netup_unidvb_spi.c
6.35 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*
* netup_unidvb_spi.c
*
* Internal SPI driver for NetUP Universal Dual DVB-CI
*
* Copyright (C) 2014 NetUP Inc.
* Copyright (C) 2014 Sergey Kozlov <serjk@netup.ru>
* Copyright (C) 2014 Abylay Ospan <aospan@netup.ru>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "netup_unidvb.h"
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>
#include <linux/mtd/partitions.h>
#include <mtd/mtd-abi.h>
#define NETUP_SPI_CTRL_IRQ 0x1000
#define NETUP_SPI_CTRL_IMASK 0x2000
#define NETUP_SPI_CTRL_START 0x8000
#define NETUP_SPI_CTRL_LAST_CS 0x4000
#define NETUP_SPI_TIMEOUT 6000
enum netup_spi_state {
SPI_STATE_START,
SPI_STATE_DONE,
};
struct netup_spi_regs {
__u8 data[1024];
__le16 control_stat;
__le16 clock_divider;
} __packed __aligned(1);
struct netup_spi {
struct device *dev;
struct spi_master *master;
struct netup_spi_regs __iomem *regs;
u8 __iomem *mmio;
spinlock_t lock;
wait_queue_head_t waitq;
enum netup_spi_state state;
};
static char netup_spi_name[64] = "fpga";
static struct mtd_partition netup_spi_flash_partitions = {
.name = netup_spi_name,
.size = 0x1000000, /* 16MB */
.offset = 0,
.mask_flags = MTD_CAP_ROM
};
static struct flash_platform_data spi_flash_data = {
.name = "netup0_m25p128",
.parts = &netup_spi_flash_partitions,
.nr_parts = 1,
};
static struct spi_board_info netup_spi_board = {
.modalias = "m25p128",
.max_speed_hz = 11000000,
.chip_select = 0,
.mode = SPI_MODE_0,
.platform_data = &spi_flash_data,
};
irqreturn_t netup_spi_interrupt(struct netup_spi *spi)
{
u16 reg;
unsigned long flags;
if (!spi)
return IRQ_NONE;
spin_lock_irqsave(&spi->lock, flags);
reg = readw(&spi->regs->control_stat);
if (!(reg & NETUP_SPI_CTRL_IRQ)) {
spin_unlock_irqrestore(&spi->lock, flags);
dev_dbg(&spi->master->dev,
"%s(): not mine interrupt\n", __func__);
return IRQ_NONE;
}
writew(reg | NETUP_SPI_CTRL_IRQ, &spi->regs->control_stat);
reg = readw(&spi->regs->control_stat);
writew(reg & ~NETUP_SPI_CTRL_IMASK, &spi->regs->control_stat);
spi->state = SPI_STATE_DONE;
wake_up(&spi->waitq);
spin_unlock_irqrestore(&spi->lock, flags);
dev_dbg(&spi->master->dev,
"%s(): SPI interrupt handled\n", __func__);
return IRQ_HANDLED;
}
static int netup_spi_transfer(struct spi_master *master,
struct spi_message *msg)
{
struct netup_spi *spi = spi_master_get_devdata(master);
struct spi_transfer *t;
int result = 0;
u32 tr_size;
/* reset CS */
writew(NETUP_SPI_CTRL_LAST_CS, &spi->regs->control_stat);
writew(0, &spi->regs->control_stat);
list_for_each_entry(t, &msg->transfers, transfer_list) {
tr_size = t->len;
while (tr_size) {
u32 frag_offset = t->len - tr_size;
u32 frag_size = (tr_size > sizeof(spi->regs->data)) ?
