e1000_phy.c 68 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
/* Intel(R) Gigabit Ethernet Linux driver
 * Copyright(c) 2007-2015 Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, see <http://www.gnu.org/licenses/>.
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 */

#include <linux/if_ether.h>
#include <linux/delay.h>

#include "e1000_mac.h"
#include "e1000_phy.h"

static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
					     u16 *phy_ctrl);
static s32  igb_wait_autoneg(struct e1000_hw *hw);
static s32  igb_set_master_slave_mode(struct e1000_hw *hw);

/* Cable length tables */
static const u16 e1000_m88_cable_length_table[] = {
	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };

static const u16 e1000_igp_2_cable_length_table[] = {
	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
	104, 109, 114, 118, 121, 124};

/**
 *  igb_check_reset_block - Check if PHY reset is blocked
 *  @hw: pointer to the HW structure
 *
 *  Read the PHY management control register and check whether a PHY reset
 *  is blocked.  If a reset is not blocked return 0, otherwise
 *  return E1000_BLK_PHY_RESET (12).
 **/
s32 igb_check_reset_block(struct e1000_hw *hw)
{
	u32 manc;

	manc = rd32(E1000_MANC);

	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
}

/**
 *  igb_get_phy_id - Retrieve the PHY ID and revision
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 *  revision in the hardware structure.
 **/
s32 igb_get_phy_id(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;
	u16 phy_id;

	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
	if (ret_val)
		goto out;

	phy->id = (u32)(phy_id << 16);
	udelay(20);
	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
	if (ret_val)
		goto out;

	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);

out:
	return ret_val;
}

/**
 *  igb_phy_reset_dsp - Reset PHY DSP
 *  @hw: pointer to the HW structure
 *
 *  Reset the digital signal processor.
 **/
static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
{
	s32 ret_val = 0;

	if (!(hw->phy.ops.write_reg))
		goto out;

	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
	if (ret_val)
		goto out;

	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);

out:
	return ret_val;
}

/**
 *  igb_read_phy_reg_mdic - Read MDI control register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the MDI control regsiter in the PHY at offset and stores the
 *  information read to data.
 **/
s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, mdic = 0;
	s32 ret_val = 0;

	if (offset > MAX_PHY_REG_ADDRESS) {
		hw_dbg("PHY Address %d is out of range\n", offset);
		ret_val = -E1000_ERR_PARAM;
		goto out;
	}

	/* Set up Op-code, Phy Address, and register offset in the MDI
	 * Control register.  The MAC will take care of interfacing with the
	 * PHY to retrieve the desired data.
	 */
	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
		(phy->addr << E1000_MDIC_PHY_SHIFT) |
		(E1000_MDIC_OP_READ));

	wr32(E1000_MDIC, mdic);

	/* Poll the ready bit to see if the MDI read completed
	 * Increasing the time out as testing showed failures with
	 * the lower time out
	 */
	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
		udelay(50);
		mdic = rd32(E1000_MDIC);
		if (mdic & E1000_MDIC_READY)
			break;
	}
	if (!(mdic & E1000_MDIC_READY)) {
		hw_dbg("MDI Read did not complete\n");
		ret_val = -E1000_ERR_PHY;
		goto out;
	}
	if (mdic & E1000_MDIC_ERROR) {
		hw_dbg("MDI Error\n");
		ret_val = -E1000_ERR_PHY;
		goto out;
	}
	*data = (u16) mdic;

out:
	return ret_val;
}

/**
 *  igb_write_phy_reg_mdic - Write MDI control register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write to register at offset
 *
 *  Writes data to MDI control register in the PHY at offset.
 **/
s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, mdic = 0;
	s32 ret_val = 0;

	if (offset > MAX_PHY_REG_ADDRESS) {
		hw_dbg("PHY Address %d is out of range\n", offset);
		ret_val = -E1000_ERR_PARAM;
		goto out;
	}

	/* Set up Op-code, Phy Address, and register offset in the MDI
	 * Control register.  The MAC will take care of interfacing with the
	 * PHY to retrieve the desired data.
	 */
	mdic = (((u32)data) |
		(offset << E1000_MDIC_REG_SHIFT) |
		(phy->addr << E1000_MDIC_PHY_SHIFT) |
		(E1000_MDIC_OP_WRITE));

	wr32(E1000_MDIC, mdic);

	/* Poll the ready bit to see if the MDI read completed
	 * Increasing the time out as testing showed failures with
	 * the lower time out
	 */
	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
		udelay(50);
		mdic = rd32(E1000_MDIC);
		if (mdic & E1000_MDIC_READY)
			break;
	}
	if (!(mdic & E1000_MDIC_READY)) {
		hw_dbg("MDI Write did not complete\n");
		ret_val = -E1000_ERR_PHY;
		goto out;
	}
	if (mdic & E1000_MDIC_ERROR) {
		hw_dbg("MDI Error\n");
		ret_val = -E1000_ERR_PHY;
		goto out;
	}

out:
	return ret_val;
}

/**
 *  igb_read_phy_reg_i2c - Read PHY register using i2c
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset using the i2c interface and stores the
 *  retrieved information in data.
 **/
s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, i2ccmd = 0;

	/* Set up Op-code, Phy Address, and register address in the I2CCMD
	 * register.  The MAC will take care of interfacing with the
	 * PHY to retrieve the desired data.
	 */
	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
		  (E1000_I2CCMD_OPCODE_READ));

	wr32(E1000_I2CCMD, i2ccmd);

	/* Poll the ready bit to see if the I2C read completed */
	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
		udelay(50);
		i2ccmd = rd32(E1000_I2CCMD);
		if (i2ccmd & E1000_I2CCMD_READY)
			break;
	}
	if (!(i2ccmd & E1000_I2CCMD_READY)) {
		hw_dbg("I2CCMD Read did not complete\n");
		return -E1000_ERR_PHY;
	}
	if (i2ccmd & E1000_I2CCMD_ERROR) {
		hw_dbg("I2CCMD Error bit set\n");
		return -E1000_ERR_PHY;
	}

	/* Need to byte-swap the 16-bit value. */
	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);

	return 0;
}

/**
 *  igb_write_phy_reg_i2c - Write PHY register using i2c
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Writes the data to PHY register at the offset using the i2c interface.
 **/
s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, i2ccmd = 0;
	u16 phy_data_swapped;

	/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
		hw_dbg("PHY I2C Address %d is out of range.\n",
			  hw->phy.addr);
		return -E1000_ERR_CONFIG;
	}

	/* Swap the data bytes for the I2C interface */
	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);

	/* Set up Op-code, Phy Address, and register address in the I2CCMD
	 * register.  The MAC will take care of interfacing with the
	 * PHY to retrieve the desired data.
	 */
	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
		  E1000_I2CCMD_OPCODE_WRITE |
		  phy_data_swapped);

	wr32(E1000_I2CCMD, i2ccmd);

