z85230.c 39 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
/*
 *	This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License
 *	as published by the Free Software Foundation; either version
 *	2 of the License, or (at your option) any later version.
 *
 *	(c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
 *	(c) Copyright 2000, 2001 Red Hat Inc
 *
 *	Development of this driver was funded by Equiinet Ltd
 *			http://www.equiinet.com
 *
 *	ChangeLog:
 *
 *	Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
 *	unification of all the Z85x30 asynchronous drivers for real.
 *
 *	DMA now uses get_free_page as kmalloc buffers may span a 64K 
 *	boundary.
 *
 *	Modified for SMP safety and SMP locking by Alan Cox
 *					<alan@lxorguk.ukuu.org.uk>
 *
 *	Performance
 *
 *	Z85230:
 *	Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
 *	X.25 is not unrealistic on all machines. DMA mode can in theory
 *	handle T1/E1 quite nicely. In practice the limit seems to be about
 *	512Kbit->1Mbit depending on motherboard.
 *
 *	Z85C30:
 *	64K will take DMA, 9600 baud X.25 should be ok.
 *
 *	Z8530:
 *	Synchronous mode without DMA is unlikely to pass about 2400 baud.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/net.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/delay.h>
#include <linux/hdlc.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/gfp.h>
#include <asm/dma.h>
#include <asm/io.h>
#define RT_LOCK
#define RT_UNLOCK
#include <linux/spinlock.h>

#include "z85230.h"


/**
 *	z8530_read_port - Architecture specific interface function
 *	@p: port to read
 *
 *	Provided port access methods. The Comtrol SV11 requires no delays
 *	between accesses and uses PC I/O. Some drivers may need a 5uS delay
 *	
 *	In the longer term this should become an architecture specific
 *	section so that this can become a generic driver interface for all
 *	platforms. For now we only handle PC I/O ports with or without the
 *	dread 5uS sanity delay.
 *
 *	The caller must hold sufficient locks to avoid violating the horrible
 *	5uS delay rule.
 */

static inline int z8530_read_port(unsigned long p)
{
	u8 r=inb(Z8530_PORT_OF(p));
	if(p&Z8530_PORT_SLEEP)	/* gcc should figure this out efficiently ! */
		udelay(5);
	return r;
}

/**
 *	z8530_write_port - Architecture specific interface function
 *	@p: port to write
 *	@d: value to write
 *
 *	Write a value to a port with delays if need be. Note that the
 *	caller must hold locks to avoid read/writes from other contexts
 *	violating the 5uS rule
 *
 *	In the longer term this should become an architecture specific
 *	section so that this can become a generic driver interface for all
 *	platforms. For now we only handle PC I/O ports with or without the
 *	dread 5uS sanity delay.
 */


static inline void z8530_write_port(unsigned long p, u8 d)
{
	outb(d,Z8530_PORT_OF(p));
	if(p&Z8530_PORT_SLEEP)
		udelay(5);
}



static void z8530_rx_done(struct z8530_channel *c);
static void z8530_tx_done(struct z8530_channel *c);


/**
 *	read_zsreg - Read a register from a Z85230 
 *	@c: Z8530 channel to read from (2 per chip)
 *	@reg: Register to read
 *	FIXME: Use a spinlock.
 *	
 *	Most of the Z8530 registers are indexed off the control registers.
 *	A read is done by writing to the control register and reading the
 *	register back.  The caller must hold the lock
 */
 
static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
{
	if(reg)
		z8530_write_port(c->ctrlio, reg);
	return z8530_read_port(c->ctrlio);
}

/**
 *	read_zsdata - Read the data port of a Z8530 channel
 *	@c: The Z8530 channel to read the data port from
 *
 *	The data port provides fast access to some things. We still
 *	have all the 5uS delays to worry about.
 */

static inline u8 read_zsdata(struct z8530_channel *c)
{
	u8 r;
	r=z8530_read_port(c->dataio);
	return r;
}

/**
 *	write_zsreg - Write to a Z8530 channel register
 *	@c: The Z8530 channel
 *	@reg: Register number
 *	@val: Value to write
 *
 *	Write a value to an indexed register. The caller must hold the lock
 *	to honour the irritating delay rules. We know about register 0
 *	being fast to access.
 *
 *      Assumes c->lock is held.
 */
static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
{
	if(reg)
		z8530_write_port(c->ctrlio, reg);
	z8530_write_port(c->ctrlio, val);

}

/**
 *	write_zsctrl - Write to a Z8530 control register
 *	@c: The Z8530 channel
 *	@val: Value to write
 *
 *	Write directly to the control register on the Z8530
 */

static inline void write_zsctrl(struct z8530_channel *c, u8 val)
{
	z8530_write_port(c->ctrlio, val);
}

/**
 *	write_zsdata - Write to a Z8530 control register
 *	@c: The Z8530 channel
 *	@val: Value to write
 *
 *	Write directly to the data register on the Z8530
 */


static inline void write_zsdata(struct z8530_channel *c, u8 val)
{
	z8530_write_port(c->dataio, val);
}

/*
 *	Register loading parameters for a dead port
 */
 
u8 z8530_dead_port[]=
{
	255
};

EXPORT_SYMBOL(z8530_dead_port);

/*
 *	Register loading parameters for currently supported circuit types
 */


/*
 *	Data clocked by telco end. This is the correct data for the UK
 *	"kilostream" service, and most other similar services.
 */
 
u8 z8530_hdlc_kilostream[]=
{
	4,	SYNC_ENAB|SDLC|X1CLK,
	2,	0,	/* No vector */
	1,	0,
	3,	ENT_HM|RxCRC_ENAB|Rx8,
	5,	TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
	9,	0,		/* Disable interrupts */
	6,	0xFF,
	7,	FLAG,
	10,	ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
	11,	TCTRxCP,
	14,	DISDPLL,
	15,	DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
	1,	EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
	9,	NV|MIE|NORESET,
	255
};

EXPORT_SYMBOL(z8530_hdlc_kilostream);

