sha.c 15.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
/*
 * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 and
 * only version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/device.h>
#include <linux/interrupt.h>
#include <crypto/internal/hash.h>

#include "common.h"
#include "core.h"
#include "sha.h"

/* crypto hw padding constant for first operation */
#define SHA_PADDING		64
#define SHA_PADDING_MASK	(SHA_PADDING - 1)

static LIST_HEAD(ahash_algs);

static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
};

static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
};

static void qce_ahash_done(void *data)
{
	struct crypto_async_request *async_req = data;
	struct ahash_request *req = ahash_request_cast(async_req);
	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
	struct qce_device *qce = tmpl->qce;
	struct qce_result_dump *result = qce->dma.result_buf;
	unsigned int digestsize = crypto_ahash_digestsize(ahash);
	int error;
	u32 status;

	error = qce_dma_terminate_all(&qce->dma);
	if (error)
		dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);

	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);

	memcpy(rctx->digest, result->auth_iv, digestsize);
	if (req->result)
		memcpy(req->result, result->auth_iv, digestsize);

	rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
	rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);

	error = qce_check_status(qce, &status);
	if (error < 0)
		dev_dbg(qce->dev, "ahash operation error (%x)\n", status);

	req->src = rctx->src_orig;
	req->nbytes = rctx->nbytes_orig;
	rctx->last_blk = false;
	rctx->first_blk = false;

	qce->async_req_done(tmpl->qce, error);
}

static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
{
	struct ahash_request *req = ahash_request_cast(async_req);
	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
	struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
	struct qce_device *qce = tmpl->qce;
	unsigned long flags = rctx->flags;
	int ret;

	if (IS_SHA_HMAC(flags)) {
		rctx->authkey = ctx->authkey;
		rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
	} else if (IS_CMAC(flags)) {
		rctx->authkey = ctx->authkey;
		rctx->authklen = AES_KEYSIZE_128;
	}

	rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
	ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
	if (ret < 0)
		return ret;

	sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);

	ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
	if (ret < 0)
		goto error_unmap_src;

	ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
			       &rctx->result_sg, 1, qce_ahash_done, async_req);
	if (ret)
		goto error_unmap_dst;

	qce_dma_issue_pending(&qce->dma);

	ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
	if (ret)
		goto error_terminate;

	return 0;

error_terminate:
	qce_dma_terminate_all(&qce->dma);
error_unmap_dst:
	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
error_unmap_src:
	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
	return ret;
}

static int qce_ahash_init(struct ahash_request *req)
{
	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
	const u32 *std_iv = tmpl->std_iv;

	memset(rctx, 0, sizeof(*rctx));
	rctx->first_blk = true;
	rctx->last_blk = false;
	rctx->flags = tmpl->alg_flags;
	memcpy(rctx->digest, std_iv, sizeof(rctx->digest));

	return 0;
}

static int qce_ahash_export(struct ahash_request *req, void *out)
{
	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
	unsigned long flags = rctx->flags;
	unsigned int digestsize = crypto_ahash_digestsize(ahash);
	unsigned int blocksize =
			crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));

	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
		struct sha1_state *out_state = out;

		out_state->count = rctx->count;
		qce_cpu_to_be32p_array((__be32 *)out_state->state,
				       rctx->digest, digestsize);
		memcpy(out_state->buffer, rctx->buf, blocksize);
	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
		struct sha256_state *out_state = out;

		out_state->count = rctx->count;
		qce_cpu_to_be32p_array((__be32 *)out_state->state,
				       rctx->digest, digestsize);
		memcpy(out_state->buf, rctx->buf, blocksize);
	} else {
		return -EINVAL;
	}

	return 0;
}

static int qce_import_common(struct ahash_request *req, u64 in_count,
			     const u32 *state, const u8 *buffer, bool hmac)
{
	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
	unsigned int digestsize = crypto_ahash_digestsize(ahash);
	unsigned int blocksize;
	u64 count = in_count;

	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
	rctx->count = in_count;
	memcpy(rctx->buf, buffer, blocksize);

	if (in_count <= blocksize) {
		rctx->first_blk = 1;
	} else {
		rctx->first_blk = 0;
		/*
		 * For HMAC, there is a hardware padding done when first block
		 * is set. Therefore the byte_count must be incremened by 64
		 * after the first block operation.
		 */
		if (hmac)
			count += SHA_PADDING;
	}

	rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
	rctx->byte_count[1] = (__force __be32)(count >> 32);
	qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
			       digestsize);
	rctx->buflen = (unsigned int)(in_count & (blocksize - 1));

	return 0;
}

static int qce_ahash_import(struct ahash_request *req, const void *in)
{
	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
	unsigned long flags = rctx->flags;
	bool hmac = IS_SHA_HMAC(flags);
	int ret = -EINVAL;

