	.owner		= THIS_MODULE,
	.name		= "CTPS timer",
	.max_adj	= 1000000,
	.n_ext_ts	= 0,
	.n_pins		= 0,
	.pps		= 0,
	.adjfreq	= cpts_ptp_adjfreq,
	.adjtime	= cpts_ptp_adjtime,
	.gettime64	= cpts_ptp_gettime,
	.settime64	= cpts_ptp_settime,
	.enable		= cpts_ptp_enable,
};

static void cpts_overflow_check(struct work_struct *work)
{
	struct cpts *cpts = container_of(work, struct cpts, overflow_work.work);
	struct timespec64 ts;
	unsigned long flags;

	mutex_lock(&cpts->ptp_clk_mutex);
	spin_lock_irqsave(&cpts->lock, flags);
	ts = ns_to_timespec64(timecounter_read(&cpts->tc));
	spin_unlock_irqrestore(&cpts->lock, flags);

	if (cpts->hw_ts_enable || cpts->ts_comp_enabled)
		cpts_report_ts_events(cpts, true);
	mutex_unlock(&cpts->ptp_clk_mutex);

	pr_debug("cpts overflow check at %lld.%09lu\n", ts.tv_sec, ts.tv_nsec);
	schedule_delayed_work(&cpts->overflow_work, cpts->ov_check_period);
}

static int cpts_match(struct sk_buff *skb, unsigned int ptp_class,
		      u16 ts_seqid, u8 ts_msgtype)
{
	u16 *seqid;
	unsigned int offset = 0;
	u8 *msgtype, *data = skb->data;

	if (ptp_class & PTP_CLASS_VLAN)
		offset += VLAN_HLEN;

	switch (ptp_class & PTP_CLASS_PMASK) {
	case PTP_CLASS_IPV4:
		offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
		break;
	case PTP_CLASS_IPV6:
		offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
		break;
	case PTP_CLASS_L2:
		offset += ETH_HLEN;
		break;
	default:
		return 0;
	}

	if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
		return 0;

	if (unlikely(ptp_class & PTP_CLASS_V1))
		msgtype = data + offset + OFF_PTP_CONTROL;
	else
		msgtype = data + offset;

	seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);

	return (ts_msgtype == (*msgtype & 0xf) && ts_seqid == ntohs(*seqid));
}

static u64 cpts_find_ts(struct cpts *cpts, struct sk_buff *skb, int ev_type)
{
	u64 ns = 0;
	struct cpts_event *event;
	struct list_head *this, *next;
	unsigned int class = ptp_classify_raw(skb);
	unsigned long flags;
	u16 seqid;
	u8 mtype;

	if (class == PTP_CLASS_NONE)
		return 0;

	spin_lock_irqsave(&cpts->lock, flags);
	cpts_fifo_read(cpts, CPTS_EV_PUSH);
	list_for_each_safe(this, next, &cpts->events) {
		event = list_entry(this, struct cpts_event, list);
		if (event_expired(event)) {
			list_del_init(&event->list);
			list_add(&event->list, &cpts->pool);
			continue;
		}
		mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK;
		seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK;
		if (ev_type == event_type(event) &&
		    cpts_match(skb, class, seqid, mtype)) {
			ns = timecounter_cyc2time(&cpts->tc, event->low);
			list_del_init(&event->list);
			list_add(&event->list, &cpts->pool);
			break;
		}
	}
	spin_unlock_irqrestore(&cpts->lock, flags);

	return ns;
}

int cpts_rx_timestamp(struct cpts *cpts, struct sk_buff *skb)
{
	u64 ns;
	struct skb_shared_hwtstamps *ssh;

	if (!cpts->rx_enable)
		return -EPERM;
	ns = cpts_find_ts(cpts, skb, CPTS_EV_RX);
	if (!ns)
		return -ENOENT;
	ssh = skb_hwtstamps(skb);
	memset(ssh, 0, sizeof(*ssh));
	ssh->hwtstamp = ns_to_ktime(ns);

	return 0;
}
EXPORT_SYMBOL_GPL(cpts_rx_timestamp);