/*
 *	As above but for enhanced chips.
 */
 
u8 z8530_hdlc_kilostream_85230[]=
{
	4,	SYNC_ENAB|SDLC|X1CLK,
	2,	0,	/* No vector */
	1,	0,
	3,	ENT_HM|RxCRC_ENAB|Rx8,
	5,	TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
	9,	0,		/* Disable interrupts */
	6,	0xFF,
	7,	FLAG,
	10,	ABUNDER|NRZ|CRCPS,	/* MARKIDLE?? */
	11,	TCTRxCP,
	14,	DISDPLL,
	15,	DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
	1,	EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
	9,	NV|MIE|NORESET,
	23,	3,		/* Extended mode AUTO TX and EOM*/
	
	255
};

EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);

/**
 *	z8530_flush_fifo - Flush on chip RX FIFO
 *	@c: Channel to flush
 *
 *	Flush the receive FIFO. There is no specific option for this, we 
 *	blindly read bytes and discard them. Reading when there is no data
 *	is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
 *	
 *	All locking is handled for the caller. On return data may still be
 *	present if it arrived during the flush.
 */
 
static void z8530_flush_fifo(struct z8530_channel *c)
{
	read_zsreg(c, R1);
	read_zsreg(c, R1);
	read_zsreg(c, R1);
	read_zsreg(c, R1);
	if(c->dev->type==Z85230)
	{
		read_zsreg(c, R1);
		read_zsreg(c, R1);
		read_zsreg(c, R1);
		read_zsreg(c, R1);
	}
}	

/**
 *	z8530_rtsdtr - Control the outgoing DTS/RTS line
 *	@c: The Z8530 channel to control;
 *	@set: 1 to set, 0 to clear
 *
 *	Sets or clears DTR/RTS on the requested line. All locking is handled
 *	by the caller. For now we assume all boards use the actual RTS/DTR
 *	on the chip. Apparently one or two don't. We'll scream about them
 *	later.
 */

static void z8530_rtsdtr(struct z8530_channel *c, int set)
{
	if (set)
		c->regs[5] |= (RTS | DTR);
	else
		c->regs[5] &= ~(RTS | DTR);
	write_zsreg(c, R5, c->regs[5]);
}

/**
 *	z8530_rx - Handle a PIO receive event
 *	@c: Z8530 channel to process
 *
 *	Receive handler for receiving in PIO mode. This is much like the 
 *	async one but not quite the same or as complex
 *
 *	Note: Its intended that this handler can easily be separated from
 *	the main code to run realtime. That'll be needed for some machines
 *	(eg to ever clock 64kbits on a sparc ;)).
 *
 *	The RT_LOCK macros don't do anything now. Keep the code covered
 *	by them as short as possible in all circumstances - clocks cost
 *	baud. The interrupt handler is assumed to be atomic w.r.t. to
 *	other code - this is true in the RT case too.
 *
 *	We only cover the sync cases for this. If you want 2Mbit async
 *	do it yourself but consider medical assistance first. This non DMA 
 *	synchronous mode is portable code. The DMA mode assumes PCI like 
 *	ISA DMA
 *
 *	Called with the device lock held
 */
 
static void z8530_rx(struct z8530_channel *c)
{
	u8 ch,stat;

	while(1)
	{
		/* FIFO empty ? */
		if(!(read_zsreg(c, R0)&1))
			break;
		ch=read_zsdata(c);
		stat=read_zsreg(c, R1);
	
		/*
		 *	Overrun ?
		 */
		if(c->count < c->max)
		{
			*c->dptr++=ch;
			c->count++;
		}

		if(stat&END_FR)
		{
		
			/*
			 *	Error ?
			 */
			if(stat&(Rx_OVR|CRC_ERR))
			{
				/* Rewind the buffer and return */
				if(c->skb)
					c->dptr=c->skb->data;
				c->count=0;
				if(stat&Rx_OVR)
				{
					pr_warn("%s: overrun\n", c->dev->name);
					c->rx_overrun++;
				}
				if(stat&CRC_ERR)
				{
					c->rx_crc_err++;
					/* printk("crc error\n"); */
				}
				/* Shove the frame upstream */
			}
			else
			{
				/*
				 *	Drop the lock for RX processing, or
		 		 *	there are deadlocks
		 		 */
				z8530_rx_done(c);
				write_zsctrl(c, RES_Rx_CRC);
			}
		}
	}
	/*
	 *	Clear irq
	 */
	write_zsctrl(c, ERR_RES);
	write_zsctrl(c, RES_H_IUS);
}


/**
 *	z8530_tx - Handle a PIO transmit event
 *	@c: Z8530 channel to process
 *
 *	Z8530 transmit interrupt handler for the PIO mode. The basic
 *	idea is to attempt to keep the FIFO fed. We fill as many bytes
 *	in as possible, its quite possible that we won't keep up with the
 *	data rate otherwise.
 */
 
static void z8530_tx(struct z8530_channel *c)
{
	while(c->txcount) {
		/* FIFO full ? */
		if(!(read_zsreg(c, R0)&4))
			return;
		c->txcount--;
		/*
		 *	Shovel out the byte
		 */
		write_zsreg(c, R8, *c->tx_ptr++);
		write_zsctrl(c, RES_H_IUS);
		/* We are about to underflow */
		if(c->txcount==0)
		{
			write_zsctrl(c, RES_EOM_L);
			write_zsreg(c, R10, c->regs[10]&~ABUNDER);
		}
	}

	
	/*
	 *	End of frame TX - fire another one
	 */
	 
	write_zsctrl(c, RES_Tx_P);

	z8530_tx_done(c);	 
	write_zsctrl(c, RES_H_IUS);
}

/**
 *	z8530_status - Handle a PIO status exception
 *	@chan: Z8530 channel to process
 *
 *	A status event occurred in PIO synchronous mode. There are several
 *	reasons the chip will bother us here. A transmit underrun means we
 *	failed to feed the chip fast enough and just broke a packet. A DCD
 *	change is a line up or down.
 */

static void z8530_status(struct z8530_channel *chan)
{
	u8 status, altered;

	status = read_zsreg(chan, R0);
	altered = chan->status ^ status;

	chan->status = status;

	if (status & TxEOM) {
/*		printk("%s: Tx underrun.\n", chan->dev->name); */
		chan->netdevice->stats.tx_fifo_errors++;
		write_zsctrl(chan, ERR_RES);
		z8530_tx_done(chan);
	}

	if (altered & chan->dcdcheck)
	{
		if (status & chan->dcdcheck) {
			pr_info("%s: DCD raised\n", chan->dev->name);
			write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
			if (chan->netdevice)
				netif_carrier_on(chan->netdevice);
		} else {
			pr_info("%s: DCD lost\n", chan->dev->name);
			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
			z8530_flush_fifo(chan);
			if (chan->netdevice)
				netif_carrier_off(chan->netdevice);
		}