	/* Poll the ready bit to see if the I2C read completed */
	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
		udelay(50);
		i2ccmd = rd32(E1000_I2CCMD);
		if (i2ccmd & E1000_I2CCMD_READY)
			break;
	}
	if (!(i2ccmd & E1000_I2CCMD_READY)) {
		hw_dbg("I2CCMD Write did not complete\n");
		return -E1000_ERR_PHY;
	}
	if (i2ccmd & E1000_I2CCMD_ERROR) {
		hw_dbg("I2CCMD Error bit set\n");
		return -E1000_ERR_PHY;
	}

	return 0;
}

/**
 *  igb_read_sfp_data_byte - Reads SFP module data.
 *  @hw: pointer to the HW structure
 *  @offset: byte location offset to be read
 *  @data: read data buffer pointer
 *
 *  Reads one byte from SFP module data stored
 *  in SFP resided EEPROM memory or SFP diagnostic area.
 *  Function should be called with
 *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
 *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
 *  access
 **/
s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
{
	u32 i = 0;
	u32 i2ccmd = 0;
	u32 data_local = 0;

	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
		hw_dbg("I2CCMD command address exceeds upper limit\n");
		return -E1000_ERR_PHY;
	}

	/* Set up Op-code, EEPROM Address,in the I2CCMD
	 * register. The MAC will take care of interfacing with the
	 * EEPROM to retrieve the desired data.
	 */
	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
		  E1000_I2CCMD_OPCODE_READ);

	wr32(E1000_I2CCMD, i2ccmd);

	/* Poll the ready bit to see if the I2C read completed */
	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
		udelay(50);
		data_local = rd32(E1000_I2CCMD);
		if (data_local & E1000_I2CCMD_READY)
			break;
	}
	if (!(data_local & E1000_I2CCMD_READY)) {
		hw_dbg("I2CCMD Read did not complete\n");
		return -E1000_ERR_PHY;
	}
	if (data_local & E1000_I2CCMD_ERROR) {
		hw_dbg("I2CCMD Error bit set\n");
		return -E1000_ERR_PHY;
	}
	*data = (u8) data_local & 0xFF;

	return 0;
}

/**
 *  igb_read_phy_reg_igp - Read igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting.
 **/
s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val = 0;

	if (!(hw->phy.ops.acquire))
		goto out;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
		ret_val = igb_write_phy_reg_mdic(hw,
						 IGP01E1000_PHY_PAGE_SELECT,
						 (u16)offset);
		if (ret_val) {
			hw->phy.ops.release(hw);
			goto out;
		}
	}

	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					data);

	hw->phy.ops.release(hw);

out:
	return ret_val;
}

/**
 *  igb_write_phy_reg_igp - Write igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val = 0;

	if (!(hw->phy.ops.acquire))
		goto out;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
		ret_val = igb_write_phy_reg_mdic(hw,
						 IGP01E1000_PHY_PAGE_SELECT,
						 (u16)offset);
		if (ret_val) {
			hw->phy.ops.release(hw);
			goto out;
		}
	}

	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					 data);

	hw->phy.ops.release(hw);

out:
	return ret_val;
}

/**
 *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up Carrier-sense on Transmit and downshift values.
 **/
s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;

	if (phy->reset_disable) {
		ret_val = 0;
		goto out;
	}

	if (phy->type == e1000_phy_82580) {
		ret_val = hw->phy.ops.reset(hw);
		if (ret_val) {
			hw_dbg("Error resetting the PHY.\n");
			goto out;
		}
	}

	/* Enable CRS on TX. This must be set for half-duplex operation. */
	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
	if (ret_val)
		goto out;

	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;

	/* Enable downshift */
	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;

	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
	if (ret_val)
		goto out;

	/* Set MDI/MDIX mode */
	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
	if (ret_val)
		goto out;
	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
	/* Options:
	 *   0 - Auto (default)
	 *   1 - MDI mode
	 *   2 - MDI-X mode
	 */
	switch (hw->phy.mdix) {
	case 1:
		break;
	case 2:
		phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
		break;
	case 0:
	default:
		phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
		break;
	}
	ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);

out:
	return ret_val;
}

/**
 *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 *  and downshift values are set also.
 **/
s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;

	if (phy->reset_disable) {
		ret_val = 0;
		goto out;
	}

	/* Enable CRS on TX. This must be set for half-duplex operation. */
	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		goto out;

	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;

	/* Options:
	 *   MDI/MDI-X = 0 (default)
	 *   0 - Auto for all speeds
	 *   1 - MDI mode
	 *   2 - MDI-X mode
	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
	 */
	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;

	switch (phy->mdix) {
	case 1:
		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
		break;
	case 2:
		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
		break;
	case 3:
		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
		break;
	case 0:
	default:
		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
		break;
	}

	/* Options:
	 *   disable_polarity_correction = 0 (default)
	 *       Automatic Correction for Reversed Cable Polarity
	 *   0 - Disabled
	 *   1 - Enabled
	 */
	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
	if (phy->disable_polarity_correction == 1)
		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;

	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		goto out;

	if (phy->revision < E1000_REVISION_4) {
		/* Force TX_CLK in the Extended PHY Specific Control Register
		 * to 25MHz clock.
		 */
		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
					    &phy_data);
		if (ret_val)
			goto out;

		phy_data |= M88E1000_EPSCR_TX_CLK_25;

		if ((phy->revision == E1000_REVISION_2) &&
		    (phy->id == M88E1111_I_PHY_ID)) {
			/* 82573L PHY - set the downshift counter to 5x. */
			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
		} else {
			/* Configure Master and Slave downshift values */
			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
		}
		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
					     phy_data);
		if (ret_val)
			goto out;
	}

	/* Commit the changes. */
	ret_val = igb_phy_sw_reset(hw);
	if (ret_val) {
		hw_dbg("Error committing the PHY changes\n");
		goto out;
	}

out:
	return ret_val;
}

/**
 *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
 *  Also enables and sets the downshift parameters.
 **/
s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;

	if (phy->reset_disable)
		return 0;

	/* Enable CRS on Tx. This must be set for half-duplex operation. */
	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	/* Options:
	 *   MDI/MDI-X = 0 (default)
	 *   0 - Auto for all speeds
	 *   1 - MDI mode
	 *   2 - MDI-X mode
	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
	 */
	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;

	switch (phy->mdix) {
	case 1:
		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
		break;
	case 2:
		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
		break;
	case 3:
		/* M88E1112 does not support this mode) */
		if (phy->id != M88E1112_E_PHY_ID) {
			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
			break;
		}
	case 0:
	default:
		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
		break;
	}

	/* Options:
	 *   disable_polarity_correction = 0 (default)
	 *       Automatic Correction for Reversed Cable Polarity
	 *   0 - Disabled
	 *   1 - Enabled
	 */
	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
	if (phy->disable_polarity_correction == 1)
		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;

