ich8lan.c 161 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868
/* Intel PRO/1000 Linux driver
 * Copyright(c) 1999 - 2015 Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * Linux NICS <linux.nics@intel.com>
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 */

/* 82562G 10/100 Network Connection
 * 82562G-2 10/100 Network Connection
 * 82562GT 10/100 Network Connection
 * 82562GT-2 10/100 Network Connection
 * 82562V 10/100 Network Connection
 * 82562V-2 10/100 Network Connection
 * 82566DC-2 Gigabit Network Connection
 * 82566DC Gigabit Network Connection
 * 82566DM-2 Gigabit Network Connection
 * 82566DM Gigabit Network Connection
 * 82566MC Gigabit Network Connection
 * 82566MM Gigabit Network Connection
 * 82567LM Gigabit Network Connection
 * 82567LF Gigabit Network Connection
 * 82567V Gigabit Network Connection
 * 82567LM-2 Gigabit Network Connection
 * 82567LF-2 Gigabit Network Connection
 * 82567V-2 Gigabit Network Connection
 * 82567LF-3 Gigabit Network Connection
 * 82567LM-3 Gigabit Network Connection
 * 82567LM-4 Gigabit Network Connection
 * 82577LM Gigabit Network Connection
 * 82577LC Gigabit Network Connection
 * 82578DM Gigabit Network Connection
 * 82578DC Gigabit Network Connection
 * 82579LM Gigabit Network Connection
 * 82579V Gigabit Network Connection
 * Ethernet Connection I217-LM
 * Ethernet Connection I217-V
 * Ethernet Connection I218-V
 * Ethernet Connection I218-LM
 * Ethernet Connection (2) I218-LM
 * Ethernet Connection (2) I218-V
 * Ethernet Connection (3) I218-LM
 * Ethernet Connection (3) I218-V
 */

#include "e1000.h"

/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
/* Offset 04h HSFSTS */
union ich8_hws_flash_status {
	struct ich8_hsfsts {
		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
		u16 dael:1;	/* bit 2 Direct Access error Log */
		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
		u16 reserved1:2;	/* bit 13:6 Reserved */
		u16 reserved2:6;	/* bit 13:6 Reserved */
		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
	} hsf_status;
	u16 regval;
};

/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
/* Offset 06h FLCTL */
union ich8_hws_flash_ctrl {
	struct ich8_hsflctl {
		u16 flcgo:1;	/* 0 Flash Cycle Go */
		u16 flcycle:2;	/* 2:1 Flash Cycle */
		u16 reserved:5;	/* 7:3 Reserved  */
		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
		u16 flockdn:6;	/* 15:10 Reserved */
	} hsf_ctrl;
	u16 regval;
};

/* ICH Flash Region Access Permissions */
union ich8_hws_flash_regacc {
	struct ich8_flracc {
		u32 grra:8;	/* 0:7 GbE region Read Access */
		u32 grwa:8;	/* 8:15 GbE region Write Access */
		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
	} hsf_flregacc;
	u16 regval;
};

/* ICH Flash Protected Region */
union ich8_flash_protected_range {
	struct ich8_pr {
		u32 base:13;	/* 0:12 Protected Range Base */
		u32 reserved1:2;	/* 13:14 Reserved */
		u32 rpe:1;	/* 15 Read Protection Enable */
		u32 limit:13;	/* 16:28 Protected Range Limit */
		u32 reserved2:2;	/* 29:30 Reserved */
		u32 wpe:1;	/* 31 Write Protection Enable */
	} range;
	u32 regval;
};

static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte);
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data);
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data);
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data);
static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
					   u32 *data);
static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
					  u32 offset, u32 *data);
static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
					    u32 offset, u32 data);
static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
						 u32 offset, u32 dword);
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);

static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
{
	return readw(hw->flash_address + reg);
}

static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
{
	return readl(hw->flash_address + reg);
}

static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
{
	writew(val, hw->flash_address + reg);
}

static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
{
	writel(val, hw->flash_address + reg);
}

#define er16flash(reg)		__er16flash(hw, (reg))
#define er32flash(reg)		__er32flash(hw, (reg))
#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))

/**
 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 *  @hw: pointer to the HW structure
 *
 *  Test access to the PHY registers by reading the PHY ID registers.  If
 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 *  otherwise assume the read PHY ID is correct if it is valid.
 *
 *  Assumes the sw/fw/hw semaphore is already acquired.
 **/
static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
{
	u16 phy_reg = 0;
	u32 phy_id = 0;
	s32 ret_val = 0;
	u16 retry_count;
	u32 mac_reg = 0;

	for (retry_count = 0; retry_count < 2; retry_count++) {
		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
		if (ret_val || (phy_reg == 0xFFFF))
			continue;
		phy_id = (u32)(phy_reg << 16);

		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
		if (ret_val || (phy_reg == 0xFFFF)) {
			phy_id = 0;
			continue;
		}
		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
		break;
	}

	if (hw->phy.id) {
		if (hw->phy.id == phy_id)
			goto out;
	} else if (phy_id) {
		hw->phy.id = phy_id;
		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
		goto out;
	}

	/* In case the PHY needs to be in mdio slow mode,
	 * set slow mode and try to get the PHY id again.
	 */
	if (hw->mac.type < e1000_pch_lpt) {
		hw->phy.ops.release(hw);
		ret_val = e1000_set_mdio_slow_mode_hv(hw);
		if (!ret_val)
			ret_val = e1000e_get_phy_id(hw);
		hw->phy.ops.acquire(hw);
	}

	if (ret_val)
		return false;
out:
	if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
		/* Only unforce SMBus if ME is not active */
		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
			/* Unforce SMBus mode in PHY */
			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);

			/* Unforce SMBus mode in MAC */
			mac_reg = er32(CTRL_EXT);
			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
			ew32(CTRL_EXT, mac_reg);
		}
	}

	return true;
}

/**
 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 *  @hw: pointer to the HW structure
 *
 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 *  used to reset the PHY to a quiescent state when necessary.
 **/
static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
{
	u32 mac_reg;

	/* Set Phy Config Counter to 50msec */
	mac_reg = er32(FEXTNVM3);
	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
	ew32(FEXTNVM3, mac_reg);

	/* Toggle LANPHYPC Value bit */
	mac_reg = er32(CTRL);
	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
	ew32(CTRL, mac_reg);
	e1e_flush();
	usleep_range(10, 20);
	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
	ew32(CTRL, mac_reg);
	e1e_flush();

	if (hw->mac.type < e1000_pch_lpt) {
		msleep(50);
	} else {
		u16 count = 20;

		do {
			usleep_range(5000, 10000);
		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);

		msleep(30);
	}
}

/**
 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 *  @hw: pointer to the HW structure
 *
 *  Workarounds/flow necessary for PHY initialization during driver load
 *  and resume paths.
 **/
static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
{
	struct e1000_adapter *adapter = hw->adapter;
	u32 mac_reg, fwsm = er32(FWSM);
	s32 ret_val;

	/* Gate automatic PHY configuration by hardware on managed and
	 * non-managed 82579 and newer adapters.
	 */
	e1000_gate_hw_phy_config_ich8lan(hw, true);

	/* It is not possible to be certain of the current state of ULP
	 * so forcibly disable it.
	 */
	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
	e1000_disable_ulp_lpt_lp(hw, true);

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val) {
		e_dbg("Failed to initialize PHY flow\n");
		goto out;
	}

	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
	 * inaccessible and resetting the PHY is not blocked, toggle the
	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
	 */
	switch (hw->mac.type) {
	case e1000_pch_lpt:
	case e1000_pch_spt:
		if (e1000_phy_is_accessible_pchlan(hw))
			break;

		/* Before toggling LANPHYPC, see if PHY is accessible by
		 * forcing MAC to SMBus mode first.
		 */
		mac_reg = er32(CTRL_EXT);
		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
		ew32(CTRL_EXT, mac_reg);

		/* Wait 50 milliseconds for MAC to finish any retries
		 * that it might be trying to perform from previous
		 * attempts to acknowledge any phy read requests.
		 */
		msleep(50);

		/* fall-through */
	case e1000_pch2lan:
		if (e1000_phy_is_accessible_pchlan(hw))
			break;

		/* fall-through */
	case e1000_pchlan:
		if ((hw->mac.type == e1000_pchlan) &&
		    (fwsm & E1000_ICH_FWSM_FW_VALID))
			break;

		if (hw->phy.ops.check_reset_block(hw)) {
			e_dbg("Required LANPHYPC toggle blocked by ME\n");
			ret_val = -E1000_ERR_PHY;
			break;
		}

		/* Toggle LANPHYPC Value bit */
		e1000_toggle_lanphypc_pch_lpt(hw);
		if (hw->mac.type >= e1000_pch_lpt) {
			if (e1000_phy_is_accessible_pchlan(hw))
				break;

			/* Toggling LANPHYPC brings the PHY out of SMBus mode
			 * so ensure that the MAC is also out of SMBus mode
			 */
			mac_reg = er32(CTRL_EXT);
			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
			ew32(CTRL_EXT, mac_reg);

			if (e1000_phy_is_accessible_pchlan(hw))
				break;

			ret_val = -E1000_ERR_PHY;
		}
		break;
	default:
		break;
	}

	hw->phy.ops.release(hw);
	if (!ret_val) {

		/* Check to see if able to reset PHY.  Print error if not */
		if (hw->phy.ops.check_reset_block(hw)) {
			e_err("Reset blocked by ME\n");
			goto out;
		}

		/* Reset the PHY before any access to it.  Doing so, ensures
		 * that the PHY is in a known good state before we read/write
		 * PHY registers.  The generic reset is sufficient here,
		 * because we haven't determined the PHY type yet.
		 */
		ret_val = e1000e_phy_hw_reset_generic(hw);
		if (ret_val)
			goto out;

		/* On a successful reset, possibly need to wait for the PHY
		 * to quiesce to an accessible state before returning control
		 * to the calling function.  If the PHY does not quiesce, then
		 * return E1000E_BLK_PHY_RESET, as this is the condition that
		 *  the PHY is in.
		 */
		ret_val = hw->phy.ops.check_reset_block(hw);
		if (ret_val)
			e_err("ME blocked access to PHY after reset\n");
	}

out:
	/* Ungate automatic PHY configuration on non-managed 82579 */
	if ((hw->mac.type == e1000_pch2lan) &&
	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
		usleep_range(10000, 20000);
		e1000_gate_hw_phy_config_ich8lan(hw, false);
	}

	return ret_val;
}

/**
 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;

	phy->addr = 1;
	phy->reset_delay_us = 100;

	phy->ops.set_page = e1000_set_page_igp;
	phy->ops.read_reg = e1000_read_phy_reg_hv;
	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
	phy->ops.write_reg = e1000_write_phy_reg_hv;
	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
	phy->ops.power_up = e1000_power_up_phy_copper;
	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;

	phy->id = e1000_phy_unknown;

	ret_val = e1000_init_phy_workarounds_pchlan(hw);
	if (ret_val)
		return ret_val;

	if (phy->id == e1000_phy_unknown)
		switch (hw->mac.type) {
		default:
			ret_val = e1000e_get_phy_id(hw);
			if (ret_val)
				return ret_val;
			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
				break;
			/* fall-through */
		case e1000_pch2lan:
		case e1000_pch_lpt:
		case e1000_pch_spt:
			/* In case the PHY needs to be in mdio slow mode,
			 * set slow mode and try to get the PHY id again.
			 */
			ret_val = e1000_set_mdio_slow_mode_hv(hw);
			if (ret_val)
				return ret_val;
			ret_val = e1000e_get_phy_id(hw);
			if (ret_val)
				return ret_val;
			break;
		}
	phy->type = e1000e_get_phy_type_from_id(phy->id);

	switch (phy->type) {
	case e1000_phy_82577:
	case e1000_phy_82579:
	case e1000_phy_i217:
		phy->ops.check_polarity = e1000_check_polarity_82577;
		phy->ops.force_speed_duplex =
		    e1000_phy_force_speed_duplex_82577;
		phy->ops.get_cable_length = e1000_get_cable_length_82577;
		phy->ops.get_info = e1000_get_phy_info_82577;
		phy->ops.commit = e1000e_phy_sw_reset;
		break;
	case e1000_phy_82578:
		phy->ops.check_polarity = e1000_check_polarity_m88;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
		phy->ops.get_info = e1000e_get_phy_info_m88;
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		break;
	}

	return ret_val;
}

/**
 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 i = 0;

	phy->addr = 1;
	phy->reset_delay_us = 100;

	phy->ops.power_up = e1000_power_up_phy_copper;
	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;

	/* We may need to do this twice - once for IGP and if that fails,
	 * we'll set BM func pointers and try again
	 */
	ret_val = e1000e_determine_phy_address(hw);
	if (ret_val) {
		phy->ops.write_reg = e1000e_write_phy_reg_bm;
		phy->ops.read_reg = e1000e_read_phy_reg_bm;
		ret_val = e1000e_determine_phy_address(hw);
		if (ret_val) {
			e_dbg("Cannot determine PHY addr. Erroring out\n");
			return ret_val;
		}
	}

	phy->id = 0;
	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
	       (i++ < 100)) {
		usleep_range(1000, 2000);
		ret_val = e1000e_get_phy_id(hw);
		if (ret_val)
			return ret_val;
	}