	}
	write_zsctrl(chan, RES_EXT_INT);
	write_zsctrl(chan, RES_H_IUS);
}

struct z8530_irqhandler z8530_sync =
{
	z8530_rx,
	z8530_tx,
	z8530_status
};

EXPORT_SYMBOL(z8530_sync);

/**
 *	z8530_dma_rx - Handle a DMA RX event
 *	@chan: Channel to handle
 *
 *	Non bus mastering DMA interfaces for the Z8x30 devices. This
 *	is really pretty PC specific. The DMA mode means that most receive
 *	events are handled by the DMA hardware. We get a kick here only if
 *	a frame ended.
 */
 
static void z8530_dma_rx(struct z8530_channel *chan)
{
	if(chan->rxdma_on)
	{
		/* Special condition check only */
		u8 status;
	
		read_zsreg(chan, R7);
		read_zsreg(chan, R6);
		
		status=read_zsreg(chan, R1);
	
		if(status&END_FR)
		{
			z8530_rx_done(chan);	/* Fire up the next one */
		}		
		write_zsctrl(chan, ERR_RES);
		write_zsctrl(chan, RES_H_IUS);
	}
	else
	{
		/* DMA is off right now, drain the slow way */
		z8530_rx(chan);
	}	
}

/**
 *	z8530_dma_tx - Handle a DMA TX event
 *	@chan:	The Z8530 channel to handle
 *
 *	We have received an interrupt while doing DMA transmissions. It
 *	shouldn't happen. Scream loudly if it does.
 */
 
static void z8530_dma_tx(struct z8530_channel *chan)
{
	if(!chan->dma_tx)
	{
		pr_warn("Hey who turned the DMA off?\n");
		z8530_tx(chan);
		return;
	}
	/* This shouldn't occur in DMA mode */
	pr_err("DMA tx - bogus event!\n");
	z8530_tx(chan);
}

/**
 *	z8530_dma_status - Handle a DMA status exception
 *	@chan: Z8530 channel to process
 *	
 *	A status event occurred on the Z8530. We receive these for two reasons
 *	when in DMA mode. Firstly if we finished a packet transfer we get one
 *	and kick the next packet out. Secondly we may see a DCD change.
 *
 */
 
static void z8530_dma_status(struct z8530_channel *chan)
{
	u8 status, altered;

	status=read_zsreg(chan, R0);
	altered=chan->status^status;
	
	chan->status=status;


	if(chan->dma_tx)
	{
		if(status&TxEOM)
		{
			unsigned long flags;
	
			flags=claim_dma_lock();
			disable_dma(chan->txdma);
			clear_dma_ff(chan->txdma);	
			chan->txdma_on=0;
			release_dma_lock(flags);
			z8530_tx_done(chan);
		}
	}

	if (altered & chan->dcdcheck)
	{
		if (status & chan->dcdcheck) {
			pr_info("%s: DCD raised\n", chan->dev->name);
			write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
			if (chan->netdevice)
				netif_carrier_on(chan->netdevice);
		} else {
			pr_info("%s: DCD lost\n", chan->dev->name);
			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
			z8530_flush_fifo(chan);
			if (chan->netdevice)
				netif_carrier_off(chan->netdevice);
		}
	}

	write_zsctrl(chan, RES_EXT_INT);
	write_zsctrl(chan, RES_H_IUS);
}

static struct z8530_irqhandler z8530_dma_sync = {
	z8530_dma_rx,
	z8530_dma_tx,
	z8530_dma_status
};

static struct z8530_irqhandler z8530_txdma_sync = {
	z8530_rx,
	z8530_dma_tx,
	z8530_dma_status
};

/**
 *	z8530_rx_clear - Handle RX events from a stopped chip
 *	@c: Z8530 channel to shut up
 *
 *	Receive interrupt vectors for a Z8530 that is in 'parked' mode.
 *	For machines with PCI Z85x30 cards, or level triggered interrupts
 *	(eg the MacII) we must clear the interrupt cause or die.
 */


static void z8530_rx_clear(struct z8530_channel *c)
{
	/*
	 *	Data and status bytes
	 */
	u8 stat;

	read_zsdata(c);
	stat=read_zsreg(c, R1);
	
	if(stat&END_FR)
		write_zsctrl(c, RES_Rx_CRC);
	/*
	 *	Clear irq
	 */
	write_zsctrl(c, ERR_RES);
	write_zsctrl(c, RES_H_IUS);
}

/**
 *	z8530_tx_clear - Handle TX events from a stopped chip
 *	@c: Z8530 channel to shut up
 *
 *	Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
 *	For machines with PCI Z85x30 cards, or level triggered interrupts
 *	(eg the MacII) we must clear the interrupt cause or die.
 */

static void z8530_tx_clear(struct z8530_channel *c)
{
	write_zsctrl(c, RES_Tx_P);
	write_zsctrl(c, RES_H_IUS);
}

/**
 *	z8530_status_clear - Handle status events from a stopped chip
 *	@chan: Z8530 channel to shut up
 *
 *	Status interrupt vectors for a Z8530 that is in 'parked' mode.
 *	For machines with PCI Z85x30 cards, or level triggered interrupts
 *	(eg the MacII) we must clear the interrupt cause or die.
 */

static void z8530_status_clear(struct z8530_channel *chan)
{
	u8 status=read_zsreg(chan, R0);
	if(status&TxEOM)
		write_zsctrl(chan, ERR_RES);
	write_zsctrl(chan, RES_EXT_INT);
	write_zsctrl(chan, RES_H_IUS);
}

struct z8530_irqhandler z8530_nop=
{
	z8530_rx_clear,
	z8530_tx_clear,
	z8530_status_clear
};


