qca_spi.c 23.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
/*
 *   Copyright (c) 2011, 2012, Qualcomm Atheros Communications Inc.
 *   Copyright (c) 2014, I2SE GmbH
 *
 *   Permission to use, copy, modify, and/or distribute this software
 *   for any purpose with or without fee is hereby granted, provided
 *   that the above copyright notice and this permission notice appear
 *   in all copies.
 *
 *   THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
 *   WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
 *   WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
 *   THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
 *   CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
 *   LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
 *   NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 *   CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

/*   This module implements the Qualcomm Atheros SPI protocol for
 *   kernel-based SPI device; it is essentially an Ethernet-to-SPI
 *   serial converter;
 */

#include <linux/errno.h>
#include <linux/etherdevice.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_net.h>
#include <linux/sched.h>
#include <linux/skbuff.h>
#include <linux/spi/spi.h>
#include <linux/types.h>

#include "qca_7k.h"
#include "qca_debug.h"
#include "qca_framing.h"
#include "qca_spi.h"

#define MAX_DMA_BURST_LEN 5000

/*   Modules parameters     */
#define QCASPI_CLK_SPEED_MIN 1000000
#define QCASPI_CLK_SPEED_MAX 16000000
#define QCASPI_CLK_SPEED     8000000
static int qcaspi_clkspeed;
module_param(qcaspi_clkspeed, int, 0);
MODULE_PARM_DESC(qcaspi_clkspeed, "SPI bus clock speed (Hz). Use 1000000-16000000.");

#define QCASPI_BURST_LEN_MIN 1
#define QCASPI_BURST_LEN_MAX MAX_DMA_BURST_LEN
static int qcaspi_burst_len = MAX_DMA_BURST_LEN;
module_param(qcaspi_burst_len, int, 0);
MODULE_PARM_DESC(qcaspi_burst_len, "Number of data bytes per burst. Use 1-5000.");

#define QCASPI_PLUGGABLE_MIN 0
#define QCASPI_PLUGGABLE_MAX 1
static int qcaspi_pluggable = QCASPI_PLUGGABLE_MIN;
module_param(qcaspi_pluggable, int, 0);
MODULE_PARM_DESC(qcaspi_pluggable, "Pluggable SPI connection (yes/no).");

#define QCASPI_MTU QCAFRM_ETHMAXMTU
#define QCASPI_TX_TIMEOUT (1 * HZ)
#define QCASPI_QCA7K_REBOOT_TIME_MS 1000

static void
start_spi_intr_handling(struct qcaspi *qca, u16 *intr_cause)
{
	*intr_cause = 0;

	qcaspi_write_register(qca, SPI_REG_INTR_ENABLE, 0);
	qcaspi_read_register(qca, SPI_REG_INTR_CAUSE, intr_cause);
	netdev_dbg(qca->net_dev, "interrupts: 0x%04x\n", *intr_cause);
}

static void
end_spi_intr_handling(struct qcaspi *qca, u16 intr_cause)
{
	u16 intr_enable = (SPI_INT_CPU_ON |
			   SPI_INT_PKT_AVLBL |
			   SPI_INT_RDBUF_ERR |
			   SPI_INT_WRBUF_ERR);

	qcaspi_write_register(qca, SPI_REG_INTR_CAUSE, intr_cause);
	qcaspi_write_register(qca, SPI_REG_INTR_ENABLE, intr_enable);
	netdev_dbg(qca->net_dev, "acking int: 0x%04x\n", intr_cause);
}

static u32
qcaspi_write_burst(struct qcaspi *qca, u8 *src, u32 len)
{
	__be16 cmd;
	struct spi_message *msg = &qca->spi_msg2;
	struct spi_transfer *transfer = &qca->spi_xfer2[0];
	int ret;

	cmd = cpu_to_be16(QCA7K_SPI_WRITE | QCA7K_SPI_EXTERNAL);
	transfer->tx_buf = &cmd;
	transfer->rx_buf = NULL;
	transfer->len = QCASPI_CMD_LEN;
	transfer = &qca->spi_xfer2[1];
	transfer->tx_buf = src;
	transfer->rx_buf = NULL;
	transfer->len = len;

	ret = spi_sync(qca->spi_dev, msg);