	/* Enable downshift and setting it to X6 */
	if (phy->id == M88E1543_E_PHY_ID) {
		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
		ret_val =
		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
		if (ret_val)
			return ret_val;

		ret_val = igb_phy_sw_reset(hw);
		if (ret_val) {
			hw_dbg("Error committing the PHY changes\n");
			return ret_val;
		}
	}

	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;

	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

	/* Commit the changes. */
	ret_val = igb_phy_sw_reset(hw);
	if (ret_val) {
		hw_dbg("Error committing the PHY changes\n");
		return ret_val;
	}
	ret_val = igb_set_master_slave_mode(hw);
	if (ret_val)
		return ret_val;

	return 0;
}

/**
 *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 *  igp PHY's.
 **/
s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	if (phy->reset_disable) {
		ret_val = 0;
		goto out;
	}

	ret_val = phy->ops.reset(hw);
	if (ret_val) {
		hw_dbg("Error resetting the PHY.\n");
		goto out;
	}

	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
	 * timeout issues when LFS is enabled.
	 */
	msleep(100);

	/* The NVM settings will configure LPLU in D3 for
	 * non-IGP1 PHYs.
	 */
	if (phy->type == e1000_phy_igp) {
		/* disable lplu d3 during driver init */
		if (phy->ops.set_d3_lplu_state)
			ret_val = phy->ops.set_d3_lplu_state(hw, false);
		if (ret_val) {
			hw_dbg("Error Disabling LPLU D3\n");
			goto out;
		}
	}

	/* disable lplu d0 during driver init */
	ret_val = phy->ops.set_d0_lplu_state(hw, false);
	if (ret_val) {
		hw_dbg("Error Disabling LPLU D0\n");
		goto out;
	}
	/* Configure mdi-mdix settings */
	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
	if (ret_val)
		goto out;

	data &= ~IGP01E1000_PSCR_AUTO_MDIX;

	switch (phy->mdix) {
	case 1:
		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
		break;
	case 2:
		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
		break;
	case 0:
	default:
		data |= IGP01E1000_PSCR_AUTO_MDIX;
		break;
	}
	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
	if (ret_val)
		goto out;

	/* set auto-master slave resolution settings */
	if (hw->mac.autoneg) {
		/* when autonegotiation advertisement is only 1000Mbps then we
		 * should disable SmartSpeed and enable Auto MasterSlave
		 * resolution as hardware default.
		 */
		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
			/* Disable SmartSpeed */
			ret_val = phy->ops.read_reg(hw,
						    IGP01E1000_PHY_PORT_CONFIG,
						    &data);
			if (ret_val)
				goto out;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = phy->ops.write_reg(hw,
						     IGP01E1000_PHY_PORT_CONFIG,
						     data);
			if (ret_val)
				goto out;

			/* Set auto Master/Slave resolution process */
			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
			if (ret_val)
				goto out;

			data &= ~CR_1000T_MS_ENABLE;
			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
			if (ret_val)
				goto out;
		}

		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
		if (ret_val)
			goto out;

		/* load defaults for future use */
		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
			((data & CR_1000T_MS_VALUE) ?
			e1000_ms_force_master :
			e1000_ms_force_slave) :
			e1000_ms_auto;

		switch (phy->ms_type) {
		case e1000_ms_force_master:
			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
			break;
		case e1000_ms_force_slave:
			data |= CR_1000T_MS_ENABLE;
			data &= ~(CR_1000T_MS_VALUE);
			break;
		case e1000_ms_auto:
			data &= ~CR_1000T_MS_ENABLE;
		default:
			break;
		}
		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
		if (ret_val)
			goto out;
	}

out:
	return ret_val;
}

/**
 *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
 *  @hw: pointer to the HW structure
 *
 *  Performs initial bounds checking on autoneg advertisement parameter, then
 *  configure to advertise the full capability.  Setup the PHY to autoneg
 *  and restart the negotiation process between the link partner.  If
 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
 **/
static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_ctrl;

	/* Perform some bounds checking on the autoneg advertisement
	 * parameter.
	 */
	phy->autoneg_advertised &= phy->autoneg_mask;

	/* If autoneg_advertised is zero, we assume it was not defaulted
	 * by the calling code so we set to advertise full capability.
	 */
	if (phy->autoneg_advertised == 0)
		phy->autoneg_advertised = phy->autoneg_mask;

	hw_dbg("Reconfiguring auto-neg advertisement params\n");
	ret_val = igb_phy_setup_autoneg(hw);
	if (ret_val) {
		hw_dbg("Error Setting up Auto-Negotiation\n");
		goto out;
	}
	hw_dbg("Restarting Auto-Neg\n");

	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
	 * the Auto Neg Restart bit in the PHY control register.
	 */
	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
	if (ret_val)
		goto out;

	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
	if (ret_val)
		goto out;

	/* Does the user want to wait for Auto-Neg to complete here, or
	 * check at a later time (for example, callback routine).
	 */
	if (phy->autoneg_wait_to_complete) {
		ret_val = igb_wait_autoneg(hw);
		if (ret_val) {
			hw_dbg("Error while waiting for autoneg to complete\n");
			goto out;
		}
	}

	hw->mac.get_link_status = true;

out:
	return ret_val;
}

/**
 *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
 *  @hw: pointer to the HW structure
 *
 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 *  register and if the PHY is already setup for auto-negotiation, then
 *  return successful.  Otherwise, setup advertisement and flow control to
 *  the appropriate values for the wanted auto-negotiation.
 **/
static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 mii_autoneg_adv_reg;
	u16 mii_1000t_ctrl_reg = 0;

	phy->autoneg_advertised &= phy->autoneg_mask;

	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
	if (ret_val)
		goto out;

	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
		/* Read the MII 1000Base-T Control Register (Address 9). */
		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
					    &mii_1000t_ctrl_reg);
		if (ret_val)
			goto out;
	}

	/* Need to parse both autoneg_advertised and fc and set up
	 * the appropriate PHY registers.  First we will parse for
	 * autoneg_advertised software override.  Since we can advertise
	 * a plethora of combinations, we need to check each bit
	 * individually.
	 */

	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
	 * the  1000Base-T Control Register (Address 9).
	 */
	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
				 NWAY_AR_100TX_HD_CAPS |
				 NWAY_AR_10T_FD_CAPS   |
				 NWAY_AR_10T_HD_CAPS);
	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);

	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);

	/* Do we want to advertise 10 Mb Half Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
		hw_dbg("Advertise 10mb Half duplex\n");
		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
	}

	/* Do we want to advertise 10 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
		hw_dbg("Advertise 10mb Full duplex\n");
		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
	}

	/* Do we want to advertise 100 Mb Half Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
		hw_dbg("Advertise 100mb Half duplex\n");
		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
	}