EXPORT_SYMBOL(z8530_nop);

/**
 *	z8530_interrupt - Handle an interrupt from a Z8530
 *	@irq: 	Interrupt number
 *	@dev_id: The Z8530 device that is interrupting.
 *
 *	A Z85[2]30 device has stuck its hand in the air for attention.
 *	We scan both the channels on the chip for events and then call
 *	the channel specific call backs for each channel that has events.
 *	We have to use callback functions because the two channels can be
 *	in different modes.
 *
 *	Locking is done for the handlers. Note that locking is done
 *	at the chip level (the 5uS delay issue is per chip not per
 *	channel). c->lock for both channels points to dev->lock
 */

irqreturn_t z8530_interrupt(int irq, void *dev_id)
{
	struct z8530_dev *dev=dev_id;
	u8 uninitialized_var(intr);
	static volatile int locker=0;
	int work=0;
	struct z8530_irqhandler *irqs;
	
	if(locker)
	{
		pr_err("IRQ re-enter\n");
		return IRQ_NONE;
	}
	locker=1;

	spin_lock(&dev->lock);

	while(++work<5000)
	{

		intr = read_zsreg(&dev->chanA, R3);
		if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
			break;
	
		/* This holds the IRQ status. On the 8530 you must read it from chan 
		   A even though it applies to the whole chip */
		
		/* Now walk the chip and see what it is wanting - it may be
		   an IRQ for someone else remember */
		   
		irqs=dev->chanA.irqs;

		if(intr & (CHARxIP|CHATxIP|CHAEXT))
		{
			if(intr&CHARxIP)
				irqs->rx(&dev->chanA);
			if(intr&CHATxIP)
				irqs->tx(&dev->chanA);
			if(intr&CHAEXT)
				irqs->status(&dev->chanA);
		}

		irqs=dev->chanB.irqs;

		if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
		{
			if(intr&CHBRxIP)
				irqs->rx(&dev->chanB);
			if(intr&CHBTxIP)
				irqs->tx(&dev->chanB);
			if(intr&CHBEXT)
				irqs->status(&dev->chanB);
		}
	}
	spin_unlock(&dev->lock);
	if(work==5000)
		pr_err("%s: interrupt jammed - abort(0x%X)!\n",
		       dev->name, intr);
	/* Ok all done */
	locker=0;
	return IRQ_HANDLED;
}

EXPORT_SYMBOL(z8530_interrupt);

static const u8 reg_init[16]=
{
	0,0,0,0,
	0,0,0,0,
	0,0,0,0,
	0x55,0,0,0
};


/**
 *	z8530_sync_open - Open a Z8530 channel for PIO
 *	@dev:	The network interface we are using
 *	@c:	The Z8530 channel to open in synchronous PIO mode
 *
 *	Switch a Z8530 into synchronous mode without DMA assist. We
 *	raise the RTS/DTR and commence network operation.
 */
 
int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
{
	unsigned long flags;

	spin_lock_irqsave(c->lock, flags);

	c->sync = 1;
	c->mtu = dev->mtu+64;
	c->count = 0;
	c->skb = NULL;
	c->skb2 = NULL;
	c->irqs = &z8530_sync;

	/* This loads the double buffer up */
	z8530_rx_done(c);	/* Load the frame ring */
	z8530_rx_done(c);	/* Load the backup frame */
	z8530_rtsdtr(c,1);
	c->dma_tx = 0;
	c->regs[R1]|=TxINT_ENAB;
	write_zsreg(c, R1, c->regs[R1]);
	write_zsreg(c, R3, c->regs[R3]|RxENABLE);

	spin_unlock_irqrestore(c->lock, flags);
	return 0;
}


EXPORT_SYMBOL(z8530_sync_open);

/**
 *	z8530_sync_close - Close a PIO Z8530 channel
 *	@dev: Network device to close
 *	@c: Z8530 channel to disassociate and move to idle
 *
 *	Close down a Z8530 interface and switch its interrupt handlers
 *	to discard future events.
 */
 
int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
{
	u8 chk;
	unsigned long flags;
	
	spin_lock_irqsave(c->lock, flags);
	c->irqs = &z8530_nop;
	c->max = 0;
	c->sync = 0;
	
	chk=read_zsreg(c,R0);
	write_zsreg(c, R3, c->regs[R3]);
	z8530_rtsdtr(c,0);

	spin_unlock_irqrestore(c->lock, flags);
	return 0;
}

EXPORT_SYMBOL(z8530_sync_close);

/**
 *	z8530_sync_dma_open - Open a Z8530 for DMA I/O
 *	@dev: The network device to attach
 *	@c: The Z8530 channel to configure in sync DMA mode.
 *
 *	Set up a Z85x30 device for synchronous DMA in both directions. Two
 *	ISA DMA channels must be available for this to work. We assume ISA
 *	DMA driven I/O and PC limits on access.
 */
 
int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
{
	unsigned long cflags, dflags;
	
	c->sync = 1;
	c->mtu = dev->mtu+64;
	c->count = 0;
	c->skb = NULL;
	c->skb2 = NULL;
	/*
	 *	Load the DMA interfaces up
	 */
	c->rxdma_on = 0;
	c->txdma_on = 0;
	
	/*
	 *	Allocate the DMA flip buffers. Limit by page size.
	 *	Everyone runs 1500 mtu or less on wan links so this
	 *	should be fine.
	 */
	 
	if(c->mtu  > PAGE_SIZE/2)
		return -EMSGSIZE;
	 
	c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
	if(c->rx_buf[0]==NULL)
		return -ENOBUFS;
	c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
	
	c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
	if(c->tx_dma_buf[0]==NULL)
	{
		free_page((unsigned long)c->rx_buf[0]);
		c->rx_buf[0]=NULL;
		return -ENOBUFS;
	}
	c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;

	c->tx_dma_used=0;
	c->dma_tx = 1;
	c->dma_num=0;
	c->dma_ready=1;
	
	/*
	 *	Enable DMA control mode
	 */

	spin_lock_irqsave(c->lock, cflags);
	 