int cpts_tx_timestamp(struct cpts *cpts, struct sk_buff *skb)
{
	u64 ns;
	struct skb_shared_hwtstamps ssh;

	if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
		return -EPERM;
	ns = cpts_find_ts(cpts, skb, CPTS_EV_TX);
	if (!ns)
		return -ENOENT;
	memset(&ssh, 0, sizeof(ssh));
	ssh.hwtstamp = ns_to_ktime(ns);
	skb_tstamp_tx(skb, &ssh);

	return 0;
}
EXPORT_SYMBOL_GPL(cpts_tx_timestamp);

int cpts_register(struct cpts *cpts)
{
	int err, i;
	u32 control;

	INIT_LIST_HEAD(&cpts->events);
	INIT_LIST_HEAD(&cpts->pool);
	for (i = 0; i < CPTS_MAX_EVENTS; i++)
		list_add(&cpts->pool_data[i].list, &cpts->pool);

	clk_enable(cpts->refclk);

	control = CPTS_EN;
	if (cpts->caps & CPTS_CAP_TS_COMP_EN) {
		if (cpts->caps & CPTS_CAP_TS_COMP_POL_LOW_SEL)
			control &= ~TS_COMP_POL;
		else
			control |= TS_COMP_POL;
	}
	cpts_write32(cpts, control, control);
	cpts_write32(cpts, TS_PEND_EN, int_enable);

	cpts->cc.mult = cpts->cc_mult;
	timecounter_init(&cpts->tc, &cpts->cc, ktime_to_ns(ktime_get_real()));

	cpts->clock = ptp_clock_register(&cpts->info, cpts->dev);
	if (IS_ERR(cpts->clock)) {
		err = PTR_ERR(cpts->clock);
		cpts->clock = NULL;
		goto err_ptp;
	}
	cpts->phc_index = ptp_clock_index(cpts->clock);

	schedule_delayed_work(&cpts->overflow_work, cpts->ov_check_period);
	return 0;

err_ptp:
	clk_enable(cpts->refclk);
	return err;
}
EXPORT_SYMBOL_GPL(cpts_register);

void cpts_unregister(struct cpts *cpts)
{
	if (WARN_ON(!cpts->clock))
		return;

	cancel_delayed_work_sync(&cpts->overflow_work);

	ptp_clock_unregister(cpts->clock);
	cpts->clock = NULL;

	cpts_write32(cpts, 0, int_enable);
	cpts_write32(cpts, 0, control);

	clk_disable(cpts->refclk);
}
EXPORT_SYMBOL_GPL(cpts_unregister);

static void cpts_calc_mult_shift(struct cpts *cpts)
{
	u64 frac, maxsec, ns;
	u32 freq, mult, shift;

	freq = clk_get_rate(cpts->refclk);

	/* Calc the maximum number of seconds which we can run before
	 * wrapping around.
	 */
	maxsec = cpts->cc.mask;
	do_div(maxsec, freq);
	if (maxsec > 600 && cpts->cc.mask > UINT_MAX)
		maxsec = 600;

	/* Calc overflow check period (maxsec / 2) */
	cpts->ov_check_period = (HZ * maxsec) / 2;
	cpts->ov_check_period_slow = cpts->ov_check_period;

	dev_info(cpts->dev, "cpts: overflow check period %lu\n",
		 cpts->ov_check_period);

	if (cpts->cc_mult || cpts->cc.shift)
		return;

	clocks_calc_mult_shift(&mult, &shift, freq, NSEC_PER_SEC, maxsec);

	cpts->cc_mult = mult;
	cpts->cc.mult = mult;
	cpts->cc.shift = shift;

	frac = 0;
	ns = cyclecounter_cyc2ns(&cpts->cc, freq, cpts->cc.mask, &frac);

	dev_info(cpts->dev,
		 "CPTS: ref_clk_freq:%u calc_mult:%u calc_shift:%u error:%lld nsec/sec\n",
		 freq, cpts->cc_mult, cpts->cc.shift, (ns - NSEC_PER_SEC));
}

static int cpts_of_parse(struct cpts *cpts, struct device_node *node)
{
	int ret = -EINVAL;
	u32 prop;