	/* Do we want to advertise 100 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
		hw_dbg("Advertise 100mb Full duplex\n");
		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
	}

	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
		hw_dbg("Advertise 1000mb Half duplex request denied!\n");

	/* Do we want to advertise 1000 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
		hw_dbg("Advertise 1000mb Full duplex\n");
		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
	}

	/* Check for a software override of the flow control settings, and
	 * setup the PHY advertisement registers accordingly.  If
	 * auto-negotiation is enabled, then software will have to set the
	 * "PAUSE" bits to the correct value in the Auto-Negotiation
	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
	 * negotiation.
	 *
	 * The possible values of the "fc" parameter are:
	 *      0:  Flow control is completely disabled
	 *      1:  Rx flow control is enabled (we can receive pause frames
	 *          but not send pause frames).
	 *      2:  Tx flow control is enabled (we can send pause frames
	 *          but we do not support receiving pause frames).
	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
	 *  other:  No software override.  The flow control configuration
	 *          in the EEPROM is used.
	 */
	switch (hw->fc.current_mode) {
	case e1000_fc_none:
		/* Flow control (RX & TX) is completely disabled by a
		 * software over-ride.
		 */
		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	case e1000_fc_rx_pause:
		/* RX Flow control is enabled, and TX Flow control is
		 * disabled, by a software over-ride.
		 *
		 * Since there really isn't a way to advertise that we are
		 * capable of RX Pause ONLY, we will advertise that we
		 * support both symmetric and asymmetric RX PAUSE.  Later
		 * (in e1000_config_fc_after_link_up) we will disable the
		 * hw's ability to send PAUSE frames.
		 */
		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	case e1000_fc_tx_pause:
		/* TX Flow control is enabled, and RX Flow control is
		 * disabled, by a software over-ride.
		 */
		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
		break;
	case e1000_fc_full:
		/* Flow control (both RX and TX) is enabled by a software
		 * over-ride.
		 */
		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	default:
		hw_dbg("Flow control param set incorrectly\n");
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
	if (ret_val)
		goto out;

	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);

	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
		ret_val = phy->ops.write_reg(hw,
					     PHY_1000T_CTRL,
					     mii_1000t_ctrl_reg);
		if (ret_val)
			goto out;
	}

out:
	return ret_val;
}

/**
 *  igb_setup_copper_link - Configure copper link settings
 *  @hw: pointer to the HW structure
 *
 *  Calls the appropriate function to configure the link for auto-neg or forced
 *  speed and duplex.  Then we check for link, once link is established calls
 *  to configure collision distance and flow control are called.  If link is
 *  not established, we return -E1000_ERR_PHY (-2).
 **/
s32 igb_setup_copper_link(struct e1000_hw *hw)
{
	s32 ret_val;
	bool link;

	if (hw->mac.autoneg) {
		/* Setup autoneg and flow control advertisement and perform
		 * autonegotiation.
		 */
		ret_val = igb_copper_link_autoneg(hw);
		if (ret_val)
			goto out;
	} else {
		/* PHY will be set to 10H, 10F, 100H or 100F
		 * depending on user settings.
		 */
		hw_dbg("Forcing Speed and Duplex\n");
		ret_val = hw->phy.ops.force_speed_duplex(hw);
		if (ret_val) {
			hw_dbg("Error Forcing Speed and Duplex\n");
			goto out;
		}
	}

	/* Check link status. Wait up to 100 microseconds for link to become
	 * valid.
	 */
	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
	if (ret_val)
		goto out;

	if (link) {
		hw_dbg("Valid link established!!!\n");
		igb_config_collision_dist(hw);
		ret_val = igb_config_fc_after_link_up(hw);
	} else {
		hw_dbg("Unable to establish link!!!\n");
	}

out:
	return ret_val;
}

/**
 *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
 *  @hw: pointer to the HW structure
 *
 *  Calls the PHY setup function to force speed and duplex.  Clears the
 *  auto-crossover to force MDI manually.  Waits for link and returns
 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
 **/
s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
	if (ret_val)
		goto out;

	igb_phy_force_speed_duplex_setup(hw, &phy_data);

	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
	if (ret_val)
		goto out;

	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
	 * forced whenever speed and duplex are forced.
	 */
	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
	if (ret_val)
		goto out;

	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;

	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
	if (ret_val)
		goto out;

	hw_dbg("IGP PSCR: %X\n", phy_data);

	udelay(1);

	if (phy->autoneg_wait_to_complete) {
		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");

		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
		if (ret_val)
			goto out;

		if (!link)
			hw_dbg("Link taking longer than expected.\n");

		/* Try once more */
		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
		if (ret_val)
			goto out;
	}

out:
	return ret_val;
}

/**
 *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
 *  @hw: pointer to the HW structure
 *
 *  Calls the PHY setup function to force speed and duplex.  Clears the
 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
 *  changes.  If time expires while waiting for link up, we reset the DSP.
 *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
 *  successful completion, else return corresponding error code.
 **/
s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

	/* I210 and I211 devices support Auto-Crossover in forced operation. */
	if (phy->type != e1000_phy_i210) {
		/* Clear Auto-Crossover to force MDI manually.  M88E1000
		 * requires MDI forced whenever speed and duplex are forced.
		 */
		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
					    &phy_data);
		if (ret_val)
			goto out;

		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
					     phy_data);
		if (ret_val)
			goto out;

		hw_dbg("M88E1000 PSCR: %X\n", phy_data);
	}

	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
	if (ret_val)
		goto out;

	igb_phy_force_speed_duplex_setup(hw, &phy_data);

	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
	if (ret_val)
		goto out;

	/* Reset the phy to commit changes. */
	ret_val = igb_phy_sw_reset(hw);
	if (ret_val)
		goto out;

	if (phy->autoneg_wait_to_complete) {
		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");

		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
		if (ret_val)
			goto out;

		if (!link) {
			bool reset_dsp = true;

			switch (hw->phy.id) {
			case I347AT4_E_PHY_ID:
			case M88E1112_E_PHY_ID:
			case M88E1543_E_PHY_ID:
			case M88E1512_E_PHY_ID:
			case I210_I_PHY_ID:
				reset_dsp = false;
				break;
			default:
				if (hw->phy.type != e1000_phy_m88)
					reset_dsp = false;
				break;
			}
			if (!reset_dsp) {
				hw_dbg("Link taking longer than expected.\n");
			} else {
				/* We didn't get link.
				 * Reset the DSP and cross our fingers.
				 */
				ret_val = phy->ops.write_reg(hw,
						M88E1000_PHY_PAGE_SELECT,
						0x001d);
				if (ret_val)
					goto out;
				ret_val = igb_phy_reset_dsp(hw);
				if (ret_val)
					goto out;
			}
		}