	/*
	 *	TX DMA via DIR/REQ
	 */
	 
	c->regs[R14]|= DTRREQ;
	write_zsreg(c, R14, c->regs[R14]);     

	c->regs[R1]&= ~TxINT_ENAB;
	write_zsreg(c, R1, c->regs[R1]);
	
	/*
	 *	RX DMA via W/Req
	 */	 

	c->regs[R1]|= WT_FN_RDYFN;
	c->regs[R1]|= WT_RDY_RT;
	c->regs[R1]|= INT_ERR_Rx;
	c->regs[R1]&= ~TxINT_ENAB;
	write_zsreg(c, R1, c->regs[R1]);
	c->regs[R1]|= WT_RDY_ENAB;
	write_zsreg(c, R1, c->regs[R1]);            
	
	/*
	 *	DMA interrupts
	 */
	 
	/*
	 *	Set up the DMA configuration
	 */	
	 
	dflags=claim_dma_lock();
	 
	disable_dma(c->rxdma);
	clear_dma_ff(c->rxdma);
	set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
	set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
	set_dma_count(c->rxdma, c->mtu);
	enable_dma(c->rxdma);

	disable_dma(c->txdma);
	clear_dma_ff(c->txdma);
	set_dma_mode(c->txdma, DMA_MODE_WRITE);
	disable_dma(c->txdma);
	
	release_dma_lock(dflags);
	
	/*
	 *	Select the DMA interrupt handlers
	 */

	c->rxdma_on = 1;
	c->txdma_on = 1;
	c->tx_dma_used = 1;
	 
	c->irqs = &z8530_dma_sync;
	z8530_rtsdtr(c,1);
	write_zsreg(c, R3, c->regs[R3]|RxENABLE);

	spin_unlock_irqrestore(c->lock, cflags);
	
	return 0;
}

EXPORT_SYMBOL(z8530_sync_dma_open);

/**
 *	z8530_sync_dma_close - Close down DMA I/O
 *	@dev: Network device to detach
 *	@c: Z8530 channel to move into discard mode
 *
 *	Shut down a DMA mode synchronous interface. Halt the DMA, and
 *	free the buffers.
 */
 
int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
{
	u8 chk;
	unsigned long flags;
	
	c->irqs = &z8530_nop;
	c->max = 0;
	c->sync = 0;
	
	/*
	 *	Disable the PC DMA channels
	 */
	
	flags=claim_dma_lock(); 
	disable_dma(c->rxdma);
	clear_dma_ff(c->rxdma);
	
	c->rxdma_on = 0;
	
	disable_dma(c->txdma);
	clear_dma_ff(c->txdma);
	release_dma_lock(flags);
	
	c->txdma_on = 0;
	c->tx_dma_used = 0;

	spin_lock_irqsave(c->lock, flags);

	/*
	 *	Disable DMA control mode
	 */
	 
	c->regs[R1]&= ~WT_RDY_ENAB;
	write_zsreg(c, R1, c->regs[R1]);            
	c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
	c->regs[R1]|= INT_ALL_Rx;
	write_zsreg(c, R1, c->regs[R1]);
	c->regs[R14]&= ~DTRREQ;
	write_zsreg(c, R14, c->regs[R14]);   
	
	if(c->rx_buf[0])
	{
		free_page((unsigned long)c->rx_buf[0]);
		c->rx_buf[0]=NULL;
	}
	if(c->tx_dma_buf[0])
	{
		free_page((unsigned  long)c->tx_dma_buf[0]);
		c->tx_dma_buf[0]=NULL;
	}
	chk=read_zsreg(c,R0);
	write_zsreg(c, R3, c->regs[R3]);
	z8530_rtsdtr(c,0);

	spin_unlock_irqrestore(c->lock, flags);

	return 0;
}

EXPORT_SYMBOL(z8530_sync_dma_close);

/**
 *	z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
 *	@dev: The network device to attach
 *	@c: The Z8530 channel to configure in sync DMA mode.
 *
 *	Set up a Z85x30 device for synchronous DMA transmission. One
 *	ISA DMA channel must be available for this to work. The receive
 *	side is run in PIO mode, but then it has the bigger FIFO.
 */

int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
{
	unsigned long cflags, dflags;

	printk("Opening sync interface for TX-DMA\n");
	c->sync = 1;
	c->mtu = dev->mtu+64;
	c->count = 0;
	c->skb = NULL;
	c->skb2 = NULL;
	
	/*
	 *	Allocate the DMA flip buffers. Limit by page size.
	 *	Everyone runs 1500 mtu or less on wan links so this
	 *	should be fine.
	 */
	 
	if(c->mtu  > PAGE_SIZE/2)
		return -EMSGSIZE;
	 
	c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
	if(c->tx_dma_buf[0]==NULL)
		return -ENOBUFS;

	c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;


	spin_lock_irqsave(c->lock, cflags);

	/*
	 *	Load the PIO receive ring
	 */

	z8530_rx_done(c);
	z8530_rx_done(c);

 	/*
	 *	Load the DMA interfaces up
	 */

	c->rxdma_on = 0;
	c->txdma_on = 0;
	
	c->tx_dma_used=0;
	c->dma_num=0;
	c->dma_ready=1;
	c->dma_tx = 1;

 	/*
	 *	Enable DMA control mode
	 */

 	/*
	 *	TX DMA via DIR/REQ
 	 */
	c->regs[R14]|= DTRREQ;
	write_zsreg(c, R14, c->regs[R14]);     
	
	c->regs[R1]&= ~TxINT_ENAB;
	write_zsreg(c, R1, c->regs[R1]);
	
	/*
	 *	Set up the DMA configuration
	 */	
	 
	dflags = claim_dma_lock();

	disable_dma(c->txdma);
	clear_dma_ff(c->txdma);
	set_dma_mode(c->txdma, DMA_MODE_WRITE);
	disable_dma(c->txdma);

	release_dma_lock(dflags);
	