	/* Verify phy id */
	switch (phy->id) {
	case IGP03E1000_E_PHY_ID:
		phy->type = e1000_phy_igp_3;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
		phy->ops.get_info = e1000e_get_phy_info_igp;
		phy->ops.check_polarity = e1000_check_polarity_igp;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
		break;
	case IFE_E_PHY_ID:
	case IFE_PLUS_E_PHY_ID:
	case IFE_C_E_PHY_ID:
		phy->type = e1000_phy_ife;
		phy->autoneg_mask = E1000_ALL_NOT_GIG;
		phy->ops.get_info = e1000_get_phy_info_ife;
		phy->ops.check_polarity = e1000_check_polarity_ife;
		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
		break;
	case BME1000_E_PHY_ID:
		phy->type = e1000_phy_bm;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
		phy->ops.read_reg = e1000e_read_phy_reg_bm;
		phy->ops.write_reg = e1000e_write_phy_reg_bm;
		phy->ops.commit = e1000e_phy_sw_reset;
		phy->ops.get_info = e1000e_get_phy_info_m88;
		phy->ops.check_polarity = e1000_check_polarity_m88;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
		break;
	default:
		return -E1000_ERR_PHY;
	}

	return 0;
}

/**
 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific NVM parameters and function
 *  pointers.
 **/
static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 gfpreg, sector_base_addr, sector_end_addr;
	u16 i;
	u32 nvm_size;

	nvm->type = e1000_nvm_flash_sw;

	if (hw->mac.type == e1000_pch_spt) {
		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
		 * STRAP register. This is because in SPT the GbE Flash region
		 * is no longer accessed through the flash registers. Instead,
		 * the mechanism has changed, and the Flash region access
		 * registers are now implemented in GbE memory space.
		 */
		nvm->flash_base_addr = 0;
		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
		    * NVM_SIZE_MULTIPLIER;
		nvm->flash_bank_size = nvm_size / 2;
		/* Adjust to word count */
		nvm->flash_bank_size /= sizeof(u16);
		/* Set the base address for flash register access */
		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
	} else {
		/* Can't read flash registers if register set isn't mapped. */
		if (!hw->flash_address) {
			e_dbg("ERROR: Flash registers not mapped\n");
			return -E1000_ERR_CONFIG;
		}

		gfpreg = er32flash(ICH_FLASH_GFPREG);

		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
		 * Add 1 to sector_end_addr since this sector is included in
		 * the overall size.
		 */
		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;

		/* flash_base_addr is byte-aligned */
		nvm->flash_base_addr = sector_base_addr
		    << FLASH_SECTOR_ADDR_SHIFT;

		/* find total size of the NVM, then cut in half since the total
		 * size represents two separate NVM banks.
		 */
		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
					<< FLASH_SECTOR_ADDR_SHIFT);
		nvm->flash_bank_size /= 2;
		/* Adjust to word count */
		nvm->flash_bank_size /= sizeof(u16);
	}

	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;

	/* Clear shadow ram */
	for (i = 0; i < nvm->word_size; i++) {
		dev_spec->shadow_ram[i].modified = false;
		dev_spec->shadow_ram[i].value = 0xFFFF;
	}

	return 0;
}

/**
 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific MAC parameters and function
 *  pointers.
 **/
static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;

	/* Set media type function pointer */
	hw->phy.media_type = e1000_media_type_copper;

	/* Set mta register count */
	mac->mta_reg_count = 32;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
	if (mac->type == e1000_ich8lan)
		mac->rar_entry_count--;
	/* FWSM register */
	mac->has_fwsm = true;
	/* ARC subsystem not supported */
	mac->arc_subsystem_valid = false;
	/* Adaptive IFS supported */
	mac->adaptive_ifs = true;

	/* LED and other operations */
	switch (mac->type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
	case e1000_ich10lan:
		/* check management mode */
		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
		/* ID LED init */
		mac->ops.id_led_init = e1000e_id_led_init_generic;
		/* blink LED */
		mac->ops.blink_led = e1000e_blink_led_generic;
		/* setup LED */
		mac->ops.setup_led = e1000e_setup_led_generic;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_ich8lan;
		mac->ops.led_off = e1000_led_off_ich8lan;
		break;
	case e1000_pch2lan:
		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
		mac->ops.rar_set = e1000_rar_set_pch2lan;
		/* fall-through */
	case e1000_pch_lpt:
	case e1000_pch_spt:
	case e1000_pchlan:
		/* check management mode */
		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
		/* ID LED init */
		mac->ops.id_led_init = e1000_id_led_init_pchlan;
		/* setup LED */
		mac->ops.setup_led = e1000_setup_led_pchlan;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_pchlan;
		mac->ops.led_off = e1000_led_off_pchlan;
		break;
	default:
		break;
	}

	if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) {
		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
		mac->ops.rar_set = e1000_rar_set_pch_lpt;
		mac->ops.setup_physical_interface =
		    e1000_setup_copper_link_pch_lpt;
		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
	}

	/* Enable PCS Lock-loss workaround for ICH8 */
	if (mac->type == e1000_ich8lan)
		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);

	return 0;
}

/**
 *  __e1000_access_emi_reg_locked - Read/write EMI register
 *  @hw: pointer to the HW structure
 *  @addr: EMI address to program
 *  @data: pointer to value to read/write from/to the EMI address
 *  @read: boolean flag to indicate read or write
 *
 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 **/
static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
					 u16 *data, bool read)
{
	s32 ret_val;

	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
	if (ret_val)
		return ret_val;

	if (read)
		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
	else
		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);

	return ret_val;
}

/**
 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 *  @hw: pointer to the HW structure
 *  @addr: EMI address to program
 *  @data: value to be read from the EMI address
 *
 *  Assumes the SW/FW/HW Semaphore is already acquired.
 **/
s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
{
	return __e1000_access_emi_reg_locked(hw, addr, data, true);
}

/**
 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 *  @hw: pointer to the HW structure
 *  @addr: EMI address to program
 *  @data: value to be written to the EMI address
 *
 *  Assumes the SW/FW/HW Semaphore is already acquired.
 **/
s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
{
	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
}

/**
 *  e1000_set_eee_pchlan - Enable/disable EEE support
 *  @hw: pointer to the HW structure
 *
 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 *  the link and the EEE capabilities of the link partner.  The LPI Control
 *  register bits will remain set only if/when link is up.
 *
 *  EEE LPI must not be asserted earlier than one second after link is up.
 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 *  can be link issues with some switches.  Other devices can have EEE LPI
 *  enabled immediately upon link up since they have a timer in hardware which
 *  prevents LPI from being asserted too early.
 **/
s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	s32 ret_val;
	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;

	switch (hw->phy.type) {
	case e1000_phy_82579:
		lpa = I82579_EEE_LP_ABILITY;
		pcs_status = I82579_EEE_PCS_STATUS;
		adv_addr = I82579_EEE_ADVERTISEMENT;
		break;
	case e1000_phy_i217:
		lpa = I217_EEE_LP_ABILITY;
		pcs_status = I217_EEE_PCS_STATUS;
		adv_addr = I217_EEE_ADVERTISEMENT;
		break;
	default:
		return 0;
	}

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
	if (ret_val)
		goto release;

	/* Clear bits that enable EEE in various speeds */
	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;

	/* Enable EEE if not disabled by user */
	if (!dev_spec->eee_disable) {
		/* Save off link partner's EEE ability */
		ret_val = e1000_read_emi_reg_locked(hw, lpa,
						    &dev_spec->eee_lp_ability);
		if (ret_val)
			goto release;

		/* Read EEE advertisement */
		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
		if (ret_val)
			goto release;

		/* Enable EEE only for speeds in which the link partner is
		 * EEE capable and for which we advertise EEE.
		 */
		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;

		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
			e1e_rphy_locked(hw, MII_LPA, &data);
			if (data & LPA_100FULL)
				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
			else
				/* EEE is not supported in 100Half, so ignore
				 * partner's EEE in 100 ability if full-duplex
				 * is not advertised.
				 */
				dev_spec->eee_lp_ability &=
				    ~I82579_EEE_100_SUPPORTED;
		}
	}

	if (hw->phy.type == e1000_phy_82579) {
		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
						    &data);
		if (ret_val)
			goto release;

		data &= ~I82579_LPI_100_PLL_SHUT;
		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
						     data);
	}

	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
	if (ret_val)
		goto release;

	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
release:
	hw->phy.ops.release(hw);

	return ret_val;
}

/**
 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 *  @hw:   pointer to the HW structure
 *  @link: link up bool flag
 *
 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 *  preventing further DMA write requests.  Workaround the issue by disabling
 *  the de-assertion of the clock request when in 1Gpbs mode.
 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 *  speeds in order to avoid Tx hangs.
 **/
static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
{
	u32 fextnvm6 = er32(FEXTNVM6);
	u32 status = er32(STATUS);
	s32 ret_val = 0;
	u16 reg;

	if (link && (status & E1000_STATUS_SPEED_1000)) {
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return ret_val;

		ret_val =
		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
						&reg);
		if (ret_val)
			goto release;

		ret_val =
		    e1000e_write_kmrn_reg_locked(hw,
						 E1000_KMRNCTRLSTA_K1_CONFIG,
						 reg &
						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
		if (ret_val)
			goto release;

		usleep_range(10, 20);

		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);

		ret_val =
		    e1000e_write_kmrn_reg_locked(hw,
						 E1000_KMRNCTRLSTA_K1_CONFIG,
						 reg);
release:
		hw->phy.ops.release(hw);
	} else {
		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;

		if ((hw->phy.revision > 5) || !link ||
		    ((status & E1000_STATUS_SPEED_100) &&
		     (status & E1000_STATUS_FD)))
			goto update_fextnvm6;

		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
		if (ret_val)
			return ret_val;

		/* Clear link status transmit timeout */
		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;

		if (status & E1000_STATUS_SPEED_100) {
			/* Set inband Tx timeout to 5x10us for 100Half */
			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;

			/* Do not extend the K1 entry latency for 100Half */
			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
		} else {
			/* Set inband Tx timeout to 50x10us for 10Full/Half */
			reg |= 50 <<
			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;

			/* Extend the K1 entry latency for 10 Mbps */
			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
		}

		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
		if (ret_val)
			return ret_val;

update_fextnvm6:
		ew32(FEXTNVM6, fextnvm6);
	}

	return ret_val;
}

/**
 *  e1000_platform_pm_pch_lpt - Set platform power management values
 *  @hw: pointer to the HW structure
 *  @link: bool indicating link status
 *
 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
 *  when link is up (which must not exceed the maximum latency supported
 *  by the platform), otherwise specify there is no LTR requirement.
 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
 *  Capability register set, on this device LTR is set by writing the
 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
 *  message to the PMC.
 **/
static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
{
	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
	u16 lat_enc = 0;	/* latency encoded */

	if (link) {
		u16 speed, duplex, scale = 0;
		u16 max_snoop, max_nosnoop;
		u16 max_ltr_enc;	/* max LTR latency encoded */
		u64 value;
		u32 rxa;

		if (!hw->adapter->max_frame_size) {
			e_dbg("max_frame_size not set.\n");
			return -E1000_ERR_CONFIG;
		}

		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
		if (!speed) {
			e_dbg("Speed not set.\n");
			return -E1000_ERR_CONFIG;
		}

		/* Rx Packet Buffer Allocation size (KB) */
		rxa = er32(PBA) & E1000_PBA_RXA_MASK;

		/* Determine the maximum latency tolerated by the device.
		 *
		 * Per the PCIe spec, the tolerated latencies are encoded as
		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
		 * a 10-bit value (0-1023) to provide a range from 1 ns to
		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
		 */
		rxa *= 512;
		value = (rxa > hw->adapter->max_frame_size) ?
			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
			0;

		while (value > PCI_LTR_VALUE_MASK) {
			scale++;
			value = DIV_ROUND_UP(value, (1 << 5));
		}
		if (scale > E1000_LTRV_SCALE_MAX) {
			e_dbg("Invalid LTR latency scale %d\n", scale);
			return -E1000_ERR_CONFIG;
		}
		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);

		/* Determine the maximum latency tolerated by the platform */
		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
				     &max_snoop);
		pci_read_config_word(hw->adapter->pdev,
				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);

		if (lat_enc > max_ltr_enc)
			lat_enc = max_ltr_enc;
	}

	/* Set Snoop and No-Snoop latencies the same */
	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
	ew32(LTRV, reg);

	return 0;
}

/**
 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
 *  @hw: pointer to the HW structure
 *  @to_sx: boolean indicating a system power state transition to Sx
 *
 *  When link is down, configure ULP mode to significantly reduce the power
 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
 *  ME firmware to start the ULP configuration.  If not on an ME enabled
 *  system, configure the ULP mode by software.
 */
s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
{
	u32 mac_reg;
	s32 ret_val = 0;
	u16 phy_reg;
	u16 oem_reg = 0;

	if ((hw->mac.type < e1000_pch_lpt) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
		return 0;

	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
		/* Request ME configure ULP mode in the PHY */
		mac_reg = er32(H2ME);
		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
		ew32(H2ME, mac_reg);

		goto out;
	}

	if (!to_sx) {
		int i = 0;