	if (ret || (msg->actual_length != QCASPI_CMD_LEN + len)) {
		qcaspi_spi_error(qca);
		return 0;
	}

	return len;
}

static u32
qcaspi_write_legacy(struct qcaspi *qca, u8 *src, u32 len)
{
	struct spi_message *msg = &qca->spi_msg1;
	struct spi_transfer *transfer = &qca->spi_xfer1;
	int ret;

	transfer->tx_buf = src;
	transfer->rx_buf = NULL;
	transfer->len = len;

	ret = spi_sync(qca->spi_dev, msg);

	if (ret || (msg->actual_length != len)) {
		qcaspi_spi_error(qca);
		return 0;
	}

	return len;
}

static u32
qcaspi_read_burst(struct qcaspi *qca, u8 *dst, u32 len)
{
	struct spi_message *msg = &qca->spi_msg2;
	__be16 cmd;
	struct spi_transfer *transfer = &qca->spi_xfer2[0];
	int ret;

	cmd = cpu_to_be16(QCA7K_SPI_READ | QCA7K_SPI_EXTERNAL);
	transfer->tx_buf = &cmd;
	transfer->rx_buf = NULL;
	transfer->len = QCASPI_CMD_LEN;
	transfer = &qca->spi_xfer2[1];
	transfer->tx_buf = NULL;
	transfer->rx_buf = dst;
	transfer->len = len;

	ret = spi_sync(qca->spi_dev, msg);

	if (ret || (msg->actual_length != QCASPI_CMD_LEN + len)) {
		qcaspi_spi_error(qca);
		return 0;
	}

	return len;
}

static u32
qcaspi_read_legacy(struct qcaspi *qca, u8 *dst, u32 len)
{
	struct spi_message *msg = &qca->spi_msg1;
	struct spi_transfer *transfer = &qca->spi_xfer1;
	int ret;

	transfer->tx_buf = NULL;
	transfer->rx_buf = dst;
	transfer->len = len;

	ret = spi_sync(qca->spi_dev, msg);

	if (ret || (msg->actual_length != len)) {
		qcaspi_spi_error(qca);
		return 0;
	}

	return len;
}

static int
qcaspi_tx_frame(struct qcaspi *qca, struct sk_buff *skb)
{
	u32 count;
	u32 written;
	u32 offset;
	u32 len;

	len = skb->len;

	qcaspi_write_register(qca, SPI_REG_BFR_SIZE, len);
	if (qca->legacy_mode)
		qcaspi_tx_cmd(qca, QCA7K_SPI_WRITE | QCA7K_SPI_EXTERNAL);

	offset = 0;
	while (len) {
		count = len;
		if (count > qca->burst_len)
			count = qca->burst_len;

		if (qca->legacy_mode) {
			written = qcaspi_write_legacy(qca,
						      skb->data + offset,
						      count);
		} else {
			written = qcaspi_write_burst(qca,
						     skb->data + offset,
						     count);
		}

		if (written != count)
			return -1;

		offset += count;
		len -= count;
	}

	return 0;
}

static int
qcaspi_transmit(struct qcaspi *qca)
{
	struct net_device_stats *n_stats = &qca->net_dev->stats;
	u16 available = 0;
	u32 pkt_len;
	u16 new_head;
	u16 packets = 0;

	if (qca->txr.skb[qca->txr.head] == NULL)
		return 0;

	qcaspi_read_register(qca, SPI_REG_WRBUF_SPC_AVA, &available);

	while (qca->txr.skb[qca->txr.head]) {
		pkt_len = qca->txr.skb[qca->txr.head]->len + QCASPI_HW_PKT_LEN;

		if (available < pkt_len) {
			if (packets == 0)
				qca->stats.write_buf_miss++;
			break;
		}

		if (qcaspi_tx_frame(qca, qca->txr.skb[qca->txr.head]) == -1) {
			qca->stats.write_err++;
			return -1;
		}

		packets++;
		n_stats->tx_packets++;
		n_stats->tx_bytes += qca->txr.skb[qca->txr.head]->len;
		available -= pkt_len;