		/* Try once more */
		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
					   100000, &link);
		if (ret_val)
			goto out;
	}

	if (hw->phy.type != e1000_phy_m88 ||
	    hw->phy.id == I347AT4_E_PHY_ID ||
	    hw->phy.id == M88E1112_E_PHY_ID ||
	    hw->phy.id == M88E1543_E_PHY_ID ||
	    hw->phy.id == M88E1512_E_PHY_ID ||
	    hw->phy.id == I210_I_PHY_ID)
		goto out;

	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		goto out;

	/* Resetting the phy means we need to re-force TX_CLK in the
	 * Extended PHY Specific Control Register to 25MHz clock from
	 * the reset value of 2.5MHz.
	 */
	phy_data |= M88E1000_EPSCR_TX_CLK_25;
	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		goto out;

	/* In addition, we must re-enable CRS on Tx for both half and full
	 * duplex.
	 */
	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		goto out;

	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);

out:
	return ret_val;
}

/**
 *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
 *  @hw: pointer to the HW structure
 *  @phy_ctrl: pointer to current value of PHY_CONTROL
 *
 *  Forces speed and duplex on the PHY by doing the following: disable flow
 *  control, force speed/duplex on the MAC, disable auto speed detection,
 *  disable auto-negotiation, configure duplex, configure speed, configure
 *  the collision distance, write configuration to CTRL register.  The
 *  caller must write to the PHY_CONTROL register for these settings to
 *  take affect.
 **/
static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
					     u16 *phy_ctrl)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 ctrl;

	/* Turn off flow control when forcing speed/duplex */
	hw->fc.current_mode = e1000_fc_none;

	/* Force speed/duplex on the mac */
	ctrl = rd32(E1000_CTRL);
	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ctrl &= ~E1000_CTRL_SPD_SEL;

	/* Disable Auto Speed Detection */
	ctrl &= ~E1000_CTRL_ASDE;

	/* Disable autoneg on the phy */
	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;

	/* Forcing Full or Half Duplex? */
	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
		ctrl &= ~E1000_CTRL_FD;
		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
		hw_dbg("Half Duplex\n");
	} else {
		ctrl |= E1000_CTRL_FD;
		*phy_ctrl |= MII_CR_FULL_DUPLEX;
		hw_dbg("Full Duplex\n");
	}

	/* Forcing 10mb or 100mb? */
	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
		ctrl |= E1000_CTRL_SPD_100;
		*phy_ctrl |= MII_CR_SPEED_100;
		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
		hw_dbg("Forcing 100mb\n");
	} else {
		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
		*phy_ctrl |= MII_CR_SPEED_10;
		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
		hw_dbg("Forcing 10mb\n");
	}

	igb_config_collision_dist(hw);

	wr32(E1000_CTRL, ctrl);
}

/**
 *  igb_set_d3_lplu_state - Sets low power link up state for D3
 *  @hw: pointer to the HW structure
 *  @active: boolean used to enable/disable lplu
 *
 *  Success returns 0, Failure returns 1
 *
 *  The low power link up (lplu) state is set to the power management level D3
 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 *  is used during Dx states where the power conservation is most important.
 *  During driver activity, SmartSpeed should be enabled so performance is
 *  maintained.
 **/
s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;
	u16 data;

	if (!(hw->phy.ops.read_reg))
		goto out;

	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
	if (ret_val)
		goto out;

	if (!active) {
		data &= ~IGP02E1000_PM_D3_LPLU;
		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
					     data);
		if (ret_val)
			goto out;
		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = phy->ops.read_reg(hw,
						    IGP01E1000_PHY_PORT_CONFIG,
						    &data);
			if (ret_val)
				goto out;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = phy->ops.write_reg(hw,
						     IGP01E1000_PHY_PORT_CONFIG,
						     data);
			if (ret_val)
				goto out;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = phy->ops.read_reg(hw,
						     IGP01E1000_PHY_PORT_CONFIG,
						     &data);
			if (ret_val)
				goto out;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = phy->ops.write_reg(hw,
						     IGP01E1000_PHY_PORT_CONFIG,
						     data);
			if (ret_val)
				goto out;
		}
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		data |= IGP02E1000_PM_D3_LPLU;
		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
					      data);
		if (ret_val)
			goto out;

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
					    &data);
		if (ret_val)
			goto out;

		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
					     data);
	}

out:
	return ret_val;
}

/**
 *  igb_check_downshift - Checks whether a downshift in speed occurred
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns 1
 *
 *  A downshift is detected by querying the PHY link health.
 **/
s32 igb_check_downshift(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, offset, mask;

	switch (phy->type) {
	case e1000_phy_i210:
	case e1000_phy_m88:
	case e1000_phy_gg82563:
		offset	= M88E1000_PHY_SPEC_STATUS;
		mask	= M88E1000_PSSR_DOWNSHIFT;
		break;
	case e1000_phy_igp_2:
	case e1000_phy_igp:
	case e1000_phy_igp_3:
		offset	= IGP01E1000_PHY_LINK_HEALTH;
		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
		break;
	default:
		/* speed downshift not supported */
		phy->speed_downgraded = false;
		ret_val = 0;
		goto out;
	}

	ret_val = phy->ops.read_reg(hw, offset, &phy_data);

	if (!ret_val)
		phy->speed_downgraded = (phy_data & mask) ? true : false;

out:
	return ret_val;
}

/**
 *  igb_check_polarity_m88 - Checks the polarity.
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 *
 *  Polarity is determined based on the PHY specific status register.
 **/
s32 igb_check_polarity_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);

	if (!ret_val)
		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
				      ? e1000_rev_polarity_reversed
				      : e1000_rev_polarity_normal;

	return ret_val;
}

/**
 *  igb_check_polarity_igp - Checks the polarity.
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 *
 *  Polarity is determined based on the PHY port status register, and the
 *  current speed (since there is no polarity at 100Mbps).
 **/
static s32 igb_check_polarity_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data, offset, mask;

	/* Polarity is determined based on the speed of
	 * our connection.
	 */
	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
	if (ret_val)
		goto out;

	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
	    IGP01E1000_PSSR_SPEED_1000MBPS) {
		offset	= IGP01E1000_PHY_PCS_INIT_REG;
		mask	= IGP01E1000_PHY_POLARITY_MASK;
	} else {
		/* This really only applies to 10Mbps since
		 * there is no polarity for 100Mbps (always 0).
		 */
		offset	= IGP01E1000_PHY_PORT_STATUS;
		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
	}

	ret_val = phy->ops.read_reg(hw, offset, &data);

	if (!ret_val)
		phy->cable_polarity = (data & mask)
				      ? e1000_rev_polarity_reversed
				      : e1000_rev_polarity_normal;

out:
	return ret_val;
}

/**
 *  igb_wait_autoneg - Wait for auto-neg completion
 *  @hw: pointer to the HW structure
 *
 *  Waits for auto-negotiation to complete or for the auto-negotiation time
 *  limit to expire, which ever happens first.
 **/
static s32 igb_wait_autoneg(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 i, phy_status;