		/* Poll up to 5 seconds for Cable Disconnected indication */
		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
			/* Bail if link is re-acquired */
			if (er32(STATUS) & E1000_STATUS_LU)
				return -E1000_ERR_PHY;

			if (i++ == 100)
				break;

			msleep(50);
		}
		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
		      (er32(FEXT) &
		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
	}

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	/* Force SMBus mode in PHY */
	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
	if (ret_val)
		goto release;
	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);

	/* Force SMBus mode in MAC */
	mac_reg = er32(CTRL_EXT);
	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
	ew32(CTRL_EXT, mac_reg);

	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
	 * LPLU and disable Gig speed when entering ULP
	 */
	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
						       &oem_reg);
		if (ret_val)
			goto release;

		phy_reg = oem_reg;
		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;

		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
							phy_reg);

		if (ret_val)
			goto release;
	}

	/* Set Inband ULP Exit, Reset to SMBus mode and
	 * Disable SMBus Release on PERST# in PHY
	 */
	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
	if (ret_val)
		goto release;
	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
	if (to_sx) {
		if (er32(WUFC) & E1000_WUFC_LNKC)
			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
		else
			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;

		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
	} else {
		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
	}
	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);

	/* Set Disable SMBus Release on PERST# in MAC */
	mac_reg = er32(FEXTNVM7);
	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
	ew32(FEXTNVM7, mac_reg);

	/* Commit ULP changes in PHY by starting auto ULP configuration */
	phy_reg |= I218_ULP_CONFIG1_START;
	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);

	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
							oem_reg);
		if (ret_val)
			goto release;
	}

release:
	hw->phy.ops.release(hw);
out:
	if (ret_val)
		e_dbg("Error in ULP enable flow: %d\n", ret_val);
	else
		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;

	return ret_val;
}

/**
 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
 *  @hw: pointer to the HW structure
 *  @force: boolean indicating whether or not to force disabling ULP
 *
 *  Un-configure ULP mode when link is up, the system is transitioned from
 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
 *  system, poll for an indication from ME that ULP has been un-configured.
 *  If not on an ME enabled system, un-configure the ULP mode by software.
 *
 *  During nominal operation, this function is called when link is acquired
 *  to disable ULP mode (force=false); otherwise, for example when unloading
 *  the driver or during Sx->S0 transitions, this is called with force=true
 *  to forcibly disable ULP.
 */
static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
{
	s32 ret_val = 0;
	u32 mac_reg;
	u16 phy_reg;
	int i = 0;

	if ((hw->mac.type < e1000_pch_lpt) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
		return 0;

	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
		if (force) {
			/* Request ME un-configure ULP mode in the PHY */
			mac_reg = er32(H2ME);
			mac_reg &= ~E1000_H2ME_ULP;
			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
			ew32(H2ME, mac_reg);
		}

		/* Poll up to 100msec for ME to clear ULP_CFG_DONE */
		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
			if (i++ == 10) {
				ret_val = -E1000_ERR_PHY;
				goto out;
			}

			usleep_range(10000, 20000);
		}
		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);

		if (force) {
			mac_reg = er32(H2ME);
			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
			ew32(H2ME, mac_reg);
		} else {
			/* Clear H2ME.ULP after ME ULP configuration */
			mac_reg = er32(H2ME);
			mac_reg &= ~E1000_H2ME_ULP;
			ew32(H2ME, mac_reg);
		}

		goto out;
	}

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	if (force)
		/* Toggle LANPHYPC Value bit */
		e1000_toggle_lanphypc_pch_lpt(hw);

	/* Unforce SMBus mode in PHY */
	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
	if (ret_val) {
		/* The MAC might be in PCIe mode, so temporarily force to
		 * SMBus mode in order to access the PHY.
		 */
		mac_reg = er32(CTRL_EXT);
		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
		ew32(CTRL_EXT, mac_reg);

		msleep(50);

		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
						       &phy_reg);
		if (ret_val)
			goto release;
	}
	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);

	/* Unforce SMBus mode in MAC */
	mac_reg = er32(CTRL_EXT);
	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
	ew32(CTRL_EXT, mac_reg);

	/* When ULP mode was previously entered, K1 was disabled by the
	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
	 */
	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
	if (ret_val)
		goto release;
	phy_reg |= HV_PM_CTRL_K1_ENABLE;
	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);

	/* Clear ULP enabled configuration */
	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
	if (ret_val)
		goto release;
	phy_reg &= ~(I218_ULP_CONFIG1_IND |
		     I218_ULP_CONFIG1_STICKY_ULP |
		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
		     I218_ULP_CONFIG1_WOL_HOST |
		     I218_ULP_CONFIG1_INBAND_EXIT |
		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);

	/* Commit ULP changes by starting auto ULP configuration */
	phy_reg |= I218_ULP_CONFIG1_START;
	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);

	/* Clear Disable SMBus Release on PERST# in MAC */
	mac_reg = er32(FEXTNVM7);
	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
	ew32(FEXTNVM7, mac_reg);

release:
	hw->phy.ops.release(hw);
	if (force) {
		e1000_phy_hw_reset(hw);
		msleep(50);
	}
out:
	if (ret_val)
		e_dbg("Error in ULP disable flow: %d\n", ret_val);
	else
		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;

	return ret_val;
}

/**
 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
 *  @hw: pointer to the HW structure
 *
 *  Checks to see of the link status of the hardware has changed.  If a
 *  change in link status has been detected, then we read the PHY registers
 *  to get the current speed/duplex if link exists.
 **/
static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val, tipg_reg = 0;
	u16 emi_addr, emi_val = 0;
	bool link;
	u16 phy_reg;

	/* We only want to go out to the PHY registers to see if Auto-Neg
	 * has completed and/or if our link status has changed.  The
	 * get_link_status flag is set upon receiving a Link Status
	 * Change or Rx Sequence Error interrupt.
	 */
	if (!mac->get_link_status)
		return 0;

	/* First we want to see if the MII Status Register reports
	 * link.  If so, then we want to get the current speed/duplex
	 * of the PHY.
	 */
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (hw->mac.type == e1000_pchlan) {
		ret_val = e1000_k1_gig_workaround_hv(hw, link);
		if (ret_val)
			return ret_val;
	}

	/* When connected at 10Mbps half-duplex, some parts are excessively
	 * aggressive resulting in many collisions. To avoid this, increase
	 * the IPG and reduce Rx latency in the PHY.
	 */
	if (((hw->mac.type == e1000_pch2lan) ||
	     (hw->mac.type == e1000_pch_lpt) ||
	     (hw->mac.type == e1000_pch_spt)) && link) {
		u16 speed, duplex;

		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
		tipg_reg = er32(TIPG);
		tipg_reg &= ~E1000_TIPG_IPGT_MASK;

		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
			tipg_reg |= 0xFF;
			/* Reduce Rx latency in analog PHY */
			emi_val = 0;
		} else if (hw->mac.type == e1000_pch_spt &&
			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
			tipg_reg |= 0xC;
			emi_val = 1;
		} else {

			/* Roll back the default values */
			tipg_reg |= 0x08;
			emi_val = 1;
		}

		ew32(TIPG, tipg_reg);

		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return ret_val;

		if (hw->mac.type == e1000_pch2lan)
			emi_addr = I82579_RX_CONFIG;
		else
			emi_addr = I217_RX_CONFIG;
		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);

		hw->phy.ops.release(hw);

		if (ret_val)
			return ret_val;

		if (hw->mac.type == e1000_pch_spt) {
			u16 data;
			u16 ptr_gap;

			if (speed == SPEED_1000) {
				ret_val = hw->phy.ops.acquire(hw);
				if (ret_val)
					return ret_val;

				ret_val = e1e_rphy_locked(hw,
							  PHY_REG(776, 20),
							  &data);
				if (ret_val) {
					hw->phy.ops.release(hw);
					return ret_val;
				}

				ptr_gap = (data & (0x3FF << 2)) >> 2;
				if (ptr_gap < 0x18) {
					data &= ~(0x3FF << 2);
					data |= (0x18 << 2);
					ret_val =
					    e1e_wphy_locked(hw,
							    PHY_REG(776, 20),
							    data);
				}
				hw->phy.ops.release(hw);
				if (ret_val)
					return ret_val;
			}
		}
	}

	/* I217 Packet Loss issue:
	 * ensure that FEXTNVM4 Beacon Duration is set correctly
	 * on power up.
	 * Set the Beacon Duration for I217 to 8 usec
	 */
	if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
		u32 mac_reg;

		mac_reg = er32(FEXTNVM4);
		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
		ew32(FEXTNVM4, mac_reg);
	}

	/* Work-around I218 hang issue */
	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
		if (ret_val)
			return ret_val;
	}
	if ((hw->mac.type == e1000_pch_lpt) ||
	    (hw->mac.type == e1000_pch_spt)) {
		/* Set platform power management values for
		 * Latency Tolerance Reporting (LTR)
		 */
		ret_val = e1000_platform_pm_pch_lpt(hw, link);
		if (ret_val)
			return ret_val;
	}

	/* Clear link partner's EEE ability */
	hw->dev_spec.ich8lan.eee_lp_ability = 0;

	/* FEXTNVM6 K1-off workaround */
	if (hw->mac.type == e1000_pch_spt) {
		u32 pcieanacfg = er32(PCIEANACFG);
		u32 fextnvm6 = er32(FEXTNVM6);

		if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
			fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
		else
			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;

		ew32(FEXTNVM6, fextnvm6);
	}

	if (!link)
		return 0;	/* No link detected */

	mac->get_link_status = false;

	switch (hw->mac.type) {
	case e1000_pch2lan:
		ret_val = e1000_k1_workaround_lv(hw);
		if (ret_val)
			return ret_val;
		/* fall-thru */
	case e1000_pchlan:
		if (hw->phy.type == e1000_phy_82578) {
			ret_val = e1000_link_stall_workaround_hv(hw);
			if (ret_val)
				return ret_val;
		}

		/* Workaround for PCHx parts in half-duplex:
		 * Set the number of preambles removed from the packet
		 * when it is passed from the PHY to the MAC to prevent
		 * the MAC from misinterpreting the packet type.
		 */
		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;

		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);

		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
		break;
	default:
		break;
	}

	/* Check if there was DownShift, must be checked
	 * immediately after link-up
	 */
	e1000e_check_downshift(hw);

	/* Enable/Disable EEE after link up */
	if (hw->phy.type > e1000_phy_82579) {
		ret_val = e1000_set_eee_pchlan(hw);
		if (ret_val)
			return ret_val;
	}

	/* If we are forcing speed/duplex, then we simply return since
	 * we have already determined whether we have link or not.
	 */
	if (!mac->autoneg)
		return -E1000_ERR_CONFIG;

	/* Auto-Neg is enabled.  Auto Speed Detection takes care
	 * of MAC speed/duplex configuration.  So we only need to
	 * configure Collision Distance in the MAC.
	 */
	mac->ops.config_collision_dist(hw);

	/* Configure Flow Control now that Auto-Neg has completed.
	 * First, we need to restore the desired flow control
	 * settings because we may have had to re-autoneg with a
	 * different link partner.
	 */
	ret_val = e1000e_config_fc_after_link_up(hw);
	if (ret_val)
		e_dbg("Error configuring flow control\n");

	return ret_val;
}

static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	s32 rc;

	rc = e1000_init_mac_params_ich8lan(hw);
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_ich8lan(hw);
	if (rc)
		return rc;

	switch (hw->mac.type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
	case e1000_ich10lan:
		rc = e1000_init_phy_params_ich8lan(hw);
		break;
	case e1000_pchlan:
	case e1000_pch2lan:
	case e1000_pch_lpt:
	case e1000_pch_spt:
		rc = e1000_init_phy_params_pchlan(hw);
		break;
	default:
		break;
	}
	if (rc)
		return rc;

	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
	 */
	if ((adapter->hw.phy.type == e1000_phy_ife) ||
	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;

		hw->mac.ops.blink_led = NULL;
	}

	if ((adapter->hw.mac.type == e1000_ich8lan) &&
	    (adapter->hw.phy.type != e1000_phy_ife))
		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;

	/* Enable workaround for 82579 w/ ME enabled */
	if ((adapter->hw.mac.type == e1000_pch2lan) &&
	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;

	return 0;
}

static DEFINE_MUTEX(nvm_mutex);

/**
 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
 *  @hw: pointer to the HW structure
 *
 *  Acquires the mutex for performing NVM operations.
 **/
static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
{
	mutex_lock(&nvm_mutex);

	return 0;
}

/**
 *  e1000_release_nvm_ich8lan - Release NVM mutex
 *  @hw: pointer to the HW structure
 *
 *  Releases the mutex used while performing NVM operations.
 **/
static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
{
	mutex_unlock(&nvm_mutex);
}

/**
 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
 *  @hw: pointer to the HW structure
 *
 *  Acquires the software control flag for performing PHY and select
 *  MAC CSR accesses.
 **/
static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
{
	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
	s32 ret_val = 0;

	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
			     &hw->adapter->state)) {
		e_dbg("contention for Phy access\n");
		return -E1000_ERR_PHY;
	}