		/* remove the skb from the queue */
		/* XXX After inconsistent lock states netif_tx_lock()
		 * has been replaced by netif_tx_lock_bh() and so on.
		 */
		netif_tx_lock_bh(qca->net_dev);
		dev_kfree_skb(qca->txr.skb[qca->txr.head]);
		qca->txr.skb[qca->txr.head] = NULL;
		qca->txr.size -= pkt_len;
		new_head = qca->txr.head + 1;
		if (new_head >= qca->txr.count)
			new_head = 0;
		qca->txr.head = new_head;
		if (netif_queue_stopped(qca->net_dev))
			netif_wake_queue(qca->net_dev);
		netif_tx_unlock_bh(qca->net_dev);
	}

	return 0;
}

static int
qcaspi_receive(struct qcaspi *qca)
{
	struct net_device *net_dev = qca->net_dev;
	struct net_device_stats *n_stats = &net_dev->stats;
	u16 available = 0;
	u32 bytes_read;
	u8 *cp;

	/* Allocate rx SKB if we don't have one available. */
	if (!qca->rx_skb) {
		qca->rx_skb = netdev_alloc_skb(net_dev,
					       net_dev->mtu + VLAN_ETH_HLEN);
		if (!qca->rx_skb) {
			netdev_dbg(net_dev, "out of RX resources\n");
			qca->stats.out_of_mem++;
			return -1;
		}
	}

	/* Read the packet size. */
	qcaspi_read_register(qca, SPI_REG_RDBUF_BYTE_AVA, &available);
	netdev_dbg(net_dev, "qcaspi_receive: SPI_REG_RDBUF_BYTE_AVA: Value: %08x\n",
		   available);

	if (available == 0) {
		netdev_dbg(net_dev, "qcaspi_receive called without any data being available!\n");
		return -1;
	}

	qcaspi_write_register(qca, SPI_REG_BFR_SIZE, available);

	if (qca->legacy_mode)
		qcaspi_tx_cmd(qca, QCA7K_SPI_READ | QCA7K_SPI_EXTERNAL);

	while (available) {
		u32 count = available;

		if (count > qca->burst_len)
			count = qca->burst_len;

		if (qca->legacy_mode) {
			bytes_read = qcaspi_read_legacy(qca, qca->rx_buffer,
							count);
		} else {
			bytes_read = qcaspi_read_burst(qca, qca->rx_buffer,
						       count);
		}

		netdev_dbg(net_dev, "available: %d, byte read: %d\n",
			   available, bytes_read);

		if (bytes_read) {
			available -= bytes_read;
		} else {
			qca->stats.read_err++;
			return -1;
		}

		cp = qca->rx_buffer;

		while ((bytes_read--) && (qca->rx_skb)) {
			s32 retcode;

			retcode = qcafrm_fsm_decode(&qca->frm_handle,
						    qca->rx_skb->data,
						    skb_tailroom(qca->rx_skb),
						    *cp);
			cp++;
			switch (retcode) {
			case QCAFRM_GATHER:
			case QCAFRM_NOHEAD:
				break;
			case QCAFRM_NOTAIL:
				netdev_dbg(net_dev, "no RX tail\n");
				n_stats->rx_errors++;
				n_stats->rx_dropped++;
				break;
			case QCAFRM_INVLEN:
				netdev_dbg(net_dev, "invalid RX length\n");
				n_stats->rx_errors++;
				n_stats->rx_dropped++;
				break;
			default:
				qca->rx_skb->dev = qca->net_dev;
				n_stats->rx_packets++;
				n_stats->rx_bytes += retcode;
				skb_put(qca->rx_skb, retcode);
				qca->rx_skb->protocol = eth_type_trans(
					qca->rx_skb, qca->rx_skb->dev);
				qca->rx_skb->ip_summed = CHECKSUM_UNNECESSARY;
				netif_rx_ni(qca->rx_skb);
				qca->rx_skb = netdev_alloc_skb(net_dev,
					net_dev->mtu + VLAN_ETH_HLEN);
				if (!qca->rx_skb) {
					netdev_dbg(net_dev, "out of RX resources\n");
					n_stats->rx_errors++;
					qca->stats.out_of_mem++;
					break;
				}
			}
		}
	}

	return 0;
}

/*   Check that tx ring stores only so much bytes
 *   that fit into the internal QCA buffer.
 */

static int
qcaspi_tx_ring_has_space(struct tx_ring *txr)
{
	if (txr->skb[txr->tail])
		return 0;

	return (txr->size + QCAFRM_ETHMAXLEN < QCASPI_HW_BUF_LEN) ? 1 : 0;
}

/*   Flush the tx ring. This function is only safe to
 *   call from the qcaspi_spi_thread.
 */

static void
qcaspi_flush_tx_ring(struct qcaspi *qca)
{
	int i;