	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
		const struct sha1_state *state = in;

		ret = qce_import_common(req, state->count, state->state,
					state->buffer, hmac);
	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
		const struct sha256_state *state = in;

		ret = qce_import_common(req, state->count, state->state,
					state->buf, hmac);
	}

	return ret;
}

static int qce_ahash_update(struct ahash_request *req)
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
	struct qce_device *qce = tmpl->qce;
	struct scatterlist *sg_last, *sg;
	unsigned int total, len;
	unsigned int hash_later;
	unsigned int nbytes;
	unsigned int blocksize;

	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
	rctx->count += req->nbytes;

	/* check for buffer from previous updates and append it */
	total = req->nbytes + rctx->buflen;

	if (total <= blocksize) {
		scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
					 0, req->nbytes, 0);
		rctx->buflen += req->nbytes;
		return 0;
	}

	/* save the original req structure fields */
	rctx->src_orig = req->src;
	rctx->nbytes_orig = req->nbytes;

	/*
	 * if we have data from previous update copy them on buffer. The old
	 * data will be combined with current request bytes.
	 */
	if (rctx->buflen)
		memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);

	/* calculate how many bytes will be hashed later */
	hash_later = total % blocksize;
	if (hash_later) {
		unsigned int src_offset = req->nbytes - hash_later;
		scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
					 hash_later, 0);
	}

	/* here nbytes is multiple of blocksize */
	nbytes = total - hash_later;

	len = rctx->buflen;
	sg = sg_last = req->src;

	while (len < nbytes && sg) {
		if (len + sg_dma_len(sg) > nbytes)
			break;
		len += sg_dma_len(sg);
		sg_last = sg;
		sg = sg_next(sg);
	}

	if (!sg_last)
		return -EINVAL;

	sg_mark_end(sg_last);

	if (rctx->buflen) {
		sg_init_table(rctx->sg, 2);
		sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
		sg_chain(rctx->sg, 2, req->src);
		req->src = rctx->sg;
	}

	req->nbytes = nbytes;
	rctx->buflen = hash_later;

	return qce->async_req_enqueue(tmpl->qce, &req->base);
}

static int qce_ahash_final(struct ahash_request *req)
{
	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
	struct qce_device *qce = tmpl->qce;

	if (!rctx->buflen)
		return 0;

	rctx->last_blk = true;

	rctx->src_orig = req->src;
	rctx->nbytes_orig = req->nbytes;

	memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
	sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);

	req->src = rctx->sg;
	req->nbytes = rctx->buflen;

	return qce->async_req_enqueue(tmpl->qce, &req->base);
}

static int qce_ahash_digest(struct ahash_request *req)
{
	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
	struct qce_device *qce = tmpl->qce;
	int ret;

	ret = qce_ahash_init(req);
	if (ret)
		return ret;

	rctx->src_orig = req->src;
	rctx->nbytes_orig = req->nbytes;
	rctx->first_blk = true;
	rctx->last_blk = true;

	return qce->async_req_enqueue(tmpl->qce, &req->base);
}

struct qce_ahash_result {
	struct completion completion;
	int error;
};

static void qce_digest_complete(struct crypto_async_request *req, int error)
{
	struct qce_ahash_result *result = req->data;

	if (error == -EINPROGRESS)
		return;

	result->error = error;
	complete(&result->completion);
}

static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
				 unsigned int keylen)
{
	unsigned int digestsize = crypto_ahash_digestsize(tfm);
	struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
	struct qce_ahash_result result;
	struct ahash_request *req;
	struct scatterlist sg;
	unsigned int blocksize;
	struct crypto_ahash *ahash_tfm;
	u8 *buf;
	int ret;
	const char *alg_name;

	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
	memset(ctx->authkey, 0, sizeof(ctx->authkey));

	if (keylen <= blocksize) {
		memcpy(ctx->authkey, key, keylen);
		return 0;
	}

	if (digestsize == SHA1_DIGEST_SIZE)
		alg_name = "sha1-qce";
	else if (digestsize == SHA256_DIGEST_SIZE)
		alg_name = "sha256-qce";
	else
		return -EINVAL;

	ahash_tfm = crypto_alloc_ahash(alg_name, CRYPTO_ALG_TYPE_AHASH,
				       CRYPTO_ALG_TYPE_AHASH_MASK);
	if (IS_ERR(ahash_tfm))
		return PTR_ERR(ahash_tfm);

	req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
	if (!req) {
		ret = -ENOMEM;
		goto err_free_ahash;
	}

	init_completion(&result.completion);
	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
				   qce_digest_complete, &result);
	crypto_ahash_clear_flags(ahash_tfm, ~0);

	buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
	if (!buf) {
		ret = -ENOMEM;
		goto err_free_req;
	}

	memcpy(buf, key, keylen);
	sg_init_one(&sg, buf, keylen);
	ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);