	/*
	 *	Select the DMA interrupt handlers
	 */

	c->rxdma_on = 0;
	c->txdma_on = 1;
	c->tx_dma_used = 1;
	 
	c->irqs = &z8530_txdma_sync;
	z8530_rtsdtr(c,1);
	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
	spin_unlock_irqrestore(c->lock, cflags);
	
	return 0;
}

EXPORT_SYMBOL(z8530_sync_txdma_open);

/**
 *	z8530_sync_txdma_close - Close down a TX driven DMA channel
 *	@dev: Network device to detach
 *	@c: Z8530 channel to move into discard mode
 *
 *	Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, 
 *	and  free the buffers.
 */

int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
{
	unsigned long dflags, cflags;
	u8 chk;

	
	spin_lock_irqsave(c->lock, cflags);
	
	c->irqs = &z8530_nop;
	c->max = 0;
	c->sync = 0;
	
	/*
	 *	Disable the PC DMA channels
	 */
	 
	dflags = claim_dma_lock();

	disable_dma(c->txdma);
	clear_dma_ff(c->txdma);
	c->txdma_on = 0;
	c->tx_dma_used = 0;

	release_dma_lock(dflags);

	/*
	 *	Disable DMA control mode
	 */
	 
	c->regs[R1]&= ~WT_RDY_ENAB;
	write_zsreg(c, R1, c->regs[R1]);            
	c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
	c->regs[R1]|= INT_ALL_Rx;
	write_zsreg(c, R1, c->regs[R1]);
	c->regs[R14]&= ~DTRREQ;
	write_zsreg(c, R14, c->regs[R14]);   
	
	if(c->tx_dma_buf[0])
	{
		free_page((unsigned long)c->tx_dma_buf[0]);
		c->tx_dma_buf[0]=NULL;
	}
	chk=read_zsreg(c,R0);
	write_zsreg(c, R3, c->regs[R3]);
	z8530_rtsdtr(c,0);

	spin_unlock_irqrestore(c->lock, cflags);
	return 0;
}


EXPORT_SYMBOL(z8530_sync_txdma_close);


/*
 *	Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
 *	it exists...
 */
 
static const char *z8530_type_name[]={
	"Z8530",
	"Z85C30",
	"Z85230"
};

/**
 *	z8530_describe - Uniformly describe a Z8530 port
 *	@dev: Z8530 device to describe
 *	@mapping: string holding mapping type (eg "I/O" or "Mem")
 *	@io: the port value in question
 *
 *	Describe a Z8530 in a standard format. We must pass the I/O as
 *	the port offset isn't predictable. The main reason for this function
 *	is to try and get a common format of report.
 */

void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
{
	pr_info("%s: %s found at %s 0x%lX, IRQ %d\n",
		dev->name, 
		z8530_type_name[dev->type],
		mapping,
		Z8530_PORT_OF(io),
		dev->irq);
}

EXPORT_SYMBOL(z8530_describe);

/*
 *	Locked operation part of the z8530 init code
 */
 
static inline int do_z8530_init(struct z8530_dev *dev)
{
	/* NOP the interrupt handlers first - we might get a
	   floating IRQ transition when we reset the chip */
	dev->chanA.irqs=&z8530_nop;
	dev->chanB.irqs=&z8530_nop;
	dev->chanA.dcdcheck=DCD;
	dev->chanB.dcdcheck=DCD;

	/* Reset the chip */
	write_zsreg(&dev->chanA, R9, 0xC0);
	udelay(200);
	/* Now check its valid */
	write_zsreg(&dev->chanA, R12, 0xAA);
	if(read_zsreg(&dev->chanA, R12)!=0xAA)
		return -ENODEV;
	write_zsreg(&dev->chanA, R12, 0x55);
	if(read_zsreg(&dev->chanA, R12)!=0x55)
		return -ENODEV;
		
	dev->type=Z8530;
	
	/*
	 *	See the application note.
	 */
	 
	write_zsreg(&dev->chanA, R15, 0x01);
	
	/*
	 *	If we can set the low bit of R15 then
	 *	the chip is enhanced.
	 */
	 
	if(read_zsreg(&dev->chanA, R15)==0x01)
	{
		/* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
		/* Put a char in the fifo */
		write_zsreg(&dev->chanA, R8, 0);
		if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
			dev->type = Z85230;	/* Has a FIFO */
		else
			dev->type = Z85C30;	/* Z85C30, 1 byte FIFO */
	}
		
	/*
	 *	The code assumes R7' and friends are
	 *	off. Use write_zsext() for these and keep
	 *	this bit clear.
	 */
	 
	write_zsreg(&dev->chanA, R15, 0);
		
	/*
	 *	At this point it looks like the chip is behaving
	 */
	 
	memcpy(dev->chanA.regs, reg_init, 16);
	memcpy(dev->chanB.regs, reg_init ,16);
	
	return 0;
}

/**
 *	z8530_init - Initialise a Z8530 device
 *	@dev: Z8530 device to initialise.
 *
 *	Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
 *	is present, identify the type and then program it to hopefully
 *	keep quite and behave. This matters a lot, a Z8530 in the wrong
 *	state will sometimes get into stupid modes generating 10Khz
 *	interrupt streams and the like.
 *
 *	We set the interrupt handler up to discard any events, in case
 *	we get them during reset or setp.
 *
 *	Return 0 for success, or a negative value indicating the problem
 *	in errno form.
 */

int z8530_init(struct z8530_dev *dev)
{
	unsigned long flags;
	int ret;

	/* Set up the chip level lock */
	spin_lock_init(&dev->lock);
	dev->chanA.lock = &dev->lock;
	dev->chanB.lock = &dev->lock;

	spin_lock_irqsave(&dev->lock, flags);
	ret = do_z8530_init(dev);
	spin_unlock_irqrestore(&dev->lock, flags);

	return ret;
}


EXPORT_SYMBOL(z8530_init);

/**
 *	z8530_shutdown - Shutdown a Z8530 device
 *	@dev: The Z8530 chip to shutdown
 *
 *	We set the interrupt handlers to silence any interrupts. We then 
 *	reset the chip and wait 100uS to be sure the reset completed. Just
 *	in case the caller then tries to do stuff.
 *
 *	This is called without the lock held
 */
 
int z8530_shutdown(struct z8530_dev *dev)
{
	unsigned long flags;
	/* Reset the chip */

	spin_lock_irqsave(&dev->lock, flags);
	dev->chanA.irqs=&z8530_nop;
	dev->chanB.irqs=&z8530_nop;
	write_zsreg(&dev->chanA, R9, 0xC0);
	/* We must lock the udelay, the chip is offlimits here */
	udelay(100);
	spin_unlock_irqrestore(&dev->lock, flags);
	return 0;
}