	/* XXX After inconsistent lock states netif_tx_lock()
	 * has been replaced by netif_tx_lock_bh() and so on.
	 */
	netif_tx_lock_bh(qca->net_dev);
	for (i = 0; i < TX_RING_MAX_LEN; i++) {
		if (qca->txr.skb[i]) {
			dev_kfree_skb(qca->txr.skb[i]);
			qca->txr.skb[i] = NULL;
			qca->net_dev->stats.tx_dropped++;
		}
	}
	qca->txr.tail = 0;
	qca->txr.head = 0;
	qca->txr.size = 0;
	netif_tx_unlock_bh(qca->net_dev);
}

static void
qcaspi_qca7k_sync(struct qcaspi *qca, int event)
{
	u16 signature = 0;
	u16 spi_config;
	u16 wrbuf_space = 0;
	static u16 reset_count;

	if (event == QCASPI_EVENT_CPUON) {
		/* Read signature twice, if not valid
		 * go back to unknown state.
		 */
		qcaspi_read_register(qca, SPI_REG_SIGNATURE, &signature);
		qcaspi_read_register(qca, SPI_REG_SIGNATURE, &signature);
		if (signature != QCASPI_GOOD_SIGNATURE) {
			qca->sync = QCASPI_SYNC_UNKNOWN;
			netdev_dbg(qca->net_dev, "sync: got CPU on, but signature was invalid, restart\n");
		} else {
			/* ensure that the WRBUF is empty */
			qcaspi_read_register(qca, SPI_REG_WRBUF_SPC_AVA,
					     &wrbuf_space);
			if (wrbuf_space != QCASPI_HW_BUF_LEN) {
				netdev_dbg(qca->net_dev, "sync: got CPU on, but wrbuf not empty. reset!\n");
				qca->sync = QCASPI_SYNC_UNKNOWN;
			} else {
				netdev_dbg(qca->net_dev, "sync: got CPU on, now in sync\n");
				qca->sync = QCASPI_SYNC_READY;
				return;
			}
		}
	}

	switch (qca->sync) {
	case QCASPI_SYNC_READY:
		/* Read signature, if not valid go to unknown state. */
		qcaspi_read_register(qca, SPI_REG_SIGNATURE, &signature);
		if (signature != QCASPI_GOOD_SIGNATURE) {
			qca->sync = QCASPI_SYNC_UNKNOWN;
			netdev_dbg(qca->net_dev, "sync: bad signature, restart\n");
			/* don't reset right away */
			return;
		}
		break;
	case QCASPI_SYNC_UNKNOWN:
		/* Read signature, if not valid stay in unknown state */
		qcaspi_read_register(qca, SPI_REG_SIGNATURE, &signature);
		if (signature != QCASPI_GOOD_SIGNATURE) {
			netdev_dbg(qca->net_dev, "sync: could not read signature to reset device, retry.\n");
			return;
		}

		/* TODO: use GPIO to reset QCA7000 in legacy mode*/
		netdev_dbg(qca->net_dev, "sync: resetting device.\n");
		qcaspi_read_register(qca, SPI_REG_SPI_CONFIG, &spi_config);
		spi_config |= QCASPI_SLAVE_RESET_BIT;
		qcaspi_write_register(qca, SPI_REG_SPI_CONFIG, spi_config);

		qca->sync = QCASPI_SYNC_RESET;
		qca->stats.trig_reset++;
		reset_count = 0;
		break;
	case QCASPI_SYNC_RESET:
		reset_count++;
		netdev_dbg(qca->net_dev, "sync: waiting for CPU on, count %u.\n",
			   reset_count);
		if (reset_count >= QCASPI_RESET_TIMEOUT) {
			/* reset did not seem to take place, try again */
			qca->sync = QCASPI_SYNC_UNKNOWN;
			qca->stats.reset_timeout++;
			netdev_dbg(qca->net_dev, "sync: reset timeout, restarting process.\n");
		}
		break;
	}
}

