eeprom.c 21.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
/*!*****************************************************************************
*!
*!  Implements an interface for i2c compatible eeproms to run under Linux.
*!  Supports 2k, 8k(?) and 16k. Uses adaptive timing adjustments by
*!  Johan.Adolfsson@axis.com
*!
*!  Probing results:
*!    8k or not is detected (the assumes 2k or 16k)
*!    2k or 16k detected using test reads and writes.
*!
*!------------------------------------------------------------------------
*!  HISTORY
*!
*!  DATE          NAME              CHANGES
*!  ----          ----              -------
*!  Aug  28 1999  Edgar Iglesias    Initial Version
*!  Aug  31 1999  Edgar Iglesias    Allow simultaneous users.
*!  Sep  03 1999  Edgar Iglesias    Updated probe.
*!  Sep  03 1999  Edgar Iglesias    Added bail-out stuff if we get interrupted
*!                                  in the spin-lock.
*!
*!        (c) 1999 Axis Communications AB, Lund, Sweden
*!*****************************************************************************/

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/wait.h>
#include <asm/uaccess.h>
#include "i2c.h"

#define D(x)

/* If we should use adaptive timing or not: */
/* #define EEPROM_ADAPTIVE_TIMING */

#define EEPROM_MAJOR_NR 122  /* use a LOCAL/EXPERIMENTAL major for now */
#define EEPROM_MINOR_NR 0

/* Empirical sane initial value of the delay, the value will be adapted to
 * what the chip needs when using EEPROM_ADAPTIVE_TIMING.
 */
#define INITIAL_WRITEDELAY_US 4000
#define MAX_WRITEDELAY_US 10000 /* 10 ms according to spec for 2KB EEPROM */

/* This one defines how many times to try when eeprom fails. */
#define EEPROM_RETRIES 10

#define EEPROM_2KB (2 * 1024)
/*#define EEPROM_4KB (4 * 1024)*/ /* Exists but not used in Axis products */
#define EEPROM_8KB (8 * 1024 - 1 ) /* Last byte has write protection bit */
#define EEPROM_16KB (16 * 1024)

#define i2c_delay(x) udelay(x)

/*
 *  This structure describes the attached eeprom chip.
 *  The values are probed for.
 */

struct eeprom_type
{
  unsigned long size;
  unsigned long sequential_write_pagesize;
  unsigned char select_cmd;
  unsigned long usec_delay_writecycles; /* Min time between write cycles
					   (up to 10ms for some models) */
  unsigned long usec_delay_step; /* For adaptive algorithm */
  int adapt_state; /* 1 = To high , 0 = Even, -1 = To low */
  
  /* this one is to keep the read/write operations atomic */
  struct mutex lock;
  int retry_cnt_addr; /* Used to keep track of number of retries for
                         adaptive timing adjustments */
  int retry_cnt_read;
};

static int  eeprom_open(struct inode * inode, struct file * file);
static loff_t  eeprom_lseek(struct file * file, loff_t offset, int orig);
static ssize_t  eeprom_read(struct file * file, char * buf, size_t count,
                            loff_t *off);
static ssize_t  eeprom_write(struct file * file, const char * buf, size_t count,
                             loff_t *off);
static int eeprom_close(struct inode * inode, struct file * file);

static int  eeprom_address(unsigned long addr);
static int  read_from_eeprom(char * buf, int count);
static int eeprom_write_buf(loff_t addr, const char * buf, int count);
static int eeprom_read_buf(loff_t addr, char * buf, int count);

static void eeprom_disable_write_protect(void);


static const char eeprom_name[] = "eeprom";

/* chip description */
static struct eeprom_type eeprom;

/* This is the exported file-operations structure for this device. */
const struct file_operations eeprom_fops =
{
  .llseek  = eeprom_lseek,
  .read    = eeprom_read,
  .write   = eeprom_write,
  .open    = eeprom_open,
  .release = eeprom_close
};

/* eeprom init call. Probes for different eeprom models. */

int __init eeprom_init(void)
{
  mutex_init(&eeprom.lock);