	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);
		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
			break;

		mdelay(1);
		timeout--;
	}

	if (!timeout) {
		e_dbg("SW has already locked the resource.\n");
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

	timeout = SW_FLAG_TIMEOUT;

	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
	ew32(EXTCNF_CTRL, extcnf_ctrl);

	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);
		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
			break;

		mdelay(1);
		timeout--;
	}

	if (!timeout) {
		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
		      er32(FWSM), extcnf_ctrl);
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
		ew32(EXTCNF_CTRL, extcnf_ctrl);
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

out:
	if (ret_val)
		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);

	return ret_val;
}

/**
 *  e1000_release_swflag_ich8lan - Release software control flag
 *  @hw: pointer to the HW structure
 *
 *  Releases the software control flag for performing PHY and select
 *  MAC CSR accesses.
 **/
static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
{
	u32 extcnf_ctrl;

	extcnf_ctrl = er32(EXTCNF_CTRL);

	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
		ew32(EXTCNF_CTRL, extcnf_ctrl);
	} else {
		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
	}

	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
}

/**
 *  e1000_check_mng_mode_ich8lan - Checks management mode
 *  @hw: pointer to the HW structure
 *
 *  This checks if the adapter has any manageability enabled.
 *  This is a function pointer entry point only called by read/write
 *  routines for the PHY and NVM parts.
 **/
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
{
	u32 fwsm;

	fwsm = er32(FWSM);
	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
		((fwsm & E1000_FWSM_MODE_MASK) ==
		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
}

/**
 *  e1000_check_mng_mode_pchlan - Checks management mode
 *  @hw: pointer to the HW structure
 *
 *  This checks if the adapter has iAMT enabled.
 *  This is a function pointer entry point only called by read/write
 *  routines for the PHY and NVM parts.
 **/
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
{
	u32 fwsm;

	fwsm = er32(FWSM);
	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
}

/**
 *  e1000_rar_set_pch2lan - Set receive address register
 *  @hw: pointer to the HW structure
 *  @addr: pointer to the receive address
 *  @index: receive address array register
 *
 *  Sets the receive address array register at index to the address passed
 *  in by addr.  For 82579, RAR[0] is the base address register that is to
 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
 *  Use SHRA[0-3] in place of those reserved for ME.
 **/
static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
{
	u32 rar_low, rar_high;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32)addr[0] |
		   ((u32)addr[1] << 8) |
		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));

	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));

	/* If MAC address zero, no need to set the AV bit */
	if (rar_low || rar_high)
		rar_high |= E1000_RAH_AV;

	if (index == 0) {
		ew32(RAL(index), rar_low);
		e1e_flush();
		ew32(RAH(index), rar_high);
		e1e_flush();
		return 0;
	}

	/* RAR[1-6] are owned by manageability.  Skip those and program the
	 * next address into the SHRA register array.
	 */
	if (index < (u32)(hw->mac.rar_entry_count)) {
		s32 ret_val;

		ret_val = e1000_acquire_swflag_ich8lan(hw);
		if (ret_val)
			goto out;

		ew32(SHRAL(index - 1), rar_low);
		e1e_flush();
		ew32(SHRAH(index - 1), rar_high);
		e1e_flush();

		e1000_release_swflag_ich8lan(hw);

		/* verify the register updates */
		if ((er32(SHRAL(index - 1)) == rar_low) &&
		    (er32(SHRAH(index - 1)) == rar_high))
			return 0;

		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
		      (index - 1), er32(FWSM));
	}

out:
	e_dbg("Failed to write receive address at index %d\n", index);
	return -E1000_ERR_CONFIG;
}

/**
 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
 *  @hw: pointer to the HW structure
 *
 *  Get the number of available receive registers that the Host can
 *  program. SHRA[0-10] are the shared receive address registers
 *  that are shared between the Host and manageability engine (ME).
 *  ME can reserve any number of addresses and the host needs to be
 *  able to tell how many available registers it has access to.
 **/
static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
{
	u32 wlock_mac;
	u32 num_entries;

	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;

	switch (wlock_mac) {
	case 0:
		/* All SHRA[0..10] and RAR[0] available */
		num_entries = hw->mac.rar_entry_count;
		break;
	case 1:
		/* Only RAR[0] available */
		num_entries = 1;
		break;
	default:
		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
		num_entries = wlock_mac + 1;
		break;
	}

	return num_entries;
}

/**
 *  e1000_rar_set_pch_lpt - Set receive address registers
 *  @hw: pointer to the HW structure
 *  @addr: pointer to the receive address
 *  @index: receive address array register
 *
 *  Sets the receive address register array at index to the address passed
 *  in by addr. For LPT, RAR[0] is the base address register that is to
 *  contain the MAC address. SHRA[0-10] are the shared receive address
 *  registers that are shared between the Host and manageability engine (ME).
 **/
static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
{
	u32 rar_low, rar_high;
	u32 wlock_mac;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));

	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));

	/* If MAC address zero, no need to set the AV bit */
	if (rar_low || rar_high)
		rar_high |= E1000_RAH_AV;

	if (index == 0) {
		ew32(RAL(index), rar_low);
		e1e_flush();
		ew32(RAH(index), rar_high);
		e1e_flush();
		return 0;
	}

	/* The manageability engine (ME) can lock certain SHRAR registers that
	 * it is using - those registers are unavailable for use.
	 */
	if (index < hw->mac.rar_entry_count) {
		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;

		/* Check if all SHRAR registers are locked */
		if (wlock_mac == 1)
			goto out;

		if ((wlock_mac == 0) || (index <= wlock_mac)) {
			s32 ret_val;

			ret_val = e1000_acquire_swflag_ich8lan(hw);

			if (ret_val)
				goto out;

			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
			e1e_flush();
			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
			e1e_flush();

			e1000_release_swflag_ich8lan(hw);

			/* verify the register updates */
			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
				return 0;
		}
	}

out:
	e_dbg("Failed to write receive address at index %d\n", index);
	return -E1000_ERR_CONFIG;
}

/**
 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
 *  @hw: pointer to the HW structure
 *
 *  Checks if firmware is blocking the reset of the PHY.
 *  This is a function pointer entry point only called by
 *  reset routines.
 **/
static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
{
	bool blocked = false;
	int i = 0;

	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
	       (i++ < 10))
		usleep_range(10000, 20000);
	return blocked ? E1000_BLK_PHY_RESET : 0;
}

/**
 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
 *  @hw: pointer to the HW structure
 *
 *  Assumes semaphore already acquired.
 *
 **/
static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
{
	u16 phy_data;
	u32 strap = er32(STRAP);
	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
	    E1000_STRAP_SMT_FREQ_SHIFT;
	s32 ret_val;

	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;

	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data &= ~HV_SMB_ADDR_MASK;
	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;

	if (hw->phy.type == e1000_phy_i217) {
		/* Restore SMBus frequency */
		if (freq--) {
			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
			phy_data |= (freq & (1 << 0)) <<
			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
			phy_data |= (freq & (1 << 1)) <<
			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
		} else {
			e_dbg("Unsupported SMB frequency in PHY\n");
		}
	}

	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
}

/**
 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
 *  @hw:   pointer to the HW structure
 *
 *  SW should configure the LCD from the NVM extended configuration region
 *  as a workaround for certain parts.
 **/
static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
	s32 ret_val = 0;
	u16 word_addr, reg_data, reg_addr, phy_page = 0;

	/* Initialize the PHY from the NVM on ICH platforms.  This
	 * is needed due to an issue where the NVM configuration is
	 * not properly autoloaded after power transitions.
	 * Therefore, after each PHY reset, we will load the
	 * configuration data out of the NVM manually.
	 */
	switch (hw->mac.type) {
	case e1000_ich8lan:
		if (phy->type != e1000_phy_igp_3)
			return ret_val;

		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
			break;
		}
		/* Fall-thru */
	case e1000_pchlan:
	case e1000_pch2lan:
	case e1000_pch_lpt:
	case e1000_pch_spt:
		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
		break;
	default:
		return ret_val;
	}

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	data = er32(FEXTNVM);
	if (!(data & sw_cfg_mask))
		goto release;

	/* Make sure HW does not configure LCD from PHY
	 * extended configuration before SW configuration
	 */
	data = er32(EXTCNF_CTRL);
	if ((hw->mac.type < e1000_pch2lan) &&
	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
		goto release;

	cnf_size = er32(EXTCNF_SIZE);
	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
	if (!cnf_size)
		goto release;

	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;

	if (((hw->mac.type == e1000_pchlan) &&
	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
	    (hw->mac.type > e1000_pchlan)) {
		/* HW configures the SMBus address and LEDs when the
		 * OEM and LCD Write Enable bits are set in the NVM.
		 * When both NVM bits are cleared, SW will configure
		 * them instead.
		 */
		ret_val = e1000_write_smbus_addr(hw);
		if (ret_val)
			goto release;

		data = er32(LEDCTL);
		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
							(u16)data);
		if (ret_val)
			goto release;
	}

	/* Configure LCD from extended configuration region. */

	/* cnf_base_addr is in DWORD */
	word_addr = (u16)(cnf_base_addr << 1);

	for (i = 0; i < cnf_size; i++) {
		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
		if (ret_val)
			goto release;

		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
					 1, &reg_addr);
		if (ret_val)
			goto release;

		/* Save off the PHY page for future writes. */
		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
			phy_page = reg_data;
			continue;
		}

		reg_addr &= PHY_REG_MASK;
		reg_addr |= phy_page;

		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
		if (ret_val)
			goto release;
	}

release:
	hw->phy.ops.release(hw);
	return ret_val;
}

/**
 *  e1000_k1_gig_workaround_hv - K1 Si workaround
 *  @hw:   pointer to the HW structure
 *  @link: link up bool flag
 *
 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
 *  If link is down, the function will restore the default K1 setting located
 *  in the NVM.
 **/
static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
{
	s32 ret_val = 0;
	u16 status_reg = 0;
	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;

	if (hw->mac.type != e1000_pchlan)
		return 0;

	/* Wrap the whole flow with the sw flag */
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
	if (link) {
		if (hw->phy.type == e1000_phy_82578) {
			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
						  &status_reg);
			if (ret_val)
				goto release;

			status_reg &= (BM_CS_STATUS_LINK_UP |
				       BM_CS_STATUS_RESOLVED |
				       BM_CS_STATUS_SPEED_MASK);

			if (status_reg == (BM_CS_STATUS_LINK_UP |
					   BM_CS_STATUS_RESOLVED |
					   BM_CS_STATUS_SPEED_1000))
				k1_enable = false;
		}

		if (hw->phy.type == e1000_phy_82577) {
			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
			if (ret_val)
				goto release;

			status_reg &= (HV_M_STATUS_LINK_UP |
				       HV_M_STATUS_AUTONEG_COMPLETE |
				       HV_M_STATUS_SPEED_MASK);

			if (status_reg == (HV_M_STATUS_LINK_UP |
					   HV_M_STATUS_AUTONEG_COMPLETE |
					   HV_M_STATUS_SPEED_1000))
				k1_enable = false;
		}

		/* Link stall fix for link up */
		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
		if (ret_val)
			goto release;

	} else {
		/* Link stall fix for link down */
		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
		if (ret_val)
			goto release;
	}

	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);

release:
	hw->phy.ops.release(hw);

	return ret_val;
}

/**
 *  e1000_configure_k1_ich8lan - Configure K1 power state
 *  @hw: pointer to the HW structure
 *  @enable: K1 state to configure
 *
 *  Configure the K1 power state based on the provided parameter.
 *  Assumes semaphore already acquired.
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 **/
s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
{
	s32 ret_val;
	u32 ctrl_reg = 0;
	u32 ctrl_ext = 0;
	u32 reg = 0;
	u16 kmrn_reg = 0;

	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
					      &kmrn_reg);
	if (ret_val)
		return ret_val;

	if (k1_enable)
		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
	else
		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;

	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
					       kmrn_reg);
	if (ret_val)
		return ret_val;

	usleep_range(20, 40);
	ctrl_ext = er32(CTRL_EXT);
	ctrl_reg = er32(CTRL);

	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
	reg |= E1000_CTRL_FRCSPD;
	ew32(CTRL, reg);

	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
	e1e_flush();
	usleep_range(20, 40);
	ew32(CTRL, ctrl_reg);
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();
	usleep_range(20, 40);

	return 0;
}

/**
 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
 *  @hw:       pointer to the HW structure
 *  @d0_state: boolean if entering d0 or d3 device state
 *
 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
 **/
static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
{
	s32 ret_val = 0;
	u32 mac_reg;
	u16 oem_reg;

	if (hw->mac.type < e1000_pchlan)
		return ret_val;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	if (hw->mac.type == e1000_pchlan) {
		mac_reg = er32(EXTCNF_CTRL);
		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
			goto release;
	}

	mac_reg = er32(FEXTNVM);
	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
		goto release;

	mac_reg = er32(PHY_CTRL);

	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
	if (ret_val)
		goto release;

	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);

	if (d0_state) {
		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
			oem_reg |= HV_OEM_BITS_GBE_DIS;

		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
			oem_reg |= HV_OEM_BITS_LPLU;
	} else {
		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
			oem_reg |= HV_OEM_BITS_GBE_DIS;