sizeof(spi->regs->data) : tr_size;
int frag_last = 0;
if (list_is_last(&t->transfer_list,
&msg->transfers) &&
frag_offset + frag_size == t->len) {
frag_last = 1;
}
if (t->tx_buf) {
memcpy_toio(spi->regs->data,
t->tx_buf + frag_offset,
frag_size);
} else {
memset_io(spi->regs->data,
0, frag_size);
}
spi->state = SPI_STATE_START;
writew((frag_size & 0x3ff) |
NETUP_SPI_CTRL_IMASK |
NETUP_SPI_CTRL_START |
(frag_last ? NETUP_SPI_CTRL_LAST_CS : 0),
&spi->regs->control_stat);
dev_dbg(&spi->master->dev,
"%s(): control_stat 0x%04x\n",
__func__, readw(&spi->regs->control_stat));
wait_event_timeout(spi->waitq,
spi->state != SPI_STATE_START,
msecs_to_jiffies(NETUP_SPI_TIMEOUT));
if (spi->state == SPI_STATE_DONE) {
if (t->rx_buf) {
memcpy_fromio(t->rx_buf + frag_offset,
spi->regs->data, frag_size);
}
} else {
if (spi->state == SPI_STATE_START) {
dev_dbg(&spi->master->dev,
"%s(): transfer timeout\n",
__func__);
} else {
dev_dbg(&spi->master->dev,
"%s(): invalid state %d\n",
__func__, spi->state);
}
result = -EIO;
goto done;
}
tr_size -= frag_size;
msg->actual_length += frag_size;
}
}
done:
msg->status = result;
spi_finalize_current_message(master);
return result;
}
static int netup_spi_setup(struct spi_device *spi)
{
return 0;
}
int netup_spi_init(struct netup_unidvb_dev *ndev)
{
struct spi_master *master;
struct netup_spi *nspi;
master = spi_alloc_master(&ndev->pci_dev->dev,
sizeof(struct netup_spi));
if (!master) {
dev_err(&ndev->pci_dev->dev,
"%s(): unable to alloc SPI master\n", __func__);
return -EINVAL;
}
nspi = spi_master_get_devdata(master);
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
master->bus_num = -1;
master->num_chipselect = 1;
master->transfer_one_message = netup_spi_transfer;
master->setup = netup_spi_setup;
spin_lock_init(&nspi->lock);
init_waitqueue_head(&nspi->waitq);
nspi->master = master;
nspi->regs = (struct netup_spi_regs __iomem *)(ndev->bmmio0 + 0x4000);
writew(2, &nspi->regs->clock_divider);
writew(NETUP_UNIDVB_IRQ_SPI, ndev->bmmio0 + REG_IMASK_SET);
ndev->spi = nspi;
if (spi_register_master(master)) {
ndev->spi = NULL;
dev_err(&ndev->pci_dev->dev,
"%s(): unable to register SPI bus\n", __func__);
return -EINVAL;
}
snprintf(netup_spi_name,
sizeof(netup_spi_name),
"fpga_%02x:%02x.%01x",
ndev->pci_bus,
ndev->pci_slot,
ndev->pci_func);
if (!spi_new_device(master, &netup_spi_board)) {
ndev->spi = NULL;
dev_err(&ndev->pci_dev->dev,
"%s(): unable to create SPI device\n", __func__);
return -EINVAL;
}
dev_dbg(&ndev->pci_dev->dev, "%s(): SPI init OK\n", __func__);
return 0;
}
void netup_spi_release(struct netup_unidvb_dev *ndev)
{
u16 reg;
unsigned long flags;
struct netup_spi *spi = ndev->spi;
if (!spi)
return;
spin_lock_irqsave(&spi->lock, flags);
reg = readw(&spi->regs->control_stat);
writew(reg | NETUP_SPI_CTRL_IRQ, &spi->regs->control_stat);
reg = readw(&spi->regs->control_stat);
writew(reg & ~NETUP_SPI_CTRL_IMASK, &spi->regs->control_stat);
spin_unlock_irqrestore(&spi->lock, flags);
spi_unregister_master(spi->master);
ndev->spi = NULL;
}