#ifdef CONFIG_ETRAX_I2C_EEPROM_PROBE
#define EETEXT "Found"
#else
#define EETEXT "Assuming"
#endif
  if (register_chrdev(EEPROM_MAJOR_NR, eeprom_name, &eeprom_fops))
  {
    printk(KERN_INFO "%s: unable to get major %d for eeprom device\n",
           eeprom_name, EEPROM_MAJOR_NR);
    return -1;
  }
  
  printk("EEPROM char device v0.3, (c) 2000 Axis Communications AB\n");

  /*
   *  Note: Most of this probing method was taken from the printserver (5470e)
   *        codebase. It did not contain a way of finding the 16kB chips
   *        (M24128 or variants). The method used here might not work
   *        for all models. If you encounter problems the easiest way
   *        is probably to define your model within #ifdef's, and hard-
   *        code it.
   */

  eeprom.size = 0;
  eeprom.usec_delay_writecycles = INITIAL_WRITEDELAY_US;
  eeprom.usec_delay_step = 128;
  eeprom.adapt_state = 0;
  
#ifdef CONFIG_ETRAX_I2C_EEPROM_PROBE
  i2c_start();
  i2c_outbyte(0x80);
  if(!i2c_getack())
  {
    /* It's not 8k.. */
    int success = 0;
    unsigned char buf_2k_start[16];
    
    /* Im not sure this will work... :) */
    /* assume 2kB, if failure go for 16kB */
    /* Test with 16kB settings.. */
    /* If it's a 2kB EEPROM and we address it outside it's range
     * it will mirror the address space:
     * 1. We read two locations (that are mirrored), 
     *    if the content differs * it's a 16kB EEPROM.
     * 2. if it doesn't differ - write different value to one of the locations,
     *    check the other - if content still is the same it's a 2k EEPROM,
     *    restore original data.
     */
#define LOC1 8
#define LOC2 (0x1fb) /*1fb, 3ed, 5df, 7d1 */

   /* 2k settings */  
    i2c_stop();
    eeprom.size = EEPROM_2KB;
    eeprom.select_cmd = 0xA0;   
    eeprom.sequential_write_pagesize = 16;
    if( eeprom_read_buf( 0, buf_2k_start, 16 ) == 16 )
    {
      D(printk("2k start: '%16.16s'\n", buf_2k_start));
    }
    else
    {
      printk(KERN_INFO "%s: Failed to read in 2k mode!\n", eeprom_name);  
    }
    
    /* 16k settings */
    eeprom.size = EEPROM_16KB;
    eeprom.select_cmd = 0xA0;   
    eeprom.sequential_write_pagesize = 64;

    {
      unsigned char loc1[4], loc2[4], tmp[4];
      if( eeprom_read_buf(LOC2, loc2, 4) == 4)
      {
        if( eeprom_read_buf(LOC1, loc1, 4) == 4)
        {
          D(printk("0 loc1: (%i) '%4.4s' loc2 (%i) '%4.4s'\n", 
                   LOC1, loc1, LOC2, loc2));
#if 0
          if (memcmp(loc1, loc2, 4) != 0 )
          {
            /* It's 16k */
            printk(KERN_INFO "%s: 16k detected in step 1\n", eeprom_name);
            eeprom.size = EEPROM_16KB;     
            success = 1;
          }
          else
#endif
          {
            /* Do step 2 check */
            /* Invert value */
            loc1[0] = ~loc1[0];
            if (eeprom_write_buf(LOC1, loc1, 1) == 1)
            {
              /* If 2k EEPROM this write will actually write 10 bytes
               * from pos 0
               */
              D(printk("1 loc1: (%i) '%4.4s' loc2 (%i) '%4.4s'\n", 
                       LOC1, loc1, LOC2, loc2));
              if( eeprom_read_buf(LOC1, tmp, 4) == 4)
              {
                D(printk("2 loc1: (%i) '%4.4s' tmp '%4.4s'\n", 
                         LOC1, loc1, tmp));
                if (memcmp(loc1, tmp, 4) != 0 )
                {
                  printk(KERN_INFO "%s: read and write differs! Not 16kB\n",
                         eeprom_name);
                  loc1[0] = ~loc1[0];
                  
                  if (eeprom_write_buf(LOC1, loc1, 1) == 1)
                  {
                    success = 1;
                  }
                  else
                  {
                    printk(KERN_INFO "%s: Restore 2k failed during probe,"
                           " EEPROM might be corrupt!\n", eeprom_name);
                    