		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
			       E1000_PHY_CTRL_NOND0A_LPLU))
			oem_reg |= HV_OEM_BITS_LPLU;
	}

	/* Set Restart auto-neg to activate the bits */
	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
	    !hw->phy.ops.check_reset_block(hw))
		oem_reg |= HV_OEM_BITS_RESTART_AN;

	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);

release:
	hw->phy.ops.release(hw);

	return ret_val;
}

/**
 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
 *  @hw:   pointer to the HW structure
 **/
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
	if (ret_val)
		return ret_val;

	data |= HV_KMRN_MDIO_SLOW;

	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);

	return ret_val;
}

/**
 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
 *  done after every PHY reset.
 **/
static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 phy_data;

	if (hw->mac.type != e1000_pchlan)
		return 0;

	/* Set MDIO slow mode before any other MDIO access */
	if (hw->phy.type == e1000_phy_82577) {
		ret_val = e1000_set_mdio_slow_mode_hv(hw);
		if (ret_val)
			return ret_val;
	}

	if (((hw->phy.type == e1000_phy_82577) &&
	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
		/* Disable generation of early preamble */
		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
		if (ret_val)
			return ret_val;

		/* Preamble tuning for SSC */
		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
		if (ret_val)
			return ret_val;
	}

	if (hw->phy.type == e1000_phy_82578) {
		/* Return registers to default by doing a soft reset then
		 * writing 0x3140 to the control register.
		 */
		if (hw->phy.revision < 2) {
			e1000e_phy_sw_reset(hw);
			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
		}
	}

	/* Select page 0 */
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	hw->phy.addr = 1;
	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
	hw->phy.ops.release(hw);
	if (ret_val)
		return ret_val;

	/* Configure the K1 Si workaround during phy reset assuming there is
	 * link so that it disables K1 if link is in 1Gbps.
	 */
	ret_val = e1000_k1_gig_workaround_hv(hw, true);
	if (ret_val)
		return ret_val;

	/* Workaround for link disconnects on a busy hub in half duplex */
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;
	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
	if (ret_val)
		goto release;
	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
	if (ret_val)
		goto release;

	/* set MSE higher to enable link to stay up when noise is high */
	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
release:
	hw->phy.ops.release(hw);

	return ret_val;
}

/**
 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
 *  @hw:   pointer to the HW structure
 **/
void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
{
	u32 mac_reg;
	u16 i, phy_reg = 0;
	s32 ret_val;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;
	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
	if (ret_val)
		goto release;

	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
		mac_reg = er32(RAL(i));
		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
					   (u16)((mac_reg >> 16) & 0xFFFF));

		mac_reg = er32(RAH(i));
		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
					   (u16)((mac_reg & E1000_RAH_AV)
						 >> 16));
	}

	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);

release:
	hw->phy.ops.release(hw);
}

/**
 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
 *  with 82579 PHY
 *  @hw: pointer to the HW structure
 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
 **/
s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
{
	s32 ret_val = 0;
	u16 phy_reg, data;
	u32 mac_reg;
	u16 i;

	if (hw->mac.type < e1000_pch2lan)
		return 0;

	/* disable Rx path while enabling/disabling workaround */
	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
	if (ret_val)
		return ret_val;

	if (enable) {
		/* Write Rx addresses (rar_entry_count for RAL/H, and
		 * SHRAL/H) and initial CRC values to the MAC
		 */
		for (i = 0; i < hw->mac.rar_entry_count; i++) {
			u8 mac_addr[ETH_ALEN] = { 0 };
			u32 addr_high, addr_low;

			addr_high = er32(RAH(i));
			if (!(addr_high & E1000_RAH_AV))
				continue;
			addr_low = er32(RAL(i));
			mac_addr[0] = (addr_low & 0xFF);
			mac_addr[1] = ((addr_low >> 8) & 0xFF);
			mac_addr[2] = ((addr_low >> 16) & 0xFF);
			mac_addr[3] = ((addr_low >> 24) & 0xFF);
			mac_addr[4] = (addr_high & 0xFF);
			mac_addr[5] = ((addr_high >> 8) & 0xFF);

			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
		}

		/* Write Rx addresses to the PHY */
		e1000_copy_rx_addrs_to_phy_ich8lan(hw);

		/* Enable jumbo frame workaround in the MAC */
		mac_reg = er32(FFLT_DBG);
		mac_reg &= ~(1 << 14);
		mac_reg |= (7 << 15);
		ew32(FFLT_DBG, mac_reg);

		mac_reg = er32(RCTL);
		mac_reg |= E1000_RCTL_SECRC;
		ew32(RCTL, mac_reg);

		ret_val = e1000e_read_kmrn_reg(hw,
					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
					       &data);
		if (ret_val)
			return ret_val;
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						data | (1 << 0));
		if (ret_val)
			return ret_val;
		ret_val = e1000e_read_kmrn_reg(hw,
					       E1000_KMRNCTRLSTA_HD_CTRL,
					       &data);
		if (ret_val)
			return ret_val;
		data &= ~(0xF << 8);
		data |= (0xB << 8);
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						data);
		if (ret_val)
			return ret_val;

		/* Enable jumbo frame workaround in the PHY */
		e1e_rphy(hw, PHY_REG(769, 23), &data);
		data &= ~(0x7F << 5);
		data |= (0x37 << 5);
		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
		if (ret_val)
			return ret_val;
		e1e_rphy(hw, PHY_REG(769, 16), &data);
		data &= ~(1 << 13);
		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
		if (ret_val)
			return ret_val;
		e1e_rphy(hw, PHY_REG(776, 20), &data);
		data &= ~(0x3FF << 2);
		data |= (E1000_TX_PTR_GAP << 2);
		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
		if (ret_val)
			return ret_val;
		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
		if (ret_val)
			return ret_val;
		e1e_rphy(hw, HV_PM_CTRL, &data);
		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
		if (ret_val)
			return ret_val;
	} else {
		/* Write MAC register values back to h/w defaults */
		mac_reg = er32(FFLT_DBG);
		mac_reg &= ~(0xF << 14);
		ew32(FFLT_DBG, mac_reg);

		mac_reg = er32(RCTL);
		mac_reg &= ~E1000_RCTL_SECRC;
		ew32(RCTL, mac_reg);

		ret_val = e1000e_read_kmrn_reg(hw,
					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
					       &data);
		if (ret_val)
			return ret_val;
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						data & ~(1 << 0));
		if (ret_val)
			return ret_val;
		ret_val = e1000e_read_kmrn_reg(hw,
					       E1000_KMRNCTRLSTA_HD_CTRL,
					       &data);
		if (ret_val)
			return ret_val;
		data &= ~(0xF << 8);
		data |= (0xB << 8);
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						data);
		if (ret_val)
			return ret_val;

		/* Write PHY register values back to h/w defaults */
		e1e_rphy(hw, PHY_REG(769, 23), &data);
		data &= ~(0x7F << 5);
		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
		if (ret_val)
			return ret_val;
		e1e_rphy(hw, PHY_REG(769, 16), &data);
		data |= (1 << 13);
		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
		if (ret_val)
			return ret_val;
		e1e_rphy(hw, PHY_REG(776, 20), &data);
		data &= ~(0x3FF << 2);
		data |= (0x8 << 2);
		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
		if (ret_val)
			return ret_val;
		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
		if (ret_val)
			return ret_val;
		e1e_rphy(hw, HV_PM_CTRL, &data);
		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
		if (ret_val)
			return ret_val;
	}

	/* re-enable Rx path after enabling/disabling workaround */
	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
}

/**
 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
 *  done after every PHY reset.
 **/
static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;

	if (hw->mac.type != e1000_pch2lan)
		return 0;

	/* Set MDIO slow mode before any other MDIO access */
	ret_val = e1000_set_mdio_slow_mode_hv(hw);
	if (ret_val)
		return ret_val;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;
	/* set MSE higher to enable link to stay up when noise is high */
	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
	if (ret_val)
		goto release;
	/* drop link after 5 times MSE threshold was reached */
	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
release:
	hw->phy.ops.release(hw);

	return ret_val;
}

/**
 *  e1000_k1_gig_workaround_lv - K1 Si workaround
 *  @hw:   pointer to the HW structure
 *
 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
 *  Disable K1 in 1000Mbps and 100Mbps
 **/
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 status_reg = 0;

	if (hw->mac.type != e1000_pch2lan)
		return 0;

	/* Set K1 beacon duration based on 10Mbs speed */
	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
	if (ret_val)
		return ret_val;

	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
		if (status_reg &
		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
			u16 pm_phy_reg;

			/* LV 1G/100 Packet drop issue wa  */
			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
			if (ret_val)
				return ret_val;
			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
			if (ret_val)
				return ret_val;
		} else {
			u32 mac_reg;

			mac_reg = er32(FEXTNVM4);
			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
			ew32(FEXTNVM4, mac_reg);
		}
	}

	return ret_val;
}

/**
 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
 *  @hw:   pointer to the HW structure
 *  @gate: boolean set to true to gate, false to ungate
 *
 *  Gate/ungate the automatic PHY configuration via hardware; perform
 *  the configuration via software instead.
 **/
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
{
	u32 extcnf_ctrl;

	if (hw->mac.type < e1000_pch2lan)
		return;

	extcnf_ctrl = er32(EXTCNF_CTRL);

	if (gate)
		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
	else
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;

	ew32(EXTCNF_CTRL, extcnf_ctrl);
}

/**
 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
 *  @hw: pointer to the HW structure
 *
 *  Check the appropriate indication the MAC has finished configuring the
 *  PHY after a software reset.
 **/
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
{
	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;

	/* Wait for basic configuration completes before proceeding */
	do {
		data = er32(STATUS);
		data &= E1000_STATUS_LAN_INIT_DONE;
		usleep_range(100, 200);
	} while ((!data) && --loop);

	/* If basic configuration is incomplete before the above loop
	 * count reaches 0, loading the configuration from NVM will
	 * leave the PHY in a bad state possibly resulting in no link.
	 */
	if (loop == 0)
		e_dbg("LAN_INIT_DONE not set, increase timeout\n");

	/* Clear the Init Done bit for the next init event */
	data = er32(STATUS);
	data &= ~E1000_STATUS_LAN_INIT_DONE;
	ew32(STATUS, data);
}

/**
 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 reg;

	if (hw->phy.ops.check_reset_block(hw))
		return 0;

	/* Allow time for h/w to get to quiescent state after reset */
	usleep_range(10000, 20000);

	/* Perform any necessary post-reset workarounds */
	switch (hw->mac.type) {
	case e1000_pchlan:
		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
		if (ret_val)
			return ret_val;
		break;
	case e1000_pch2lan:
		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
		if (ret_val)
			return ret_val;
		break;
	default:
		break;
	}

	/* Clear the host wakeup bit after lcd reset */
	if (hw->mac.type >= e1000_pchlan) {
		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
		reg &= ~BM_WUC_HOST_WU_BIT;
		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
	}

	/* Configure the LCD with the extended configuration region in NVM */
	ret_val = e1000_sw_lcd_config_ich8lan(hw);
	if (ret_val)
		return ret_val;

	/* Configure the LCD with the OEM bits in NVM */
	ret_val = e1000_oem_bits_config_ich8lan(hw, true);

	if (hw->mac.type == e1000_pch2lan) {
		/* Ungate automatic PHY configuration on non-managed 82579 */
		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
			usleep_range(10000, 20000);
			e1000_gate_hw_phy_config_ich8lan(hw, false);
		}

		/* Set EEE LPI Update Timer to 200usec */
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return ret_val;
		ret_val = e1000_write_emi_reg_locked(hw,
						     I82579_LPI_UPDATE_TIMER,
						     0x1387);
		hw->phy.ops.release(hw);
	}

	return ret_val;
}

/**
 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
 *  @hw: pointer to the HW structure
 *
 *  Resets the PHY
 *  This is a function pointer entry point called by drivers
 *  or other shared routines.
 **/
static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;

	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
	if ((hw->mac.type == e1000_pch2lan) &&
	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		e1000_gate_hw_phy_config_ich8lan(hw, true);

	ret_val = e1000e_phy_hw_reset_generic(hw);
	if (ret_val)
		return ret_val;

	return e1000_post_phy_reset_ich8lan(hw);
}

/**
 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
 *  the phy speed. This function will manually set the LPLU bit and restart
 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
 *  since it configures the same bit.
 **/
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
{
	s32 ret_val;
	u16 oem_reg;

	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
	if (ret_val)
		return ret_val;

	if (active)
		oem_reg |= HV_OEM_BITS_LPLU;
	else
		oem_reg &= ~HV_OEM_BITS_LPLU;

	if (!hw->phy.ops.check_reset_block(hw))
		oem_reg |= HV_OEM_BITS_RESTART_AN;

	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
}

/**
 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU D0 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
	s32 ret_val = 0;
	u16 data;

	if (phy->type == e1000_phy_ife)
		return 0;

	phy_ctrl = er32(PHY_CTRL);

	if (active) {
		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

		if (phy->type != e1000_phy_igp_3)
			return 0;

		/* Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
		if (hw->mac.type == e1000_ich8lan)
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		if (ret_val)
			return ret_val;
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
		if (ret_val)
			return ret_val;
	} else {
		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

		if (phy->type != e1000_phy_igp_3)
			return 0;