static int
qcaspi_spi_thread(void *data)
{
	struct qcaspi *qca = data;
	u16 intr_cause = 0;

	netdev_info(qca->net_dev, "SPI thread created\n");
	while (!kthread_should_stop()) {
		set_current_state(TASK_INTERRUPTIBLE);
		if ((qca->intr_req == qca->intr_svc) &&
		    (qca->txr.skb[qca->txr.head] == NULL) &&
		    (qca->sync == QCASPI_SYNC_READY))
			schedule();

		set_current_state(TASK_RUNNING);

		netdev_dbg(qca->net_dev, "have work to do. int: %d, tx_skb: %p\n",
			   qca->intr_req - qca->intr_svc,
			   qca->txr.skb[qca->txr.head]);

		qcaspi_qca7k_sync(qca, QCASPI_EVENT_UPDATE);

		if (qca->sync != QCASPI_SYNC_READY) {
			netdev_dbg(qca->net_dev, "sync: not ready %u, turn off carrier and flush\n",
				   (unsigned int)qca->sync);
			netif_stop_queue(qca->net_dev);
			netif_carrier_off(qca->net_dev);
			qcaspi_flush_tx_ring(qca);
			msleep(QCASPI_QCA7K_REBOOT_TIME_MS);
		}

		if (qca->intr_svc != qca->intr_req) {
			qca->intr_svc = qca->intr_req;
			start_spi_intr_handling(qca, &intr_cause);

			if (intr_cause & SPI_INT_CPU_ON) {
				qcaspi_qca7k_sync(qca, QCASPI_EVENT_CPUON);

				/* not synced. */
				if (qca->sync != QCASPI_SYNC_READY)
					continue;

				qca->stats.device_reset++;
				netif_wake_queue(qca->net_dev);
				netif_carrier_on(qca->net_dev);
			}

			if (intr_cause & SPI_INT_RDBUF_ERR) {
				/* restart sync */
				netdev_dbg(qca->net_dev, "===> rdbuf error!\n");
				qca->stats.read_buf_err++;
				qca->sync = QCASPI_SYNC_UNKNOWN;
				continue;
			}

			if (intr_cause & SPI_INT_WRBUF_ERR) {
				/* restart sync */
				netdev_dbg(qca->net_dev, "===> wrbuf error!\n");
				qca->stats.write_buf_err++;
				qca->sync = QCASPI_SYNC_UNKNOWN;
				continue;
			}

			/* can only handle other interrupts
			 * if sync has occurred
			 */
			if (qca->sync == QCASPI_SYNC_READY) {
				if (intr_cause & SPI_INT_PKT_AVLBL)
					qcaspi_receive(qca);
			}

			end_spi_intr_handling(qca, intr_cause);
		}

		if (qca->sync == QCASPI_SYNC_READY)
			qcaspi_transmit(qca);
	}
	set_current_state(TASK_RUNNING);
	netdev_info(qca->net_dev, "SPI thread exit\n");

	return 0;
}

static irqreturn_t
qcaspi_intr_handler(int irq, void *data)
{
	struct qcaspi *qca = data;

	qca->intr_req++;
	if (qca->spi_thread &&
	    qca->spi_thread->state != TASK_RUNNING)
		wake_up_process(qca->spi_thread);

	return IRQ_HANDLED;
}

int
qcaspi_netdev_open(struct net_device *dev)
{
	struct qcaspi *qca = netdev_priv(dev);
	int ret = 0;

	if (!qca)
		return -EINVAL;

	qca->intr_req = 1;
	qca->intr_svc = 0;
	qca->sync = QCASPI_SYNC_UNKNOWN;
	qcafrm_fsm_init(&qca->frm_handle);

	qca->spi_thread = kthread_run((void *)qcaspi_spi_thread,
				      qca, "%s", dev->name);

	if (IS_ERR(qca->spi_thread)) {
		netdev_err(dev, "%s: unable to start kernel thread.\n",
			   QCASPI_DRV_NAME);
		return PTR_ERR(qca->spi_thread);
	}