                  }
                  i2c_stop();
                  /* Go to 2k mode and write original data */
                  eeprom.size = EEPROM_2KB;
                  eeprom.select_cmd = 0xA0;   
                  eeprom.sequential_write_pagesize = 16;
                  if( eeprom_write_buf(0, buf_2k_start, 16) == 16)
                  {
                  }
                  else
                  {
                    printk(KERN_INFO "%s: Failed to write back 2k start!\n",
                           eeprom_name);
                  }
                  
                  eeprom.size = EEPROM_2KB;
                }
              }
                
              if(!success)
              {
                if( eeprom_read_buf(LOC2, loc2, 1) == 1)
                {
                  D(printk("0 loc1: (%i) '%4.4s' loc2 (%i) '%4.4s'\n", 
                           LOC1, loc1, LOC2, loc2));
                  if (memcmp(loc1, loc2, 4) == 0 )
                  {
                    /* Data the same, must be mirrored -> 2k */
                    /* Restore data */
                    printk(KERN_INFO "%s: 2k detected in step 2\n", eeprom_name);
                    loc1[0] = ~loc1[0];
                    if (eeprom_write_buf(LOC1, loc1, 1) == 1)
                    {
                      success = 1;
                    }
                    else
                    {
                      printk(KERN_INFO "%s: Restore 2k failed during probe,"
                             " EEPROM might be corrupt!\n", eeprom_name);
                      
                    }
                    
                    eeprom.size = EEPROM_2KB;     
                  }
                  else
                  {
                    printk(KERN_INFO "%s: 16k detected in step 2\n",
                           eeprom_name);
                    loc1[0] = ~loc1[0];
                    /* Data differs, assume 16k */
                    /* Restore data */
                    if (eeprom_write_buf(LOC1, loc1, 1) == 1)
                    {
                      success = 1;
                    }
                    else
                    {
                      printk(KERN_INFO "%s: Restore 16k failed during probe,"
                             " EEPROM might be corrupt!\n", eeprom_name);
                    }
                    
                    eeprom.size = EEPROM_16KB;
                  }
                }
              }
            }
          } /* read LOC1 */
        } /* address LOC1 */
        if (!success)
        {
          printk(KERN_INFO "%s: Probing failed!, using 2KB!\n", eeprom_name);
          eeprom.size = EEPROM_2KB;               
        }
      } /* read */
    }
  }
  else
  {
    i2c_outbyte(0x00);
    if(!i2c_getack())
    {
      /* No 8k */
      eeprom.size = EEPROM_2KB;
    }
    else
    {
      i2c_start();
      i2c_outbyte(0x81);
      if (!i2c_getack())
      {
        eeprom.size = EEPROM_2KB;
      }
      else
      {
        /* It's a 8kB */
        i2c_inbyte();
        eeprom.size = EEPROM_8KB;
      }
    }
  }
  i2c_stop();
#elif defined(CONFIG_ETRAX_I2C_EEPROM_16KB)
  eeprom.size = EEPROM_16KB;
#elif defined(CONFIG_ETRAX_I2C_EEPROM_8KB)
  eeprom.size = EEPROM_8KB;
#elif defined(CONFIG_ETRAX_I2C_EEPROM_2KB)
  eeprom.size = EEPROM_2KB;
#endif

  switch(eeprom.size)
  {
   case (EEPROM_2KB):
     printk("%s: " EETEXT " i2c compatible 2kB eeprom.\n", eeprom_name);
     eeprom.sequential_write_pagesize = 16;
     eeprom.select_cmd = 0xA0;
     break;
   case (EEPROM_8KB):
     printk("%s: " EETEXT " i2c compatible 8kB eeprom.\n", eeprom_name);
     eeprom.sequential_write_pagesize = 16;
     eeprom.select_cmd = 0x80;
     break;
   case (EEPROM_16KB):
     printk("%s: " EETEXT " i2c compatible 16kB eeprom.\n", eeprom_name);
     eeprom.sequential_write_pagesize = 64;
     eeprom.select_cmd = 0xA0;     
     break;
   default:
     eeprom.size = 0;
     printk("%s: Did not find a supported eeprom\n", eeprom_name);
     break;
  }