		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU D3 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
	s32 ret_val = 0;
	u16 data;

	phy_ctrl = er32(PHY_CTRL);

	if (!active) {
		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

		if (phy->type != e1000_phy_igp_3)
			return 0;

		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
			if (ret_val)
				return ret_val;
		}
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

		if (phy->type != e1000_phy_igp_3)
			return 0;

		/* Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
		if (hw->mac.type == e1000_ich8lan)
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		if (ret_val)
			return ret_val;

		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
	}

	return ret_val;
}

/**
 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
 *  @hw: pointer to the HW structure
 *  @bank:  pointer to the variable that returns the active bank
 *
 *  Reads signature byte from the NVM using the flash access registers.
 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
 **/
static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
{
	u32 eecd;
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
	u8 sig_byte = 0;
	s32 ret_val;

	switch (hw->mac.type) {
		/* In SPT, read from the CTRL_EXT reg instead of
		 * accessing the sector valid bits from the nvm
		 */
	case e1000_pch_spt:
		*bank = er32(CTRL_EXT)
		    & E1000_CTRL_EXT_NVMVS;
		if ((*bank == 0) || (*bank == 1)) {
			e_dbg("ERROR: No valid NVM bank present\n");
			return -E1000_ERR_NVM;
		} else {
			*bank = *bank - 2;
			return 0;
		}
		break;
	case e1000_ich8lan:
	case e1000_ich9lan:
		eecd = er32(EECD);
		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
		    E1000_EECD_SEC1VAL_VALID_MASK) {
			if (eecd & E1000_EECD_SEC1VAL)
				*bank = 1;
			else
				*bank = 0;

			return 0;
		}
		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
		/* fall-thru */
	default:
		/* set bank to 0 in case flash read fails */
		*bank = 0;

		/* Check bank 0 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
							&sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
			*bank = 0;
			return 0;
		}

		/* Check bank 1 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
							bank1_offset,
							&sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
			*bank = 1;
			return 0;
		}

		e_dbg("ERROR: No valid NVM bank present\n");
		return -E1000_ERR_NVM;
	}
}

/**
 *  e1000_read_nvm_spt - NVM access for SPT
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to read.
 *  @words: Size of data to read in words.
 *  @data: pointer to the word(s) to read at offset.
 *
 *  Reads a word(s) from the NVM
 **/
static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
			      u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 act_offset;
	s32 ret_val = 0;
	u32 bank = 0;
	u32 dword = 0;
	u16 offset_to_read;
	u16 i;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
		e_dbg("nvm parameter(s) out of bounds\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

	nvm->ops.acquire(hw);

	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
	if (ret_val) {
		e_dbg("Could not detect valid bank, assuming bank 0\n");
		bank = 0;
	}

	act_offset = (bank) ? nvm->flash_bank_size : 0;
	act_offset += offset;

	ret_val = 0;

	for (i = 0; i < words; i += 2) {
		if (words - i == 1) {
			if (dev_spec->shadow_ram[offset + i].modified) {
				data[i] =
				    dev_spec->shadow_ram[offset + i].value;
			} else {
				offset_to_read = act_offset + i -
				    ((act_offset + i) % 2);
				ret_val =
				  e1000_read_flash_dword_ich8lan(hw,
								 offset_to_read,
								 &dword);
				if (ret_val)
					break;
				if ((act_offset + i) % 2 == 0)
					data[i] = (u16)(dword & 0xFFFF);
				else
					data[i] = (u16)((dword >> 16) & 0xFFFF);
			}
		} else {
			offset_to_read = act_offset + i;
			if (!(dev_spec->shadow_ram[offset + i].modified) ||
			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
				ret_val =
				  e1000_read_flash_dword_ich8lan(hw,
								 offset_to_read,
								 &dword);
				if (ret_val)
					break;
			}
			if (dev_spec->shadow_ram[offset + i].modified)
				data[i] =
				    dev_spec->shadow_ram[offset + i].value;
			else
				data[i] = (u16)(dword & 0xFFFF);
			if (dev_spec->shadow_ram[offset + i].modified)
				data[i + 1] =
				    dev_spec->shadow_ram[offset + i + 1].value;
			else
				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
		}
	}

	nvm->ops.release(hw);

out:
	if (ret_val)
		e_dbg("NVM read error: %d\n", ret_val);

	return ret_val;
}

/**
 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to read.
 *  @words: Size of data to read in words
 *  @data: Pointer to the word(s) to read at offset.
 *
 *  Reads a word(s) from the NVM using the flash access registers.
 **/
static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				  u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 act_offset;
	s32 ret_val = 0;
	u32 bank = 0;
	u16 i, word;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
		e_dbg("nvm parameter(s) out of bounds\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

	nvm->ops.acquire(hw);

	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
	if (ret_val) {
		e_dbg("Could not detect valid bank, assuming bank 0\n");
		bank = 0;
	}

	act_offset = (bank) ? nvm->flash_bank_size : 0;
	act_offset += offset;

	ret_val = 0;
	for (i = 0; i < words; i++) {
		if (dev_spec->shadow_ram[offset + i].modified) {
			data[i] = dev_spec->shadow_ram[offset + i].value;
		} else {
			ret_val = e1000_read_flash_word_ich8lan(hw,
								act_offset + i,
								&word);
			if (ret_val)
				break;
			data[i] = word;
		}
	}

	nvm->ops.release(hw);

out:
	if (ret_val)
		e_dbg("NVM read error: %d\n", ret_val);

	return ret_val;
}

/**
 *  e1000_flash_cycle_init_ich8lan - Initialize flash
 *  @hw: pointer to the HW structure
 *
 *  This function does initial flash setup so that a new read/write/erase cycle
 *  can be started.
 **/
static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
{
	union ich8_hws_flash_status hsfsts;
	s32 ret_val = -E1000_ERR_NVM;

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

	/* Check if the flash descriptor is valid */
	if (!hsfsts.hsf_status.fldesvalid) {
		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
		return -E1000_ERR_NVM;
	}

	/* Clear FCERR and DAEL in hw status by writing 1 */
	hsfsts.hsf_status.flcerr = 1;
	hsfsts.hsf_status.dael = 1;
	if (hw->mac.type == e1000_pch_spt)
		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
	else
		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);

	/* Either we should have a hardware SPI cycle in progress
	 * bit to check against, in order to start a new cycle or
	 * FDONE bit should be changed in the hardware so that it
	 * is 1 after hardware reset, which can then be used as an
	 * indication whether a cycle is in progress or has been
	 * completed.
	 */

	if (!hsfsts.hsf_status.flcinprog) {
		/* There is no cycle running at present,
		 * so we can start a cycle.
		 * Begin by setting Flash Cycle Done.
		 */
		hsfsts.hsf_status.flcdone = 1;
		if (hw->mac.type == e1000_pch_spt)
			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
		else
			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		ret_val = 0;
	} else {
		s32 i;

		/* Otherwise poll for sometime so the current
		 * cycle has a chance to end before giving up.
		 */
		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
			if (!hsfsts.hsf_status.flcinprog) {
				ret_val = 0;
				break;
			}
			udelay(1);
		}
		if (!ret_val) {
			/* Successful in waiting for previous cycle to timeout,
			 * now set the Flash Cycle Done.
			 */
			hsfsts.hsf_status.flcdone = 1;
			if (hw->mac.type == e1000_pch_spt)
				ew32flash(ICH_FLASH_HSFSTS,
					  hsfsts.regval & 0xFFFF);
			else
				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		} else {
			e_dbg("Flash controller busy, cannot get access\n");
		}
	}

	return ret_val;
}

/**
 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
 *  @hw: pointer to the HW structure
 *  @timeout: maximum time to wait for completion
 *
 *  This function starts a flash cycle and waits for its completion.
 **/
static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
{
	union ich8_hws_flash_ctrl hsflctl;
	union ich8_hws_flash_status hsfsts;
	u32 i = 0;

	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
	if (hw->mac.type == e1000_pch_spt)
		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
	else
		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
	hsflctl.hsf_ctrl.flcgo = 1;

	if (hw->mac.type == e1000_pch_spt)
		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
	else
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

	/* wait till FDONE bit is set to 1 */
	do {
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
		if (hsfsts.hsf_status.flcdone)
			break;
		udelay(1);
	} while (i++ < timeout);

	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
		return 0;

	return -E1000_ERR_NVM;
}

/**
 *  e1000_read_flash_dword_ich8lan - Read dword from flash
 *  @hw: pointer to the HW structure
 *  @offset: offset to data location
 *  @data: pointer to the location for storing the data
 *
 *  Reads the flash dword at offset into data.  Offset is converted
 *  to bytes before read.
 **/
static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
					  u32 *data)
{
	/* Must convert word offset into bytes. */
	offset <<= 1;
	return e1000_read_flash_data32_ich8lan(hw, offset, data);
}

/**
 *  e1000_read_flash_word_ich8lan - Read word from flash
 *  @hw: pointer to the HW structure
 *  @offset: offset to data location
 *  @data: pointer to the location for storing the data
 *
 *  Reads the flash word at offset into data.  Offset is converted
 *  to bytes before read.
 **/
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data)
{
	/* Must convert offset into bytes. */
	offset <<= 1;

	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
}

/**
 *  e1000_read_flash_byte_ich8lan - Read byte from flash
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to read.
 *  @data: Pointer to a byte to store the value read.
 *
 *  Reads a single byte from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data)
{
	s32 ret_val;
	u16 word = 0;

	/* In SPT, only 32 bits access is supported,
	 * so this function should not be called.
	 */
	if (hw->mac.type == e1000_pch_spt)
		return -E1000_ERR_NVM;
	else
		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);

	if (ret_val)
		return ret_val;

	*data = (u8)word;

	return 0;
}

/**
 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte or word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: Pointer to the word to store the value read.
 *
 *  Reads a byte or word from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val = -E1000_ERR_NVM;
	u8 count = 0;

	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			     hw->nvm.flash_base_addr);

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
		if (ret_val)
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size - 1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		ret_val =
		    e1000_flash_cycle_ich8lan(hw,
					      ICH_FLASH_READ_COMMAND_TIMEOUT);

		/* Check if FCERR is set to 1, if set to 1, clear it
		 * and try the whole sequence a few more times, else
		 * read in (shift in) the Flash Data0, the order is
		 * least significant byte first msb to lsb
		 */
		if (!ret_val) {
			flash_data = er32flash(ICH_FLASH_FDATA0);
			if (size == 1)
				*data = (u8)(flash_data & 0x000000FF);
			else if (size == 2)
				*data = (u16)(flash_data & 0x0000FFFF);
			break;
		} else {
			/* If we've gotten here, then things are probably
			 * completely hosed, but if the error condition is
			 * detected, it won't hurt to give it another try...
			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
			 */
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcerr) {
				/* Repeat for some time before giving up. */
				continue;
			} else if (!hsfsts.hsf_status.flcdone) {
				e_dbg("Timeout error - flash cycle did not complete.\n");
				break;
			}
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the dword to read.
 *  @data: Pointer to the dword to store the value read.
 *
 *  Reads a byte or word from the NVM using the flash access registers.
 **/

static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
					   u32 *data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	s32 ret_val = -E1000_ERR_NVM;
	u8 count = 0;

	if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
	    hw->mac.type != e1000_pch_spt)
		return -E1000_ERR_NVM;
	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			     hw->nvm.flash_base_addr);

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
		if (ret_val)
			break;
		/* In SPT, This register is in Lan memory space, not flash.
		 * Therefore, only 32 bit access is supported
		 */
		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;

		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
		/* In SPT, This register is in Lan memory space, not flash.
		 * Therefore, only 32 bit access is supported
		 */
		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		ret_val =
		   e1000_flash_cycle_ich8lan(hw,
					     ICH_FLASH_READ_COMMAND_TIMEOUT);

		/* Check if FCERR is set to 1, if set to 1, clear it
		 * and try the whole sequence a few more times, else
		 * read in (shift in) the Flash Data0, the order is
		 * least significant byte first msb to lsb
		 */
		if (!ret_val) {
			*data = er32flash(ICH_FLASH_FDATA0);
			break;
		} else {
			/* If we've gotten here, then things are probably
			 * completely hosed, but if the error condition is
			 * detected, it won't hurt to give it another try...
			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
			 */
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcerr) {
				/* Repeat for some time before giving up. */
				continue;
			} else if (!hsfsts.hsf_status.flcdone) {
				e_dbg("Timeout error - flash cycle did not complete.\n");
				break;
			}
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to write.
 *  @words: Size of data to write in words
 *  @data: Pointer to the word(s) to write at offset.
 *
 *  Writes a byte or word to the NVM using the flash access registers.
 **/
static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				   u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u16 i;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
		e_dbg("nvm parameter(s) out of bounds\n");
		return -E1000_ERR_NVM;
	}

	nvm->ops.acquire(hw);

	for (i = 0; i < words; i++) {
		dev_spec->shadow_ram[offset + i].modified = true;
		dev_spec->shadow_ram[offset + i].value = data[i];
	}

	nvm->ops.release(hw);

	return 0;
}

/**
 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
 *  @hw: pointer to the HW structure
 *
 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
 *  which writes the checksum to the shadow ram.  The changes in the shadow
 *  ram are then committed to the EEPROM by processing each bank at a time
 *  checking for the modified bit and writing only the pending changes.
 *  After a successful commit, the shadow ram is cleared and is ready for
 *  future writes.
 **/
static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
	s32 ret_val;
	u32 dword = 0;

	ret_val = e1000e_update_nvm_checksum_generic(hw);
	if (ret_val)
		goto out;

	if (nvm->type != e1000_nvm_flash_sw)
		goto out;

	nvm->ops.acquire(hw);