EXPORT_SYMBOL(z8530_shutdown);

/**
 *	z8530_channel_load - Load channel data
 *	@c: Z8530 channel to configure
 *	@rtable: table of register, value pairs
 *	FIXME: ioctl to allow user uploaded tables
 *
 *	Load a Z8530 channel up from the system data. We use +16 to 
 *	indicate the "prime" registers. The value 255 terminates the
 *	table.
 */

int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
{
	unsigned long flags;

	spin_lock_irqsave(c->lock, flags);

	while(*rtable!=255)
	{
		int reg=*rtable++;
		if(reg>0x0F)
			write_zsreg(c, R15, c->regs[15]|1);
		write_zsreg(c, reg&0x0F, *rtable);
		if(reg>0x0F)
			write_zsreg(c, R15, c->regs[15]&~1);
		c->regs[reg]=*rtable++;
	}
	c->rx_function=z8530_null_rx;
	c->skb=NULL;
	c->tx_skb=NULL;
	c->tx_next_skb=NULL;
	c->mtu=1500;
	c->max=0;
	c->count=0;
	c->status=read_zsreg(c, R0);
	c->sync=1;
	write_zsreg(c, R3, c->regs[R3]|RxENABLE);

	spin_unlock_irqrestore(c->lock, flags);
	return 0;
}

EXPORT_SYMBOL(z8530_channel_load);


/**
 *	z8530_tx_begin - Begin packet transmission
 *	@c: The Z8530 channel to kick
 *
 *	This is the speed sensitive side of transmission. If we are called
 *	and no buffer is being transmitted we commence the next buffer. If
 *	nothing is queued we idle the sync. 
 *
 *	Note: We are handling this code path in the interrupt path, keep it
 *	fast or bad things will happen.
 *
 *	Called with the lock held.
 */

static void z8530_tx_begin(struct z8530_channel *c)
{
	unsigned long flags;
	if(c->tx_skb)
		return;
		
	c->tx_skb=c->tx_next_skb;
	c->tx_next_skb=NULL;
	c->tx_ptr=c->tx_next_ptr;
	
	if(c->tx_skb==NULL)
	{
		/* Idle on */
		if(c->dma_tx)
		{
			flags=claim_dma_lock();
			disable_dma(c->txdma);
			/*
			 *	Check if we crapped out.
			 */
			if (get_dma_residue(c->txdma))
			{
				c->netdevice->stats.tx_dropped++;
				c->netdevice->stats.tx_fifo_errors++;
			}
			release_dma_lock(flags);
		}
		c->txcount=0;
	}
	else
	{
		c->txcount=c->tx_skb->len;
		
		
		if(c->dma_tx)
		{
			/*
			 *	FIXME. DMA is broken for the original 8530,
			 *	on the older parts we need to set a flag and
			 *	wait for a further TX interrupt to fire this
			 *	stage off	
			 */
			 
			flags=claim_dma_lock();
			disable_dma(c->txdma);

			/*
			 *	These two are needed by the 8530/85C30
			 *	and must be issued when idling.
			 */
			 
			if(c->dev->type!=Z85230)
			{
				write_zsctrl(c, RES_Tx_CRC);
				write_zsctrl(c, RES_EOM_L);
			}	
			write_zsreg(c, R10, c->regs[10]&~ABUNDER);
			clear_dma_ff(c->txdma);
			set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
			set_dma_count(c->txdma, c->txcount);
			enable_dma(c->txdma);
			release_dma_lock(flags);
			write_zsctrl(c, RES_EOM_L);
			write_zsreg(c, R5, c->regs[R5]|TxENAB);
		}
		else
		{

			/* ABUNDER off */
			write_zsreg(c, R10, c->regs[10]);
			write_zsctrl(c, RES_Tx_CRC);
	
			while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
			{		
				write_zsreg(c, R8, *c->tx_ptr++);
				c->txcount--;
			}

		}
	}
	/*
	 *	Since we emptied tx_skb we can ask for more
	 */
	netif_wake_queue(c->netdevice);
}

/**
 *	z8530_tx_done - TX complete callback
 *	@c: The channel that completed a transmit.
 *
 *	This is called when we complete a packet send. We wake the queue,
 *	start the next packet going and then free the buffer of the existing
 *	packet. This code is fairly timing sensitive.
 *
 *	Called with the register lock held.
 */

static void z8530_tx_done(struct z8530_channel *c)
{
	struct sk_buff *skb;

	/* Actually this can happen.*/
	if (c->tx_skb == NULL)
		return;

	skb = c->tx_skb;
	c->tx_skb = NULL;
	z8530_tx_begin(c);
	c->netdevice->stats.tx_packets++;
	c->netdevice->stats.tx_bytes += skb->len;
	dev_kfree_skb_irq(skb);
}

/**
 *	z8530_null_rx - Discard a packet
 *	@c: The channel the packet arrived on
 *	@skb: The buffer
 *
 *	We point the receive handler at this function when idle. Instead
 *	of processing the frames we get to throw them away.
 */
 
void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
{
	dev_kfree_skb_any(skb);
}

EXPORT_SYMBOL(z8530_null_rx);

/**
 *	z8530_rx_done - Receive completion callback
 *	@c: The channel that completed a receive
 *
 *	A new packet is complete. Our goal here is to get back into receive
 *	mode as fast as possible. On the Z85230 we could change to using
 *	ESCC mode, but on the older chips we have no choice. We flip to the
 *	new buffer immediately in DMA mode so that the DMA of the next
 *	frame can occur while we are copying the previous buffer to an sk_buff
 *
 *	Called with the lock held
 */
 
static void z8530_rx_done(struct z8530_channel *c)
{
	struct sk_buff *skb;
	int ct;
	