	cpts->cc_mult = 0;
	if (!of_property_read_u32(node, "cpts_clock_mult", &prop))
		cpts->cc_mult = prop;

	cpts->cc.shift = 0;
	if (!of_property_read_u32(node, "cpts_clock_shift", &prop))
		cpts->cc.shift = prop;

	if ((cpts->cc_mult && !cpts->cc.shift) ||
	    (!cpts->cc_mult && cpts->cc.shift))
		goto of_error;

	if (!of_property_read_u32(node, "cpts-rftclk-sel", &prop)) {
		if (prop & ~CPTS_RFTCLK_SEL_MASK) {
			dev_err(cpts->dev, "cpts: invalid cpts_rftclk_sel.\n");
			goto of_error;
		}
		cpts->caps |= CPTS_CAP_RFTCLK_SEL;
		cpts->rftclk_sel = prop & CPTS_RFTCLK_SEL_MASK;
	}

	if (of_property_read_bool(node, "cpts-ts-comp-length")) {
		cpts->caps |= CPTS_CAP_TS_COMP_EN;
		cpts->ts_comp_length = CPTS_TS_COMP_PULSE_LENGTH_DEF;
	}

	if (cpts->caps & CPTS_CAP_TS_COMP_EN) {
		ret = of_property_read_u32(node, "cpts-ts-comp-length", &prop);
		if (!ret)
			cpts->ts_comp_length = prop;

		if (of_property_read_bool(node, "cpts-ts-comp-polarity-low"))
			cpts->caps |= CPTS_CAP_TS_COMP_POL_LOW_SEL;
	}

	if (!of_property_read_u32(node, "cpts-ext-ts-inputs", &prop))
		cpts->ext_ts_inputs = prop;

	return 0;

of_error:
	dev_err(cpts->dev, "CPTS: Missing property in the DT.\n");
	return ret;
}

struct cpts *cpts_create(struct device *dev, void __iomem *regs,
			 struct device_node *node)
{
	struct cpts *cpts;
	int ret;

	if (!regs || !dev)
		return ERR_PTR(-EINVAL);

	cpts = devm_kzalloc(dev, sizeof(*cpts), GFP_KERNEL);
	if (!cpts)
		return ERR_PTR(-ENOMEM);

	cpts->dev = dev;
	cpts->reg = (struct cpsw_cpts __iomem *)regs;
	spin_lock_init(&cpts->lock);
	mutex_init(&cpts->ptp_clk_mutex);
	INIT_DELAYED_WORK(&cpts->overflow_work, cpts_overflow_check);

	ret = cpts_of_parse(cpts, node);
	if (ret)
		return ERR_PTR(ret);

	cpts->refclk = devm_clk_get(dev, "cpts");
	if (IS_ERR(cpts->refclk)) {
		dev_err(dev, "Failed to get cpts refclk\n");
		return ERR_PTR(PTR_ERR(cpts->refclk));
	}

	clk_prepare(cpts->refclk);

	if (cpts->caps & CPTS_CAP_RFTCLK_SEL)
		cpts_write32(cpts, cpts->rftclk_sel, rftclk_sel);

	cpts->cc.read = cpts_systim_read;
	cpts->cc.mask = CLOCKSOURCE_MASK(32);
	cpts->info = cpts_info;

	if (cpts->ext_ts_inputs)
		cpts->info.n_ext_ts = cpts->ext_ts_inputs;

	cpts_calc_mult_shift(cpts);

	if (cpts->caps & CPTS_CAP_TS_COMP_EN) {
		cpts->info.pps = 1;
		cpts->ts_comp_one_sec_cycs = clk_get_rate(cpts->refclk);
	}

	return cpts;
}
EXPORT_SYMBOL_GPL(cpts_create);

void cpts_release(struct cpts *cpts)
{
	if (!cpts)
		return;

	if (WARN_ON(!cpts->refclk))
		return;

	clk_unprepare(cpts->refclk);
}
EXPORT_SYMBOL_GPL(cpts_release);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("TI CPTS ALE driver");