	/* We're writing to the opposite bank so if we're on bank 1,
	 * write to bank 0 etc.  We also need to erase the segment that
	 * is going to be written
	 */
	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
	if (ret_val) {
		e_dbg("Could not detect valid bank, assuming bank 0\n");
		bank = 0;
	}

	if (bank == 0) {
		new_bank_offset = nvm->flash_bank_size;
		old_bank_offset = 0;
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
		if (ret_val)
			goto release;
	} else {
		old_bank_offset = nvm->flash_bank_size;
		new_bank_offset = 0;
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
		if (ret_val)
			goto release;
	}
	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
		/* Determine whether to write the value stored
		 * in the other NVM bank or a modified value stored
		 * in the shadow RAM
		 */
		ret_val = e1000_read_flash_dword_ich8lan(hw,
							 i + old_bank_offset,
							 &dword);

		if (dev_spec->shadow_ram[i].modified) {
			dword &= 0xffff0000;
			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
		}
		if (dev_spec->shadow_ram[i + 1].modified) {
			dword &= 0x0000ffff;
			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
				  << 16);
		}
		if (ret_val)
			break;

		/* If the word is 0x13, then make sure the signature bits
		 * (15:14) are 11b until the commit has completed.
		 * This will allow us to write 10b which indicates the
		 * signature is valid.  We want to do this after the write
		 * has completed so that we don't mark the segment valid
		 * while the write is still in progress
		 */
		if (i == E1000_ICH_NVM_SIG_WORD - 1)
			dword |= E1000_ICH_NVM_SIG_MASK << 16;

		/* Convert offset to bytes. */
		act_offset = (i + new_bank_offset) << 1;

		usleep_range(100, 200);

		/* Write the data to the new bank. Offset in words */
		act_offset = i + new_bank_offset;
		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
								dword);
		if (ret_val)
			break;
	}

	/* Don't bother writing the segment valid bits if sector
	 * programming failed.
	 */
	if (ret_val) {
		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
		e_dbg("Flash commit failed.\n");
		goto release;
	}

	/* Finally validate the new segment by setting bit 15:14
	 * to 10b in word 0x13 , this can be done without an
	 * erase as well since these bits are 11 to start with
	 * and we need to change bit 14 to 0b
	 */
	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;

	/*offset in words but we read dword */
	--act_offset;
	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);

	if (ret_val)
		goto release;

	dword &= 0xBFFFFFFF;
	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);

	if (ret_val)
		goto release;

	/* And invalidate the previously valid segment by setting
	 * its signature word (0x13) high_byte to 0b. This can be
	 * done without an erase because flash erase sets all bits
	 * to 1's. We can write 1's to 0's without an erase
	 */
	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;

	/* offset in words but we read dword */
	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);

	if (ret_val)
		goto release;

	dword &= 0x00FFFFFF;
	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);

	if (ret_val)
		goto release;

	/* Great!  Everything worked, we can now clear the cached entries. */
	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
		dev_spec->shadow_ram[i].modified = false;
		dev_spec->shadow_ram[i].value = 0xFFFF;
	}

release:
	nvm->ops.release(hw);

	/* Reload the EEPROM, or else modifications will not appear
	 * until after the next adapter reset.
	 */
	if (!ret_val) {
		nvm->ops.reload(hw);
		usleep_range(10000, 20000);
	}

out:
	if (ret_val)
		e_dbg("NVM update error: %d\n", ret_val);

	return ret_val;
}

/**
 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
 *  @hw: pointer to the HW structure
 *
 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
 *  which writes the checksum to the shadow ram.  The changes in the shadow
 *  ram are then committed to the EEPROM by processing each bank at a time
 *  checking for the modified bit and writing only the pending changes.
 *  After a successful commit, the shadow ram is cleared and is ready for
 *  future writes.
 **/
static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
	s32 ret_val;
	u16 data = 0;

	ret_val = e1000e_update_nvm_checksum_generic(hw);
	if (ret_val)
		goto out;

	if (nvm->type != e1000_nvm_flash_sw)
		goto out;

	nvm->ops.acquire(hw);

	/* We're writing to the opposite bank so if we're on bank 1,
	 * write to bank 0 etc.  We also need to erase the segment that
	 * is going to be written
	 */
	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
	if (ret_val) {
		e_dbg("Could not detect valid bank, assuming bank 0\n");
		bank = 0;
	}

	if (bank == 0) {
		new_bank_offset = nvm->flash_bank_size;
		old_bank_offset = 0;
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
		if (ret_val)
			goto release;
	} else {
		old_bank_offset = nvm->flash_bank_size;
		new_bank_offset = 0;
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
		if (ret_val)
			goto release;
	}
	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
		if (dev_spec->shadow_ram[i].modified) {
			data = dev_spec->shadow_ram[i].value;
		} else {
			ret_val = e1000_read_flash_word_ich8lan(hw, i +
								old_bank_offset,
								&data);
			if (ret_val)
				break;
		}

		/* If the word is 0x13, then make sure the signature bits
		 * (15:14) are 11b until the commit has completed.
		 * This will allow us to write 10b which indicates the
		 * signature is valid.  We want to do this after the write
		 * has completed so that we don't mark the segment valid
		 * while the write is still in progress
		 */
		if (i == E1000_ICH_NVM_SIG_WORD)
			data |= E1000_ICH_NVM_SIG_MASK;

		/* Convert offset to bytes. */
		act_offset = (i + new_bank_offset) << 1;

		usleep_range(100, 200);
		/* Write the bytes to the new bank. */
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							       act_offset,
							       (u8)data);
		if (ret_val)
			break;

		usleep_range(100, 200);
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							       act_offset + 1,
							       (u8)(data >> 8));
		if (ret_val)
			break;
	}

	/* Don't bother writing the segment valid bits if sector
	 * programming failed.
	 */
	if (ret_val) {
		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
		e_dbg("Flash commit failed.\n");
		goto release;
	}

	/* Finally validate the new segment by setting bit 15:14
	 * to 10b in word 0x13 , this can be done without an
	 * erase as well since these bits are 11 to start with
	 * and we need to change bit 14 to 0b
	 */
	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
	if (ret_val)
		goto release;

	data &= 0xBFFF;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
						       act_offset * 2 + 1,
						       (u8)(data >> 8));
	if (ret_val)
		goto release;

	/* And invalidate the previously valid segment by setting
	 * its signature word (0x13) high_byte to 0b. This can be
	 * done without an erase because flash erase sets all bits
	 * to 1's. We can write 1's to 0's without an erase
	 */
	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
	if (ret_val)
		goto release;

	/* Great!  Everything worked, we can now clear the cached entries. */
	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
		dev_spec->shadow_ram[i].modified = false;
		dev_spec->shadow_ram[i].value = 0xFFFF;
	}

release:
	nvm->ops.release(hw);

	/* Reload the EEPROM, or else modifications will not appear
	 * until after the next adapter reset.
	 */
	if (!ret_val) {
		nvm->ops.reload(hw);
		usleep_range(10000, 20000);
	}

out:
	if (ret_val)
		e_dbg("NVM update error: %d\n", ret_val);

	return ret_val;
}

/**
 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
 *  calculated, in which case we need to calculate the checksum and set bit 6.
 **/
static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 data;
	u16 word;
	u16 valid_csum_mask;

	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
	 * the checksum needs to be fixed.  This bit is an indication that
	 * the NVM was prepared by OEM software and did not calculate
	 * the checksum...a likely scenario.
	 */
	switch (hw->mac.type) {
	case e1000_pch_lpt:
	case e1000_pch_spt:
		word = NVM_COMPAT;
		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
		break;
	default:
		word = NVM_FUTURE_INIT_WORD1;
		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
		break;
	}

	ret_val = e1000_read_nvm(hw, word, 1, &data);
	if (ret_val)
		return ret_val;

	if (!(data & valid_csum_mask)) {
		data |= valid_csum_mask;
		ret_val = e1000_write_nvm(hw, word, 1, &data);
		if (ret_val)
			return ret_val;
		ret_val = e1000e_update_nvm_checksum(hw);
		if (ret_val)
			return ret_val;
	}

	return e1000e_validate_nvm_checksum_generic(hw);
}

/**
 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
 *  @hw: pointer to the HW structure
 *
 *  To prevent malicious write/erase of the NVM, set it to be read-only
 *  so that the hardware ignores all write/erase cycles of the NVM via
 *  the flash control registers.  The shadow-ram copy of the NVM will
 *  still be updated, however any updates to this copy will not stick
 *  across driver reloads.
 **/
void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	union ich8_flash_protected_range pr0;
	union ich8_hws_flash_status hsfsts;
	u32 gfpreg;

	nvm->ops.acquire(hw);

	gfpreg = er32flash(ICH_FLASH_GFPREG);

	/* Write-protect GbE Sector of NVM */
	pr0.regval = er32flash(ICH_FLASH_PR0);
	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
	pr0.range.wpe = true;
	ew32flash(ICH_FLASH_PR0, pr0.regval);

	/* Lock down a subset of GbE Flash Control Registers, e.g.
	 * PR0 to prevent the write-protection from being lifted.
	 * Once FLOCKDN is set, the registers protected by it cannot
	 * be written until FLOCKDN is cleared by a hardware reset.
	 */
	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
	hsfsts.hsf_status.flockdn = true;
	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);

	nvm->ops.release(hw);
}

/**
 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte/word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: The byte(s) to write to the NVM.
 *
 *  Writes one/two bytes to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 size, u16 data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val;
	u8 count = 0;

	if (hw->mac.type == e1000_pch_spt) {
		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
			return -E1000_ERR_NVM;
	} else {
		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
			return -E1000_ERR_NVM;
	}

	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			     hw->nvm.flash_base_addr);

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
		if (ret_val)
			break;
		/* In SPT, This register is in Lan memory space, not
		 * flash.  Therefore, only 32 bit access is supported
		 */
		if (hw->mac.type == e1000_pch_spt)
			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
		else
			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);

		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size - 1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
		/* In SPT, This register is in Lan memory space,
		 * not flash.  Therefore, only 32 bit access is
		 * supported
		 */
		if (hw->mac.type == e1000_pch_spt)
			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
		else
			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		if (size == 1)
			flash_data = (u32)data & 0x00FF;
		else
			flash_data = (u32)data;

		ew32flash(ICH_FLASH_FDATA0, flash_data);

		/* check if FCERR is set to 1 , if set to 1, clear it
		 * and try the whole sequence a few more times else done
		 */
		ret_val =
		    e1000_flash_cycle_ich8lan(hw,
					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
		if (!ret_val)
			break;

		/* If we're here, then things are most likely
		 * completely hosed, but if the error condition
		 * is detected, it won't hurt to give it another
		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
		 */
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
		if (hsfsts.hsf_status.flcerr)
			/* Repeat for some time before giving up. */
			continue;
		if (!hsfsts.hsf_status.flcdone) {
			e_dbg("Timeout error - flash cycle did not complete.\n");
			break;
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
*  @hw: pointer to the HW structure
*  @offset: The offset (in bytes) of the dwords to read.
*  @data: The 4 bytes to write to the NVM.
*
*  Writes one/two/four bytes to the NVM using the flash access registers.
**/
static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
					    u32 data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	s32 ret_val;
	u8 count = 0;

	if (hw->mac.type == e1000_pch_spt) {
		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
			return -E1000_ERR_NVM;
	}
	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			     hw->nvm.flash_base_addr);
	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
		if (ret_val)
			break;

		/* In SPT, This register is in Lan memory space, not
		 * flash.  Therefore, only 32 bit access is supported
		 */
		if (hw->mac.type == e1000_pch_spt)
			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
			    >> 16;
		else
			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);

		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;

		/* In SPT, This register is in Lan memory space,
		 * not flash.  Therefore, only 32 bit access is
		 * supported
		 */
		if (hw->mac.type == e1000_pch_spt)
			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
		else
			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		ew32flash(ICH_FLASH_FDATA0, data);

		/* check if FCERR is set to 1 , if set to 1, clear it
		 * and try the whole sequence a few more times else done
		 */
		ret_val =
		   e1000_flash_cycle_ich8lan(hw,
					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);

		if (!ret_val)
			break;

		/* If we're here, then things are most likely
		 * completely hosed, but if the error condition
		 * is detected, it won't hurt to give it another
		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
		 */
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

		if (hsfsts.hsf_status.flcerr)
			/* Repeat for some time before giving up. */
			continue;
		if (!hsfsts.hsf_status.flcdone) {
			e_dbg("Timeout error - flash cycle did not complete.\n");
			break;
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The index of the byte to read.
 *  @data: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 data)
{
	u16 word = (u16)data;