	ret = request_irq(qca->spi_dev->irq, qcaspi_intr_handler, 0,
			  dev->name, qca);
	if (ret) {
		netdev_err(dev, "%s: unable to get IRQ %d (irqval=%d).\n",
			   QCASPI_DRV_NAME, qca->spi_dev->irq, ret);
		kthread_stop(qca->spi_thread);
		return ret;
	}

	netif_start_queue(qca->net_dev);

	return 0;
}

int
qcaspi_netdev_close(struct net_device *dev)
{
	struct qcaspi *qca = netdev_priv(dev);

	netif_stop_queue(dev);

	qcaspi_write_register(qca, SPI_REG_INTR_ENABLE, 0);
	free_irq(qca->spi_dev->irq, qca);

	kthread_stop(qca->spi_thread);
	qca->spi_thread = NULL;
	qcaspi_flush_tx_ring(qca);

	return 0;
}

static netdev_tx_t
qcaspi_netdev_xmit(struct sk_buff *skb, struct net_device *dev)
{
	u32 frame_len;
	u8 *ptmp;
	struct qcaspi *qca = netdev_priv(dev);
	u16 new_tail;
	struct sk_buff *tskb;
	u8 pad_len = 0;

	if (skb->len < QCAFRM_ETHMINLEN)
		pad_len = QCAFRM_ETHMINLEN - skb->len;

	if (qca->txr.skb[qca->txr.tail]) {
		netdev_warn(qca->net_dev, "queue was unexpectedly full!\n");
		netif_stop_queue(qca->net_dev);
		qca->stats.ring_full++;
		return NETDEV_TX_BUSY;
	}

	if ((skb_headroom(skb) < QCAFRM_HEADER_LEN) ||
	    (skb_tailroom(skb) < QCAFRM_FOOTER_LEN + pad_len)) {
		tskb = skb_copy_expand(skb, QCAFRM_HEADER_LEN,
				       QCAFRM_FOOTER_LEN + pad_len, GFP_ATOMIC);
		if (!tskb) {
			netdev_dbg(qca->net_dev, "could not allocate tx_buff\n");
			qca->stats.out_of_mem++;
			return NETDEV_TX_BUSY;
		}
		dev_kfree_skb(skb);
		skb = tskb;
	}

	frame_len = skb->len + pad_len;

	ptmp = skb_push(skb, QCAFRM_HEADER_LEN);
	qcafrm_create_header(ptmp, frame_len);

	if (pad_len) {
		ptmp = skb_put(skb, pad_len);
		memset(ptmp, 0, pad_len);
	}

	ptmp = skb_put(skb, QCAFRM_FOOTER_LEN);
	qcafrm_create_footer(ptmp);

	netdev_dbg(qca->net_dev, "Tx-ing packet: Size: 0x%08x\n",
		   skb->len);

	qca->txr.size += skb->len + QCASPI_HW_PKT_LEN;

	new_tail = qca->txr.tail + 1;
	if (new_tail >= qca->txr.count)
		new_tail = 0;

	qca->txr.skb[qca->txr.tail] = skb;
	qca->txr.tail = new_tail;

	if (!qcaspi_tx_ring_has_space(&qca->txr)) {
		netif_stop_queue(qca->net_dev);
		qca->stats.ring_full++;
	}

	dev->trans_start = jiffies;

	if (qca->spi_thread &&
	    qca->spi_thread->state != TASK_RUNNING)
		wake_up_process(qca->spi_thread);

	return NETDEV_TX_OK;
}

static void
qcaspi_netdev_tx_timeout(struct net_device *dev)
{
	struct qcaspi *qca = netdev_priv(dev);

	netdev_info(qca->net_dev, "Transmit timeout at %ld, latency %ld\n",
		    jiffies, jiffies - dev->trans_start);
	qca->net_dev->stats.tx_errors++;
	/* Trigger tx queue flush and QCA7000 reset */
	qca->sync = QCASPI_SYNC_UNKNOWN;
}

static int
qcaspi_netdev_init(struct net_device *dev)
{
	struct qcaspi *qca = netdev_priv(dev);

	dev->mtu = QCASPI_MTU;
	dev->type = ARPHRD_ETHER;
	qca->clkspeed = qcaspi_clkspeed;
	qca->burst_len = qcaspi_burst_len;
	qca->spi_thread = NULL;
	qca->buffer_size = (dev->mtu + VLAN_ETH_HLEN + QCAFRM_HEADER_LEN +
		QCAFRM_FOOTER_LEN + 4) * 4;