	ret = crypto_ahash_digest(req);
	if (ret == -EINPROGRESS || ret == -EBUSY) {
		ret = wait_for_completion_interruptible(&result.completion);
		if (!ret)
			ret = result.error;
	}

	if (ret)
		crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);

	kfree(buf);
err_free_req:
	ahash_request_free(req);
err_free_ahash:
	crypto_free_ahash(ahash_tfm);
	return ret;
}

static int qce_ahash_cra_init(struct crypto_tfm *tfm)
{
	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
	struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);

	crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
	memset(ctx, 0, sizeof(*ctx));
	return 0;
}

struct qce_ahash_def {
	unsigned long flags;
	const char *name;
	const char *drv_name;
	unsigned int digestsize;
	unsigned int blocksize;
	unsigned int statesize;
	const u32 *std_iv;
};

static const struct qce_ahash_def ahash_def[] = {
	{
		.flags		= QCE_HASH_SHA1,
		.name		= "sha1",
		.drv_name	= "sha1-qce",
		.digestsize	= SHA1_DIGEST_SIZE,
		.blocksize	= SHA1_BLOCK_SIZE,
		.statesize	= sizeof(struct sha1_state),
		.std_iv		= std_iv_sha1,
	},
	{
		.flags		= QCE_HASH_SHA256,
		.name		= "sha256",
		.drv_name	= "sha256-qce",
		.digestsize	= SHA256_DIGEST_SIZE,
		.blocksize	= SHA256_BLOCK_SIZE,
		.statesize	= sizeof(struct sha256_state),
		.std_iv		= std_iv_sha256,
	},
	{
		.flags		= QCE_HASH_SHA1_HMAC,
		.name		= "hmac(sha1)",
		.drv_name	= "hmac-sha1-qce",
		.digestsize	= SHA1_DIGEST_SIZE,
		.blocksize	= SHA1_BLOCK_SIZE,
		.statesize	= sizeof(struct sha1_state),
		.std_iv		= std_iv_sha1,
	},
	{
		.flags		= QCE_HASH_SHA256_HMAC,
		.name		= "hmac(sha256)",
		.drv_name	= "hmac-sha256-qce",
		.digestsize	= SHA256_DIGEST_SIZE,
		.blocksize	= SHA256_BLOCK_SIZE,
		.statesize	= sizeof(struct sha256_state),
		.std_iv		= std_iv_sha256,
	},
};

static int qce_ahash_register_one(const struct qce_ahash_def *def,
				  struct qce_device *qce)
{
	struct qce_alg_template *tmpl;
	struct ahash_alg *alg;
	struct crypto_alg *base;
	int ret;

	tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
	if (!tmpl)
		return -ENOMEM;

	tmpl->std_iv = def->std_iv;

	alg = &tmpl->alg.ahash;
	alg->init = qce_ahash_init;
	alg->update = qce_ahash_update;
	alg->final = qce_ahash_final;
	alg->digest = qce_ahash_digest;
	alg->export = qce_ahash_export;
	alg->import = qce_ahash_import;
	if (IS_SHA_HMAC(def->flags))
		alg->setkey = qce_ahash_hmac_setkey;
	alg->halg.digestsize = def->digestsize;
	alg->halg.statesize = def->statesize;

	base = &alg->halg.base;
	base->cra_blocksize = def->blocksize;
	base->cra_priority = 300;
	base->cra_flags = CRYPTO_ALG_ASYNC;
	base->cra_ctxsize = sizeof(struct qce_sha_ctx);
	base->cra_alignmask = 0;
	base->cra_module = THIS_MODULE;
	base->cra_init = qce_ahash_cra_init;
	INIT_LIST_HEAD(&base->cra_list);

	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
		 def->drv_name);

	INIT_LIST_HEAD(&tmpl->entry);
	tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
	tmpl->alg_flags = def->flags;
	tmpl->qce = qce;

	ret = crypto_register_ahash(alg);
	if (ret) {
		kfree(tmpl);
		dev_err(qce->dev, "%s registration failed\n", base->cra_name);
		return ret;
	}

	list_add_tail(&tmpl->entry, &ahash_algs);
	dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
	return 0;
}

static void qce_ahash_unregister(struct qce_device *qce)
{
	struct qce_alg_template *tmpl, *n;

	list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
		crypto_unregister_ahash(&tmpl->alg.ahash);
		list_del(&tmpl->entry);
		kfree(tmpl);
	}
}

static int qce_ahash_register(struct qce_device *qce)
{
	int ret, i;

	for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
		ret = qce_ahash_register_one(&ahash_def[i], qce);
		if (ret)
			goto err;
	}

	return 0;
err:
	qce_ahash_unregister(qce);
	return ret;
}

const struct qce_algo_ops ahash_ops = {
	.type = CRYPTO_ALG_TYPE_AHASH,
	.register_algs = qce_ahash_register,
	.unregister_algs = qce_ahash_unregister,
	.async_req_handle = qce_ahash_async_req_handle,
};