	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		if (phy_status & MII_SR_AUTONEG_COMPLETE)
			break;
		msleep(100);
	}

	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
	 * has completed.
	 */
	return ret_val;
}

/**
 *  igb_phy_has_link - Polls PHY for link
 *  @hw: pointer to the HW structure
 *  @iterations: number of times to poll for link
 *  @usec_interval: delay between polling attempts
 *  @success: pointer to whether polling was successful or not
 *
 *  Polls the PHY status register for link, 'iterations' number of times.
 **/
s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
		     u32 usec_interval, bool *success)
{
	s32 ret_val = 0;
	u16 i, phy_status;

	for (i = 0; i < iterations; i++) {
		/* Some PHYs require the PHY_STATUS register to be read
		 * twice due to the link bit being sticky.  No harm doing
		 * it across the board.
		 */
		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
		if (ret_val && usec_interval > 0) {
			/* If the first read fails, another entity may have
			 * ownership of the resources, wait and try again to
			 * see if they have relinquished the resources yet.
			 */
			if (usec_interval >= 1000)
				mdelay(usec_interval/1000);
			else
				udelay(usec_interval);
		}
		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		if (phy_status & MII_SR_LINK_STATUS)
			break;
		if (usec_interval >= 1000)
			mdelay(usec_interval/1000);
		else
			udelay(usec_interval);
	}

	*success = (i < iterations) ? true : false;

	return ret_val;
}

/**
 *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY specific status register to retrieve the cable length
 *  information.  The cable length is determined by averaging the minimum and
 *  maximum values to get the "average" cable length.  The m88 PHY has four
 *  possible cable length values, which are:
 *	Register Value		Cable Length
 *	0			< 50 meters
 *	1			50 - 80 meters
 *	2			80 - 110 meters
 *	3			110 - 140 meters
 *	4			> 140 meters
 **/
s32 igb_get_cable_length_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, index;

	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
	if (ret_val)
		goto out;

	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
	if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
		ret_val = -E1000_ERR_PHY;
		goto out;
	}

	phy->min_cable_length = e1000_m88_cable_length_table[index];
	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];

	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;

out:
	return ret_val;
}

s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, phy_data2, index, default_page, is_cm;

	switch (hw->phy.id) {
	case I210_I_PHY_ID:
		/* Get cable length from PHY Cable Diagnostics Control Reg */
		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
					    (I347AT4_PCDL + phy->addr),
					    &phy_data);
		if (ret_val)
			return ret_val;

		/* Check if the unit of cable length is meters or cm */
		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
					    I347AT4_PCDC, &phy_data2);
		if (ret_val)
			return ret_val;

		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);

		/* Populate the phy structure with cable length in meters */
		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
		phy->cable_length = phy_data / (is_cm ? 100 : 1);
		break;
	case M88E1543_E_PHY_ID:
	case M88E1512_E_PHY_ID:
	case I347AT4_E_PHY_ID:
		/* Remember the original page select and set it to 7 */
		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
					    &default_page);
		if (ret_val)
			goto out;

		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
		if (ret_val)
			goto out;

		/* Get cable length from PHY Cable Diagnostics Control Reg */
		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
					    &phy_data);
		if (ret_val)
			goto out;

		/* Check if the unit of cable length is meters or cm */
		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
		if (ret_val)
			goto out;

		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);

		/* Populate the phy structure with cable length in meters */
		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
		phy->cable_length = phy_data / (is_cm ? 100 : 1);

		/* Reset the page selec to its original value */
		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
					     default_page);
		if (ret_val)
			goto out;
		break;
	case M88E1112_E_PHY_ID:
		/* Remember the original page select and set it to 5 */
		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
					    &default_page);
		if (ret_val)
			goto out;

		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
		if (ret_val)
			goto out;

		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
					    &phy_data);
		if (ret_val)
			goto out;

		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
		if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
			ret_val = -E1000_ERR_PHY;
			goto out;
		}

		phy->min_cable_length = e1000_m88_cable_length_table[index];
		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];

		phy->cable_length = (phy->min_cable_length +
				     phy->max_cable_length) / 2;

		/* Reset the page select to its original value */
		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
					     default_page);
		if (ret_val)
			goto out;

		break;
	default:
		ret_val = -E1000_ERR_PHY;
		goto out;
	}

out:
	return ret_val;
}

/**
 *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
 *  @hw: pointer to the HW structure
 *
 *  The automatic gain control (agc) normalizes the amplitude of the
 *  received signal, adjusting for the attenuation produced by the
 *  cable.  By reading the AGC registers, which represent the
 *  combination of coarse and fine gain value, the value can be put
 *  into a lookup table to obtain the approximate cable length
 *  for each channel.
 **/
s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;
	u16 phy_data, i, agc_value = 0;
	u16 cur_agc_index, max_agc_index = 0;
	u16 min_agc_index = ARRAY_SIZE(e1000_igp_2_cable_length_table) - 1;
	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
		IGP02E1000_PHY_AGC_A,
		IGP02E1000_PHY_AGC_B,
		IGP02E1000_PHY_AGC_C,
		IGP02E1000_PHY_AGC_D
	};

	/* Read the AGC registers for all channels */
	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
		if (ret_val)
			goto out;

		/* Getting bits 15:9, which represent the combination of
		 * coarse and fine gain values.  The result is a number
		 * that can be put into the lookup table to obtain the
		 * approximate cable length.
		 */
		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
				IGP02E1000_AGC_LENGTH_MASK;

		/* Array index bound check. */
		if ((cur_agc_index >= ARRAY_SIZE(e1000_igp_2_cable_length_table)) ||
		    (cur_agc_index == 0)) {
			ret_val = -E1000_ERR_PHY;
			goto out;
		}

		/* Remove min & max AGC values from calculation. */
		if (e1000_igp_2_cable_length_table[min_agc_index] >
		    e1000_igp_2_cable_length_table[cur_agc_index])
			min_agc_index = cur_agc_index;
		if (e1000_igp_2_cable_length_table[max_agc_index] <
		    e1000_igp_2_cable_length_table[cur_agc_index])
			max_agc_index = cur_agc_index;

		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
	}

	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
		      e1000_igp_2_cable_length_table[max_agc_index]);
	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);

	/* Calculate cable length with the error range of +/- 10 meters. */
	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;