  

  eeprom_disable_write_protect();

  return 0;
}

/* Opens the device. */
static int eeprom_open(struct inode * inode, struct file * file)
{
  if(iminor(inode) != EEPROM_MINOR_NR)
     return -ENXIO;
  if(imajor(inode) != EEPROM_MAJOR_NR)
     return -ENXIO;

  if( eeprom.size > 0 )
  {
    /* OK */
    return 0;
  }

  /* No EEprom found */
  return -EFAULT;
}

/* Changes the current file position. */

static loff_t eeprom_lseek(struct file * file, loff_t offset, int orig)
{
/*
 *  orig 0: position from begning of eeprom
 *  orig 1: relative from current position
 *  orig 2: position from last eeprom address
 */
  
  switch (orig)
  {
   case 0:
     file->f_pos = offset;
     break;
   case 1:
     file->f_pos += offset;
     break;
   case 2:
     file->f_pos = eeprom.size - offset;
     break;
   default:
     return -EINVAL;
  }

  /* truncate position */
  if (file->f_pos < 0)
  {
    file->f_pos = 0;    
    return(-EOVERFLOW);
  }
  
  if (file->f_pos >= eeprom.size)
  {
    file->f_pos = eeprom.size - 1;
    return(-EOVERFLOW);
  }

  return ( file->f_pos );
}

/* Reads data from eeprom. */

static int eeprom_read_buf(loff_t addr, char * buf, int count)
{
  return eeprom_read(NULL, buf, count, &addr);
}



/* Reads data from eeprom. */

static ssize_t eeprom_read(struct file * file, char * buf, size_t count, loff_t *off)
{
  int read=0;
  unsigned long p = *off;

  unsigned char page;

  if(p >= eeprom.size)  /* Address i 0 - (size-1) */
  {
    return -EFAULT;
  }
  
  if (mutex_lock_interruptible(&eeprom.lock))
    return -EINTR;

  page = (unsigned char) (p >> 8);
  
  if(!eeprom_address(p))
  {
    printk(KERN_INFO "%s: Read failed to address the eeprom: "
           "0x%08X (%i) page: %i\n", eeprom_name, (int)p, (int)p, page);
    i2c_stop();
    
    /* don't forget to wake them up */
    mutex_unlock(&eeprom.lock);
    return -EFAULT;
  }

  if( (p + count) > eeprom.size)
  {
    /* truncate count */
    count = eeprom.size - p;
  }

  /* stop dummy write op and initiate the read op */
  i2c_start();

  /* special case for small eeproms */
  if(eeprom.size < EEPROM_16KB)
  {
    i2c_outbyte( eeprom.select_cmd | 1 | (page << 1) );
  }

  /* go on with the actual read */
  read = read_from_eeprom( buf, count);
  
  if(read > 0)
  {
    *off += read;
  }

  mutex_unlock(&eeprom.lock);
  return read;
}

/* Writes data to eeprom. */

static int eeprom_write_buf(loff_t addr, const char * buf, int count)
{
  return eeprom_write(NULL, buf, count, &addr);
}


/* Writes data to eeprom. */

static ssize_t eeprom_write(struct file * file, const char * buf, size_t count,
                            loff_t *off)
{
  int i, written, restart=1;
  unsigned long p;

  if (!access_ok(VERIFY_READ, buf, count))
  {
    return -EFAULT;
  }

  /* bail out if we get interrupted */
  if (mutex_lock_interruptible(&eeprom.lock))
    return -EINTR;
  for(i = 0; (i < EEPROM_RETRIES) && (restart > 0); i++)
  {
    restart = 0;
    written = 0;
    p = *off;
   
    
    while( (written < count) && (p < eeprom.size))
    {
      /* address the eeprom */
      if(!eeprom_address(p))
      {
        printk(KERN_INFO "%s: Write failed to address the eeprom: "
               "0x%08X (%i) \n", eeprom_name, (int)p, (int)p);
        i2c_stop();
        