	memset(&qca->stats, 0, sizeof(struct qcaspi_stats));

	qca->rx_buffer = kmalloc(qca->buffer_size, GFP_KERNEL);
	if (!qca->rx_buffer)
		return -ENOBUFS;

	qca->rx_skb = netdev_alloc_skb(dev, qca->net_dev->mtu + VLAN_ETH_HLEN);
	if (!qca->rx_skb) {
		kfree(qca->rx_buffer);
		netdev_info(qca->net_dev, "Failed to allocate RX sk_buff.\n");
		return -ENOBUFS;
	}

	return 0;
}

static void
qcaspi_netdev_uninit(struct net_device *dev)
{
	struct qcaspi *qca = netdev_priv(dev);

	kfree(qca->rx_buffer);
	qca->buffer_size = 0;
	if (qca->rx_skb)
		dev_kfree_skb(qca->rx_skb);
}

static int
qcaspi_netdev_change_mtu(struct net_device *dev, int new_mtu)
{
	if ((new_mtu < QCAFRM_ETHMINMTU) || (new_mtu > QCAFRM_ETHMAXMTU))
		return -EINVAL;

	dev->mtu = new_mtu;

	return 0;
}

static const struct net_device_ops qcaspi_netdev_ops = {
	.ndo_init = qcaspi_netdev_init,
	.ndo_uninit = qcaspi_netdev_uninit,
	.ndo_open = qcaspi_netdev_open,
	.ndo_stop = qcaspi_netdev_close,
	.ndo_start_xmit = qcaspi_netdev_xmit,
	.ndo_change_mtu = qcaspi_netdev_change_mtu,
	.ndo_set_mac_address = eth_mac_addr,
	.ndo_tx_timeout = qcaspi_netdev_tx_timeout,
	.ndo_validate_addr = eth_validate_addr,
};

static void
qcaspi_netdev_setup(struct net_device *dev)
{
	struct qcaspi *qca = NULL;

	dev->netdev_ops = &qcaspi_netdev_ops;
	qcaspi_set_ethtool_ops(dev);
	dev->watchdog_timeo = QCASPI_TX_TIMEOUT;
	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
	dev->tx_queue_len = 100;

	qca = netdev_priv(dev);
	memset(qca, 0, sizeof(struct qcaspi));

	memset(&qca->spi_xfer1, 0, sizeof(struct spi_transfer));
	memset(&qca->spi_xfer2, 0, sizeof(struct spi_transfer) * 2);

	spi_message_init(&qca->spi_msg1);
	spi_message_add_tail(&qca->spi_xfer1, &qca->spi_msg1);

	spi_message_init(&qca->spi_msg2);
	spi_message_add_tail(&qca->spi_xfer2[0], &qca->spi_msg2);
	spi_message_add_tail(&qca->spi_xfer2[1], &qca->spi_msg2);

	memset(&qca->txr, 0, sizeof(qca->txr));
	qca->txr.count = TX_RING_MAX_LEN;
}

static const struct of_device_id qca_spi_of_match[] = {
	{ .compatible = "qca,qca7000" },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, qca_spi_of_match);

static int
qca_spi_probe(struct spi_device *spi)
{
	struct qcaspi *qca = NULL;
	struct net_device *qcaspi_devs = NULL;
	u8 legacy_mode = 0;
	u16 signature;
	const char *mac;

	if (!spi->dev.of_node) {
		dev_err(&spi->dev, "Missing device tree\n");
		return -EINVAL;
	}

	legacy_mode = of_property_read_bool(spi->dev.of_node,
					    "qca,legacy-mode");

	if (qcaspi_clkspeed == 0) {
		if (spi->max_speed_hz)
			qcaspi_clkspeed = spi->max_speed_hz;
		else
			qcaspi_clkspeed = QCASPI_CLK_SPEED;
	}

	if ((qcaspi_clkspeed < QCASPI_CLK_SPEED_MIN) ||
	    (qcaspi_clkspeed > QCASPI_CLK_SPEED_MAX)) {
		dev_info(&spi->dev, "Invalid clkspeed: %d\n",
			 qcaspi_clkspeed);
		return -EINVAL;
	}