	/*
	 *	Is our receive engine in DMA mode
	 */
	 
	if(c->rxdma_on)
	{
		/*
		 *	Save the ready state and the buffer currently
		 *	being used as the DMA target
		 */
		 
		int ready=c->dma_ready;
		unsigned char *rxb=c->rx_buf[c->dma_num];
		unsigned long flags;
		
		/*
		 *	Complete this DMA. Necessary to find the length
		 */		
		 
		flags=claim_dma_lock();
		
		disable_dma(c->rxdma);
		clear_dma_ff(c->rxdma);
		c->rxdma_on=0;
		ct=c->mtu-get_dma_residue(c->rxdma);
		if(ct<0)
			ct=2;	/* Shit happens.. */
		c->dma_ready=0;
		
		/*
		 *	Normal case: the other slot is free, start the next DMA
		 *	into it immediately.
		 */
		 
		if(ready)
		{
			c->dma_num^=1;
			set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
			set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
			set_dma_count(c->rxdma, c->mtu);
			c->rxdma_on = 1;
			enable_dma(c->rxdma);
			/* Stop any frames that we missed the head of 
			   from passing */
			write_zsreg(c, R0, RES_Rx_CRC);
		}
		else
			/* Can't occur as we dont reenable the DMA irq until
			   after the flip is done */
			netdev_warn(c->netdevice, "DMA flip overrun!\n");

		release_dma_lock(flags);

		/*
		 *	Shove the old buffer into an sk_buff. We can't DMA
		 *	directly into one on a PC - it might be above the 16Mb
		 *	boundary. Optimisation - we could check to see if we
		 *	can avoid the copy. Optimisation 2 - make the memcpy
		 *	a copychecksum.
		 */

		skb = dev_alloc_skb(ct);
		if (skb == NULL) {
			c->netdevice->stats.rx_dropped++;
			netdev_warn(c->netdevice, "Memory squeeze\n");
		} else {
			skb_put(skb, ct);
			skb_copy_to_linear_data(skb, rxb, ct);
			c->netdevice->stats.rx_packets++;
			c->netdevice->stats.rx_bytes += ct;
		}
		c->dma_ready = 1;
	} else {
		RT_LOCK;
		skb = c->skb;

		/*
		 *	The game we play for non DMA is similar. We want to
		 *	get the controller set up for the next packet as fast
		 *	as possible. We potentially only have one byte + the
		 *	fifo length for this. Thus we want to flip to the new
		 *	buffer and then mess around copying and allocating
		 *	things. For the current case it doesn't matter but
		 *	if you build a system where the sync irq isn't blocked
		 *	by the kernel IRQ disable then you need only block the
		 *	sync IRQ for the RT_LOCK area.
		 *
		 */
		ct=c->count;

		c->skb = c->skb2;
		c->count = 0;
		c->max = c->mtu;
		if (c->skb) {
			c->dptr = c->skb->data;
			c->max = c->mtu;
		} else {
			c->count = 0;
			c->max = 0;
		}
		RT_UNLOCK;

		c->skb2 = dev_alloc_skb(c->mtu);
		if (c->skb2 == NULL)
			netdev_warn(c->netdevice, "memory squeeze\n");
		else
			skb_put(c->skb2, c->mtu);
		c->netdevice->stats.rx_packets++;
		c->netdevice->stats.rx_bytes += ct;
	}
	/*
	 *	If we received a frame we must now process it.
	 */
	if (skb) {
		skb_trim(skb, ct);
		c->rx_function(c, skb);
	} else {
		c->netdevice->stats.rx_dropped++;
		netdev_err(c->netdevice, "Lost a frame\n");
	}
}

/**
 *	spans_boundary - Check a packet can be ISA DMA'd
 *	@skb: The buffer to check
 *
 *	Returns true if the buffer cross a DMA boundary on a PC. The poor
 *	thing can only DMA within a 64K block not across the edges of it.
 */

static inline int spans_boundary(struct sk_buff *skb)
{
	unsigned long a=(unsigned long)skb->data;
	a^=(a+skb->len);
	if(a&0x00010000)	/* If the 64K bit is different.. */
		return 1;
	return 0;
}

/**
 *	z8530_queue_xmit - Queue a packet
 *	@c: The channel to use
 *	@skb: The packet to kick down the channel
 *
 *	Queue a packet for transmission. Because we have rather
 *	hard to hit interrupt latencies for the Z85230 per packet 
 *	even in DMA mode we do the flip to DMA buffer if needed here
 *	not in the IRQ.
 *
 *	Called from the network code. The lock is not held at this 
 *	point.
 */

netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
{
	unsigned long flags;
	
	netif_stop_queue(c->netdevice);
	if(c->tx_next_skb)
		return NETDEV_TX_BUSY;

	
	/* PC SPECIFIC - DMA limits */
	
	/*
	 *	If we will DMA the transmit and its gone over the ISA bus
	 *	limit, then copy to the flip buffer
	 */
	 
	if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
	{
		/* 
		 *	Send the flip buffer, and flip the flippy bit.
		 *	We don't care which is used when just so long as
		 *	we never use the same buffer twice in a row. Since
		 *	only one buffer can be going out at a time the other
		 *	has to be safe.
		 */
		c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
		c->tx_dma_used^=1;	/* Flip temp buffer */
		skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
	}
	else
		c->tx_next_ptr=skb->data;	
	RT_LOCK;
	c->tx_next_skb=skb;
	RT_UNLOCK;
	
	spin_lock_irqsave(c->lock, flags);
	z8530_tx_begin(c);
	spin_unlock_irqrestore(c->lock, flags);
	
	return NETDEV_TX_OK;
}

EXPORT_SYMBOL(z8530_queue_xmit);

/*
 *	Module support
 */
static const char banner[] __initconst =
	KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";

static int __init z85230_init_driver(void)
{
	printk(banner);
	return 0;
}
module_init(z85230_init_driver);

static void __exit z85230_cleanup_driver(void)
{
}
module_exit(z85230_cleanup_driver);

MODULE_AUTHOR("Red Hat Inc.");
MODULE_DESCRIPTION("Z85x30 synchronous driver core");
MODULE_LICENSE("GPL");