	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;

out:
	return ret_val;
}

/**
 *  igb_get_phy_info_m88 - Retrieve PHY information
 *  @hw: pointer to the HW structure
 *
 *  Valid for only copper links.  Read the PHY status register (sticky read)
 *  to verify that link is up.  Read the PHY special control register to
 *  determine the polarity and 10base-T extended distance.  Read the PHY
 *  special status register to determine MDI/MDIx and current speed.  If
 *  speed is 1000, then determine cable length, local and remote receiver.
 **/
s32 igb_get_phy_info_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32  ret_val;
	u16 phy_data;
	bool link;

	if (phy->media_type != e1000_media_type_copper) {
		hw_dbg("Phy info is only valid for copper media\n");
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

	ret_val = igb_phy_has_link(hw, 1, 0, &link);
	if (ret_val)
		goto out;

	if (!link) {
		hw_dbg("Phy info is only valid if link is up\n");
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		goto out;

	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
				   ? true : false;

	ret_val = igb_check_polarity_m88(hw);
	if (ret_val)
		goto out;

	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
	if (ret_val)
		goto out;

	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;

	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
		ret_val = phy->ops.get_cable_length(hw);
		if (ret_val)
			goto out;

		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
		if (ret_val)
			goto out;

		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
				? e1000_1000t_rx_status_ok
				: e1000_1000t_rx_status_not_ok;

		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
				 ? e1000_1000t_rx_status_ok
				 : e1000_1000t_rx_status_not_ok;
	} else {
		/* Set values to "undefined" */
		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
		phy->local_rx = e1000_1000t_rx_status_undefined;
		phy->remote_rx = e1000_1000t_rx_status_undefined;
	}

out:
	return ret_val;
}

/**
 *  igb_get_phy_info_igp - Retrieve igp PHY information
 *  @hw: pointer to the HW structure
 *
 *  Read PHY status to determine if link is up.  If link is up, then
 *  set/determine 10base-T extended distance and polarity correction.  Read
 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
 *  determine on the cable length, local and remote receiver.
 **/
s32 igb_get_phy_info_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = igb_phy_has_link(hw, 1, 0, &link);
	if (ret_val)
		goto out;

	if (!link) {
		hw_dbg("Phy info is only valid if link is up\n");
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

	phy->polarity_correction = true;

	ret_val = igb_check_polarity_igp(hw);
	if (ret_val)
		goto out;

	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
	if (ret_val)
		goto out;

	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;

	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
	    IGP01E1000_PSSR_SPEED_1000MBPS) {
		ret_val = phy->ops.get_cable_length(hw);
		if (ret_val)
			goto out;

		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
		if (ret_val)
			goto out;

		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
				? e1000_1000t_rx_status_ok
				: e1000_1000t_rx_status_not_ok;

		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
				 ? e1000_1000t_rx_status_ok
				 : e1000_1000t_rx_status_not_ok;
	} else {
		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
		phy->local_rx = e1000_1000t_rx_status_undefined;
		phy->remote_rx = e1000_1000t_rx_status_undefined;
	}

out:
	return ret_val;
}

/**
 *  igb_phy_sw_reset - PHY software reset
 *  @hw: pointer to the HW structure
 *
 *  Does a software reset of the PHY by reading the PHY control register and
 *  setting/write the control register reset bit to the PHY.
 **/
s32 igb_phy_sw_reset(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 phy_ctrl;

	if (!(hw->phy.ops.read_reg))
		goto out;

	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
	if (ret_val)
		goto out;

	phy_ctrl |= MII_CR_RESET;
	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
	if (ret_val)
		goto out;

	udelay(1);

out:
	return ret_val;
}

/**
 *  igb_phy_hw_reset - PHY hardware reset
 *  @hw: pointer to the HW structure
 *
 *  Verify the reset block is not blocking us from resetting.  Acquire
 *  semaphore (if necessary) and read/set/write the device control reset
 *  bit in the PHY.  Wait the appropriate delay time for the device to
 *  reset and release the semaphore (if necessary).
 **/
s32 igb_phy_hw_reset(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32  ret_val;
	u32 ctrl;

	ret_val = igb_check_reset_block(hw);
	if (ret_val) {
		ret_val = 0;
		goto out;
	}

	ret_val = phy->ops.acquire(hw);
	if (ret_val)
		goto out;

	ctrl = rd32(E1000_CTRL);
	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
	wrfl();

	udelay(phy->reset_delay_us);

	wr32(E1000_CTRL, ctrl);
	wrfl();

	udelay(150);

	phy->ops.release(hw);

	ret_val = phy->ops.get_cfg_done(hw);

out:
	return ret_val;
}

/**
 *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
 *  @hw: pointer to the HW structure
 *
 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
 **/
s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
{
	hw_dbg("Running IGP 3 PHY init script\n");

	/* PHY init IGP 3 */
	/* Enable rise/fall, 10-mode work in class-A */
	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
	/* Remove all caps from Replica path filter */
	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
	/* Bias trimming for ADC, AFE and Driver (Default) */
	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
	/* Increase Hybrid poly bias */
	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
	/* Add 4% to TX amplitude in Giga mode */
	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
	/* Disable trimming (TTT) */
	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
	/* Poly DC correction to 94.6% + 2% for all channels */
	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
	/* ABS DC correction to 95.9% */
	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
	/* BG temp curve trim */
	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
	/* Increasing ADC OPAMP stage 1 currents to max */
	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
	/* Force 1000 ( required for enabling PHY regs configuration) */
	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
	/* Set upd_freq to 6 */
	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
	/* Disable NPDFE */
	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
	/* Disable adaptive fixed FFE (Default) */
	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
	/* Enable FFE hysteresis */
	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
	/* Fixed FFE for short cable lengths */
	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
	/* Fixed FFE for medium cable lengths */
	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
	/* Fixed FFE for long cable lengths */
	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
	/* Enable Adaptive Clip Threshold */
	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
	/* AHT reset limit to 1 */
	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
	/* Set AHT master delay to 127 msec */
	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
	/* Set scan bits for AHT */
	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
	/* Set AHT Preset bits */
	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
	/* Change integ_factor of channel A to 3 */
	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
	/* Change prop_factor of channels BCD to 8 */
	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
	/* Change cg_icount + enable integbp for channels BCD */
	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
	/* Change cg_icount + enable integbp + change prop_factor_master
	 * to 8 for channel A
	 */
	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
	/* Disable AHT in Slave mode on channel A */
	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
	/* Enable LPLU and disable AN to 1000 in non-D0a states,
	 * Enable SPD+B2B
	 */
	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
	/* Enable restart AN on an1000_dis change */
	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
	/* Enable wh_fifo read clock in 10/100 modes */
	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
	/* Restart AN, Speed selection is 1000 */
	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);

	return 0;
}

/**
 *  igb_initialize_M88E1512_phy - Initialize M88E1512 PHY
 *  @hw: pointer to the HW structure
 *
 *  Initialize Marvel 1512 to work correctly with Avoton.
 **/
s32 igb_initialize_M88E1512_phy(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;

	/* Switch to PHY page 0xFF. */
	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
	if (ret_val)
		goto out;

	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
	if (ret_val)
		goto out;