	if ((qcaspi_burst_len < QCASPI_BURST_LEN_MIN) ||
	    (qcaspi_burst_len > QCASPI_BURST_LEN_MAX)) {
		dev_info(&spi->dev, "Invalid burst len: %d\n",
			 qcaspi_burst_len);
		return -EINVAL;
	}

	if ((qcaspi_pluggable < QCASPI_PLUGGABLE_MIN) ||
	    (qcaspi_pluggable > QCASPI_PLUGGABLE_MAX)) {
		dev_info(&spi->dev, "Invalid pluggable: %d\n",
			 qcaspi_pluggable);
		return -EINVAL;
	}

	dev_info(&spi->dev, "ver=%s, clkspeed=%d, burst_len=%d, pluggable=%d\n",
		 QCASPI_DRV_VERSION,
		 qcaspi_clkspeed,
		 qcaspi_burst_len,
		 qcaspi_pluggable);

	spi->mode = SPI_MODE_3;
	spi->max_speed_hz = qcaspi_clkspeed;
	if (spi_setup(spi) < 0) {
		dev_err(&spi->dev, "Unable to setup SPI device\n");
		return -EFAULT;
	}

	qcaspi_devs = alloc_etherdev(sizeof(struct qcaspi));
	if (!qcaspi_devs)
		return -ENOMEM;

	qcaspi_netdev_setup(qcaspi_devs);

	qca = netdev_priv(qcaspi_devs);
	if (!qca) {
		free_netdev(qcaspi_devs);
		dev_err(&spi->dev, "Fail to retrieve private structure\n");
		return -ENOMEM;
	}
	qca->net_dev = qcaspi_devs;
	qca->spi_dev = spi;
	qca->legacy_mode = legacy_mode;

	spi_set_drvdata(spi, qcaspi_devs);

	mac = of_get_mac_address(spi->dev.of_node);

	if (mac)
		ether_addr_copy(qca->net_dev->dev_addr, mac);

	if (!is_valid_ether_addr(qca->net_dev->dev_addr)) {
		eth_hw_addr_random(qca->net_dev);
		dev_info(&spi->dev, "Using random MAC address: %pM\n",
			 qca->net_dev->dev_addr);
	}

	netif_carrier_off(qca->net_dev);

	if (!qcaspi_pluggable) {
		qcaspi_read_register(qca, SPI_REG_SIGNATURE, &signature);
		qcaspi_read_register(qca, SPI_REG_SIGNATURE, &signature);

		if (signature != QCASPI_GOOD_SIGNATURE) {
			dev_err(&spi->dev, "Invalid signature (0x%04X)\n",
				signature);
			free_netdev(qcaspi_devs);
			return -EFAULT;
		}
	}

	if (register_netdev(qcaspi_devs)) {
		dev_info(&spi->dev, "Unable to register net device %s\n",
			 qcaspi_devs->name);
		free_netdev(qcaspi_devs);
		return -EFAULT;
	}

	qcaspi_init_device_debugfs(qca);

	return 0;
}

static int
qca_spi_remove(struct spi_device *spi)
{
	struct net_device *qcaspi_devs = spi_get_drvdata(spi);
	struct qcaspi *qca = netdev_priv(qcaspi_devs);

	qcaspi_remove_device_debugfs(qca);

	unregister_netdev(qcaspi_devs);
	free_netdev(qcaspi_devs);

	return 0;
}

static const struct spi_device_id qca_spi_id[] = {
	{ "qca7000", 0 },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(spi, qca_spi_id);

static struct spi_driver qca_spi_driver = {
	.driver	= {
		.name	= QCASPI_DRV_NAME,
		.of_match_table = qca_spi_of_match,
	},
	.id_table = qca_spi_id,
	.probe    = qca_spi_probe,
	.remove   = qca_spi_remove,
};
module_spi_driver(qca_spi_driver);

MODULE_DESCRIPTION("Qualcomm Atheros SPI Driver");
MODULE_AUTHOR("Qualcomm Atheros Communications");
MODULE_AUTHOR("Stefan Wahren <stefan.wahren@i2se.com>");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(QCASPI_DRV_VERSION);