        /* don't forget to wake them up */
        mutex_unlock(&eeprom.lock);
        return -EFAULT;
      }
#ifdef EEPROM_ADAPTIVE_TIMING      
      /* Adaptive algorithm to adjust timing */
      if (eeprom.retry_cnt_addr > 0)
      {
        /* To Low now */
        D(printk(">D=%i d=%i\n",
               eeprom.usec_delay_writecycles, eeprom.usec_delay_step));

        if (eeprom.usec_delay_step < 4)
        {
          eeprom.usec_delay_step++;
          eeprom.usec_delay_writecycles += eeprom.usec_delay_step;
        }
        else
        {

          if (eeprom.adapt_state > 0)
          {
            /* To Low before */
            eeprom.usec_delay_step *= 2;
            if (eeprom.usec_delay_step > 2)
            {
              eeprom.usec_delay_step--;
            }
            eeprom.usec_delay_writecycles += eeprom.usec_delay_step;
          }
          else if (eeprom.adapt_state < 0)
          {
            /* To High before (toggle dir) */
            eeprom.usec_delay_writecycles += eeprom.usec_delay_step;
            if (eeprom.usec_delay_step > 1)
            {
              eeprom.usec_delay_step /= 2;
              eeprom.usec_delay_step--;
            }
          }
        }

        eeprom.adapt_state = 1;
      }
      else
      {
        /* To High (or good) now */
        D(printk("<D=%i d=%i\n",
               eeprom.usec_delay_writecycles, eeprom.usec_delay_step));
        
        if (eeprom.adapt_state < 0)
        {
          /* To High before */
          if (eeprom.usec_delay_step > 1)
          {
            eeprom.usec_delay_step *= 2;
            eeprom.usec_delay_step--;
            
            if (eeprom.usec_delay_writecycles > eeprom.usec_delay_step)
            {
              eeprom.usec_delay_writecycles -= eeprom.usec_delay_step;
            }
          }
        }
        else if (eeprom.adapt_state > 0)
        {
          /* To Low before (toggle dir) */
          if (eeprom.usec_delay_writecycles > eeprom.usec_delay_step)
          {
            eeprom.usec_delay_writecycles -= eeprom.usec_delay_step;
          }
          if (eeprom.usec_delay_step > 1)
          {
            eeprom.usec_delay_step /= 2;
            eeprom.usec_delay_step--;
          }
          
          eeprom.adapt_state = -1;
        }

        if (eeprom.adapt_state > -100)
        {
          eeprom.adapt_state--;
        }
        else
        {
          /* Restart adaption */
          D(printk("#Restart\n"));
          eeprom.usec_delay_step++;
        }
      }
#endif /* EEPROM_ADAPTIVE_TIMING */
      /* write until we hit a page boundary or count */
      do
      {
        i2c_outbyte(buf[written]);        
        if(!i2c_getack())
        {
          restart=1;
          printk(KERN_INFO "%s: write error, retrying. %d\n", eeprom_name, i);
          i2c_stop();
          break;
        }
        written++;
        p++;        
      } while( written < count && ( p % eeprom.sequential_write_pagesize ));

      /* end write cycle */
      i2c_stop();
      i2c_delay(eeprom.usec_delay_writecycles);
    } /* while */
  } /* for  */

  mutex_unlock(&eeprom.lock);
  if (written == 0 && p >= eeprom.size){
    return -ENOSPC;
  }
  *off = p;
  return written;
}

/* Closes the device. */

static int eeprom_close(struct inode * inode, struct file * file)
{
  /* do nothing for now */
  return 0;
}