	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
	if (ret_val)
		goto out;

	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
	if (ret_val)
		goto out;

	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
	if (ret_val)
		goto out;

	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
	if (ret_val)
		goto out;

	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
	if (ret_val)
		goto out;

	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
	if (ret_val)
		goto out;

	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
	if (ret_val)
		goto out;

	/* Switch to PHY page 0xFB. */
	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
	if (ret_val)
		goto out;

	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
	if (ret_val)
		goto out;

	/* Switch to PHY page 0x12. */
	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
	if (ret_val)
		goto out;

	/* Change mode to SGMII-to-Copper */
	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
	if (ret_val)
		goto out;

	/* Return the PHY to page 0. */
	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
	if (ret_val)
		goto out;

	ret_val = igb_phy_sw_reset(hw);
	if (ret_val) {
		hw_dbg("Error committing the PHY changes\n");
		return ret_val;
	}

	/* msec_delay(1000); */
	usleep_range(1000, 2000);
out:
	return ret_val;
}

/**
 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, restore the link to previous settings.
 **/
void igb_power_up_phy_copper(struct e1000_hw *hw)
{
	u16 mii_reg = 0;

	/* The PHY will retain its settings across a power down/up cycle */
	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
	mii_reg &= ~MII_CR_POWER_DOWN;
	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
}

/**
 * igb_power_down_phy_copper - Power down copper PHY
 * @hw: pointer to the HW structure
 *
 * Power down PHY to save power when interface is down and wake on lan
 * is not enabled.
 **/
void igb_power_down_phy_copper(struct e1000_hw *hw)
{
	u16 mii_reg = 0;

	/* The PHY will retain its settings across a power down/up cycle */
	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
	mii_reg |= MII_CR_POWER_DOWN;
	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
	usleep_range(1000, 2000);
}

/**
 *  igb_check_polarity_82580 - Checks the polarity.
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 *
 *  Polarity is determined based on the PHY specific status register.
 **/
static s32 igb_check_polarity_82580(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;


	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);

	if (!ret_val)
		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
				      ? e1000_rev_polarity_reversed
				      : e1000_rev_polarity_normal;

	return ret_val;
}

/**
 *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
 *  @hw: pointer to the HW structure
 *
 *  Calls the PHY setup function to force speed and duplex.  Clears the
 *  auto-crossover to force MDI manually.  Waits for link and returns
 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
 **/
s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
	if (ret_val)
		goto out;

	igb_phy_force_speed_duplex_setup(hw, &phy_data);

	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
	if (ret_val)
		goto out;

	/* Clear Auto-Crossover to force MDI manually.  82580 requires MDI
	 * forced whenever speed and duplex are forced.
	 */
	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
	if (ret_val)
		goto out;

	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;

	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
	if (ret_val)
		goto out;

	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);

	udelay(1);

	if (phy->autoneg_wait_to_complete) {
		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");

		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
		if (ret_val)
			goto out;

		if (!link)
			hw_dbg("Link taking longer than expected.\n");

		/* Try once more */
		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
		if (ret_val)
			goto out;
	}

out:
	return ret_val;
}

/**
 *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
 *  @hw: pointer to the HW structure
 *
 *  Read PHY status to determine if link is up.  If link is up, then
 *  set/determine 10base-T extended distance and polarity correction.  Read
 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
 *  determine on the cable length, local and remote receiver.
 **/
s32 igb_get_phy_info_82580(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = igb_phy_has_link(hw, 1, 0, &link);
	if (ret_val)
		goto out;

	if (!link) {
		hw_dbg("Phy info is only valid if link is up\n");
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

	phy->polarity_correction = true;

	ret_val = igb_check_polarity_82580(hw);
	if (ret_val)
		goto out;

	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
	if (ret_val)
		goto out;

	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;

	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
		ret_val = hw->phy.ops.get_cable_length(hw);
		if (ret_val)
			goto out;

		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
		if (ret_val)
			goto out;

		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
				? e1000_1000t_rx_status_ok
				: e1000_1000t_rx_status_not_ok;

		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
				 ? e1000_1000t_rx_status_ok
				 : e1000_1000t_rx_status_not_ok;
	} else {
		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
		phy->local_rx = e1000_1000t_rx_status_undefined;
		phy->remote_rx = e1000_1000t_rx_status_undefined;
	}

out:
	return ret_val;
}

/**
 *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
 *  @hw: pointer to the HW structure
 *
 * Reads the diagnostic status register and verifies result is valid before
 * placing it in the phy_cable_length field.
 **/
s32 igb_get_cable_length_82580(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, length;

	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
	if (ret_val)
		goto out;

	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
		 I82580_DSTATUS_CABLE_LENGTH_SHIFT;

	if (length == E1000_CABLE_LENGTH_UNDEFINED)
		ret_val = -E1000_ERR_PHY;

	phy->cable_length = length;

out:
	return ret_val;
}

/**
 *  igb_write_phy_reg_gs40g - Write GS40G PHY register
 *  @hw: pointer to the HW structure
 *  @offset: lower half is register offset to write to
 *     upper half is page to use.
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;
	u16 page = offset >> GS40G_PAGE_SHIFT;

	offset = offset & GS40G_OFFSET_MASK;
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
	if (ret_val)
		goto release;
	ret_val = igb_write_phy_reg_mdic(hw, offset, data);

release:
	hw->phy.ops.release(hw);
	return ret_val;
}

/**
 *  igb_read_phy_reg_gs40g - Read GS40G  PHY register
 *  @hw: pointer to the HW structure
 *  @offset: lower half is register offset to read to
 *     upper half is page to use.
 *  @data: data to read at register offset
 *
 *  Acquires semaphore, if necessary, then reads the data in the PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;
	u16 page = offset >> GS40G_PAGE_SHIFT;

	offset = offset & GS40G_OFFSET_MASK;
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
	if (ret_val)
		goto release;
	ret_val = igb_read_phy_reg_mdic(hw, offset, data);

release:
	hw->phy.ops.release(hw);
	return ret_val;
}

/**
 *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
 *  @hw: pointer to the HW structure
 *
 *  Sets up Master/slave mode
 **/
static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 phy_data;

	/* Resolve Master/Slave mode */
	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	/* load defaults for future use */
	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
				   ((phy_data & CR_1000T_MS_VALUE) ?
				    e1000_ms_force_master :
				    e1000_ms_force_slave) : e1000_ms_auto;

	switch (hw->phy.ms_type) {
	case e1000_ms_force_master:
		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
		break;
	case e1000_ms_force_slave:
		phy_data |= CR_1000T_MS_ENABLE;
		phy_data &= ~(CR_1000T_MS_VALUE);
		break;
	case e1000_ms_auto:
		phy_data &= ~CR_1000T_MS_ENABLE;
		/* fall-through */
	default:
		break;
	}

	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
}