/* Sets the current address of the eeprom. */

static int eeprom_address(unsigned long addr)
{
  int i;
  unsigned char page, offset;

  page   = (unsigned char) (addr >> 8);
  offset = (unsigned char)  addr;

  for(i = 0; i < EEPROM_RETRIES; i++)
  {
    /* start a dummy write for addressing */
    i2c_start();

    if(eeprom.size == EEPROM_16KB)
    {
      i2c_outbyte( eeprom.select_cmd ); 
      i2c_getack();
      i2c_outbyte(page); 
    }
    else
    {
      i2c_outbyte( eeprom.select_cmd | (page << 1) ); 
    }
    if(!i2c_getack())
    {
      /* retry */
      i2c_stop();
      /* Must have a delay here.. 500 works, >50, 100->works 5th time*/
      i2c_delay(MAX_WRITEDELAY_US / EEPROM_RETRIES * i);
      /* The chip needs up to 10 ms from write stop to next start */
     
    }
    else
    {
      i2c_outbyte(offset);
      
      if(!i2c_getack())
      {
        /* retry */
        i2c_stop();
      }
      else
        break;
    }
  }    

  
  eeprom.retry_cnt_addr = i;
  D(printk("%i\n", eeprom.retry_cnt_addr));
  if(eeprom.retry_cnt_addr == EEPROM_RETRIES)
  {
    /* failed */
    return 0;
  }
  return 1;
}

/* Reads from current address. */

static int read_from_eeprom(char * buf, int count)
{
  int i, read=0;

  for(i = 0; i < EEPROM_RETRIES; i++)
  {    
    if(eeprom.size == EEPROM_16KB)
    {
      i2c_outbyte( eeprom.select_cmd | 1 );
    }

    if(i2c_getack())
    {
      break;
    }
  }
  
  if(i == EEPROM_RETRIES)
  {
    printk(KERN_INFO "%s: failed to read from eeprom\n", eeprom_name);
    i2c_stop();
    
    return -EFAULT;
  }

  while( (read < count))
  {    
    if (put_user(i2c_inbyte(), &buf[read++]))
    {
      i2c_stop();

      return -EFAULT;
    }

    /*
     *  make sure we don't ack last byte or you will get very strange
     *  results!
     */
    if(read < count)
    {
      i2c_sendack();
    }
  }

  /* stop the operation */
  i2c_stop();

  return read;
}

/* Disables write protection if applicable. */

#define DBP_SAVE(x)
#define ax_printf printk
static void eeprom_disable_write_protect(void)
{
  /* Disable write protect */
  if (eeprom.size == EEPROM_8KB)
  {
    /* Step 1 Set WEL = 1 (write 00000010 to address 1FFFh */
    i2c_start();
    i2c_outbyte(0xbe);
    if(!i2c_getack())
    {
      DBP_SAVE(ax_printf("Get ack returns false\n"));
    }
    i2c_outbyte(0xFF);
    if(!i2c_getack())
    {
      DBP_SAVE(ax_printf("Get ack returns false 2\n"));
    }
    i2c_outbyte(0x02);
    if(!i2c_getack())
    {
      DBP_SAVE(ax_printf("Get ack returns false 3\n"));
    }
    i2c_stop();

    i2c_delay(1000);

    /* Step 2 Set RWEL = 1 (write 00000110 to address 1FFFh */
    i2c_start();
    i2c_outbyte(0xbe);
    if(!i2c_getack())
    {
      DBP_SAVE(ax_printf("Get ack returns false 55\n"));
    }
    i2c_outbyte(0xFF);
    if(!i2c_getack())
    {
      DBP_SAVE(ax_printf("Get ack returns false 52\n"));
    }
    i2c_outbyte(0x06);
    if(!i2c_getack())
    {
      DBP_SAVE(ax_printf("Get ack returns false 53\n"));
    }
    i2c_stop();
    
    /* Step 3 Set BP1, BP0, and/or WPEN bits (write 00000110 to address 1FFFh */
    i2c_start();
    i2c_outbyte(0xbe);
    if(!i2c_getack())
    {
      DBP_SAVE(ax_printf("Get ack returns false 56\n"));
    }
    i2c_outbyte(0xFF);
    if(!i2c_getack())
    {
      DBP_SAVE(ax_printf("Get ack returns false 57\n"));
    }
    i2c_outbyte(0x06);
    if(!i2c_getack())
    {
      DBP_SAVE(ax_printf("Get ack returns false 58\n"));
    }
    i2c_stop();
    
    /* Write protect disabled */
  }
}
device_initcall(eeprom_init);