	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
}

/**
*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
*  @hw: pointer to the HW structure
*  @offset: The offset of the word to write.
*  @dword: The dword to write to the NVM.
*
*  Writes a single dword to the NVM using the flash access registers.
*  Goes through a retry algorithm before giving up.
**/
static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
						 u32 offset, u32 dword)
{
	s32 ret_val;
	u16 program_retries;

	/* Must convert word offset into bytes. */
	offset <<= 1;
	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);

	if (!ret_val)
		return ret_val;
	for (program_retries = 0; program_retries < 100; program_retries++) {
		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
		usleep_range(100, 200);
		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
		if (!ret_val)
			break;
	}
	if (program_retries == 100)
		return -E1000_ERR_NVM;

	return 0;
}

/**
 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to write.
 *  @byte: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 *  Goes through a retry algorithm before giving up.
 **/
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte)
{
	s32 ret_val;
	u16 program_retries;

	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
	if (!ret_val)
		return ret_val;

	for (program_retries = 0; program_retries < 100; program_retries++) {
		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
		usleep_range(100, 200);
		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
		if (!ret_val)
			break;
	}
	if (program_retries == 100)
		return -E1000_ERR_NVM;

	return 0;
}

/**
 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
 *  @hw: pointer to the HW structure
 *  @bank: 0 for first bank, 1 for second bank, etc.
 *
 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
 *  bank N is 4096 * N + flash_reg_addr.
 **/
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	/* bank size is in 16bit words - adjust to bytes */
	u32 flash_bank_size = nvm->flash_bank_size * 2;
	s32 ret_val;
	s32 count = 0;
	s32 j, iteration, sector_size;

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

	/* Determine HW Sector size: Read BERASE bits of hw flash status
	 * register
	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
	 *     consecutive sectors.  The start index for the nth Hw sector
	 *     can be calculated as = bank * 4096 + n * 256
	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
	 *     The start index for the nth Hw sector can be calculated
	 *     as = bank * 4096
	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
	 *     (ich9 only, otherwise error condition)
	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
	 */
	switch (hsfsts.hsf_status.berasesz) {
	case 0:
		/* Hw sector size 256 */
		sector_size = ICH_FLASH_SEG_SIZE_256;
		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
		break;
	case 1:
		sector_size = ICH_FLASH_SEG_SIZE_4K;
		iteration = 1;
		break;
	case 2:
		sector_size = ICH_FLASH_SEG_SIZE_8K;
		iteration = 1;
		break;
	case 3:
		sector_size = ICH_FLASH_SEG_SIZE_64K;
		iteration = 1;
		break;
	default:
		return -E1000_ERR_NVM;
	}

	/* Start with the base address, then add the sector offset. */
	flash_linear_addr = hw->nvm.flash_base_addr;
	flash_linear_addr += (bank) ? flash_bank_size : 0;

	for (j = 0; j < iteration; j++) {
		do {
			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;

			/* Steps */
			ret_val = e1000_flash_cycle_init_ich8lan(hw);
			if (ret_val)
				return ret_val;

			/* Write a value 11 (block Erase) in Flash
			 * Cycle field in hw flash control
			 */
			if (hw->mac.type == e1000_pch_spt)
				hsflctl.regval =
				    er32flash(ICH_FLASH_HSFSTS) >> 16;
			else
				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);

			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
			if (hw->mac.type == e1000_pch_spt)
				ew32flash(ICH_FLASH_HSFSTS,
					  hsflctl.regval << 16);
			else
				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

			/* Write the last 24 bits of an index within the
			 * block into Flash Linear address field in Flash
			 * Address.
			 */
			flash_linear_addr += (j * sector_size);
			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
			if (!ret_val)
				break;

			/* Check if FCERR is set to 1.  If 1,
			 * clear it and try the whole sequence
			 * a few more times else Done
			 */
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcerr)
				/* repeat for some time before giving up */
				continue;
			else if (!hsfsts.hsf_status.flcdone)
				return ret_val;
		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
	}

	return 0;
}

/**
 *  e1000_valid_led_default_ich8lan - Set the default LED settings
 *  @hw: pointer to the HW structure
 *  @data: Pointer to the LED settings
 *
 *  Reads the LED default settings from the NVM to data.  If the NVM LED
 *  settings is all 0's or F's, set the LED default to a valid LED default
 *  setting.
 **/
static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
		e_dbg("NVM Read Error\n");
		return ret_val;
	}

	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
		*data = ID_LED_DEFAULT_ICH8LAN;

	return 0;
}

/**
 *  e1000_id_led_init_pchlan - store LED configurations
 *  @hw: pointer to the HW structure
 *
 *  PCH does not control LEDs via the LEDCTL register, rather it uses
 *  the PHY LED configuration register.
 *
 *  PCH also does not have an "always on" or "always off" mode which
 *  complicates the ID feature.  Instead of using the "on" mode to indicate
 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
 *  use "link_up" mode.  The LEDs will still ID on request if there is no
 *  link based on logic in e1000_led_[on|off]_pchlan().
 **/
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
	u16 data, i, temp, shift;

	/* Get default ID LED modes */
	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
	if (ret_val)
		return ret_val;

	mac->ledctl_default = er32(LEDCTL);
	mac->ledctl_mode1 = mac->ledctl_default;
	mac->ledctl_mode2 = mac->ledctl_default;

	for (i = 0; i < 4; i++) {
		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
		shift = (i * 5);
		switch (temp) {
		case ID_LED_ON1_DEF2:
		case ID_LED_ON1_ON2:
		case ID_LED_ON1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_on << shift);
			break;
		case ID_LED_OFF1_DEF2:
		case ID_LED_OFF1_ON2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
		switch (temp) {
		case ID_LED_DEF1_ON2:
		case ID_LED_ON1_ON2:
		case ID_LED_OFF1_ON2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_on << shift);
			break;
		case ID_LED_DEF1_OFF2:
		case ID_LED_ON1_OFF2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
	}

	return 0;
}

/**
 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
 *  @hw: pointer to the HW structure
 *
 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
 *  register, so the the bus width is hard coded.
 **/
static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;
	s32 ret_val;

	ret_val = e1000e_get_bus_info_pcie(hw);

	/* ICH devices are "PCI Express"-ish.  They have
	 * a configuration space, but do not contain
	 * PCI Express Capability registers, so bus width
	 * must be hardcoded.
	 */
	if (bus->width == e1000_bus_width_unknown)
		bus->width = e1000_bus_width_pcie_x1;

	return ret_val;
}

/**
 *  e1000_reset_hw_ich8lan - Reset the hardware
 *  @hw: pointer to the HW structure
 *
 *  Does a full reset of the hardware which includes a reset of the PHY and
 *  MAC.
 **/
static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u16 kum_cfg;
	u32 ctrl, reg;
	s32 ret_val;

	/* Prevent the PCI-E bus from sticking if there is no TLP connection
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
	if (ret_val)
		e_dbg("PCI-E Master disable polling has failed.\n");

	e_dbg("Masking off all interrupts\n");
	ew32(IMC, 0xffffffff);

	/* Disable the Transmit and Receive units.  Then delay to allow
	 * any pending transactions to complete before we hit the MAC
	 * with the global reset.
	 */
	ew32(RCTL, 0);
	ew32(TCTL, E1000_TCTL_PSP);
	e1e_flush();

	usleep_range(10000, 20000);

	/* Workaround for ICH8 bit corruption issue in FIFO memory */
	if (hw->mac.type == e1000_ich8lan) {
		/* Set Tx and Rx buffer allocation to 8k apiece. */
		ew32(PBA, E1000_PBA_8K);
		/* Set Packet Buffer Size to 16k. */
		ew32(PBS, E1000_PBS_16K);
	}

	if (hw->mac.type == e1000_pchlan) {
		/* Save the NVM K1 bit setting */
		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
		if (ret_val)
			return ret_val;

		if (kum_cfg & E1000_NVM_K1_ENABLE)
			dev_spec->nvm_k1_enabled = true;
		else
			dev_spec->nvm_k1_enabled = false;
	}

	ctrl = er32(CTRL);

	if (!hw->phy.ops.check_reset_block(hw)) {
		/* Full-chip reset requires MAC and PHY reset at the same
		 * time to make sure the interface between MAC and the
		 * external PHY is reset.
		 */
		ctrl |= E1000_CTRL_PHY_RST;

		/* Gate automatic PHY configuration by hardware on
		 * non-managed 82579
		 */
		if ((hw->mac.type == e1000_pch2lan) &&
		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
			e1000_gate_hw_phy_config_ich8lan(hw, true);
	}
	ret_val = e1000_acquire_swflag_ich8lan(hw);
	e_dbg("Issuing a global reset to ich8lan\n");
	ew32(CTRL, (ctrl | E1000_CTRL_RST));
	/* cannot issue a flush here because it hangs the hardware */
	msleep(20);

	/* Set Phy Config Counter to 50msec */
	if (hw->mac.type == e1000_pch2lan) {
		reg = er32(FEXTNVM3);
		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
		ew32(FEXTNVM3, reg);
	}

	if (!ret_val)
		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);

	if (ctrl & E1000_CTRL_PHY_RST) {
		ret_val = hw->phy.ops.get_cfg_done(hw);
		if (ret_val)
			return ret_val;

		ret_val = e1000_post_phy_reset_ich8lan(hw);
		if (ret_val)
			return ret_val;
	}

	/* For PCH, this write will make sure that any noise
	 * will be detected as a CRC error and be dropped rather than show up
	 * as a bad packet to the DMA engine.
	 */
	if (hw->mac.type == e1000_pchlan)
		ew32(CRC_OFFSET, 0x65656565);

	ew32(IMC, 0xffffffff);
	er32(ICR);

	reg = er32(KABGTXD);
	reg |= E1000_KABGTXD_BGSQLBIAS;
	ew32(KABGTXD, reg);

	return 0;
}

/**
 *  e1000_init_hw_ich8lan - Initialize the hardware
 *  @hw: pointer to the HW structure
 *
 *  Prepares the hardware for transmit and receive by doing the following:
 *   - initialize hardware bits
 *   - initialize LED identification
 *   - setup receive address registers
 *   - setup flow control
 *   - setup transmit descriptors
 *   - clear statistics
 **/
static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 ctrl_ext, txdctl, snoop;
	s32 ret_val;
	u16 i;

	e1000_initialize_hw_bits_ich8lan(hw);

	/* Initialize identification LED */
	ret_val = mac->ops.id_led_init(hw);
	/* An error is not fatal and we should not stop init due to this */
	if (ret_val)
		e_dbg("Error initializing identification LED\n");

	/* Setup the receive address. */
	e1000e_init_rx_addrs(hw, mac->rar_entry_count);

	/* Zero out the Multicast HASH table */
	e_dbg("Zeroing the MTA\n");
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
	 * the ME.  Disable wakeup by clearing the host wakeup bit.
	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
	 */
	if (hw->phy.type == e1000_phy_82578) {
		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
		i &= ~BM_WUC_HOST_WU_BIT;
		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
		ret_val = e1000_phy_hw_reset_ich8lan(hw);
		if (ret_val)
			return ret_val;
	}

	/* Setup link and flow control */
	ret_val = mac->ops.setup_link(hw);

	/* Set the transmit descriptor write-back policy for both queues */
	txdctl = er32(TXDCTL(0));
	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
		  E1000_TXDCTL_FULL_TX_DESC_WB);
	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
	ew32(TXDCTL(0), txdctl);
	txdctl = er32(TXDCTL(1));
	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
		  E1000_TXDCTL_FULL_TX_DESC_WB);
	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
	ew32(TXDCTL(1), txdctl);

	/* ICH8 has opposite polarity of no_snoop bits.
	 * By default, we should use snoop behavior.
	 */
	if (mac->type == e1000_ich8lan)
		snoop = PCIE_ICH8_SNOOP_ALL;
	else
		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
	e1000e_set_pcie_no_snoop(hw, snoop);

	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
	ew32(CTRL_EXT, ctrl_ext);

	/* Clear all of the statistics registers (clear on read).  It is
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_ich8lan(hw);

	return ret_val;
}

/**
 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
 *  @hw: pointer to the HW structure
 *
 *  Sets/Clears required hardware bits necessary for correctly setting up the
 *  hardware for transmit and receive.
 **/
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
{
	u32 reg;

	/* Extended Device Control */
	reg = er32(CTRL_EXT);
	reg |= (1 << 22);
	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
	if (hw->mac.type >= e1000_pchlan)
		reg |= E1000_CTRL_EXT_PHYPDEN;
	ew32(CTRL_EXT, reg);

	/* Transmit Descriptor Control 0 */
	reg = er32(TXDCTL(0));
	reg |= (1 << 22);
	ew32(TXDCTL(0), reg);

	/* Transmit Descriptor Control 1 */
	reg = er32(TXDCTL(1));
	reg |= (1 << 22);
	ew32(TXDCTL(1), reg);

	/* Transmit Arbitration Control 0 */
	reg = er32(TARC(0));
	if (hw->mac.type == e1000_ich8lan)
		reg |= (1 << 28) | (1 << 29);
	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
	ew32(TARC(0), reg);

	/* Transmit Arbitration Control 1 */
	reg = er32(TARC(1));
	if (er32(TCTL) & E1000_TCTL_MULR)
		reg &= ~(1 << 28);
	else
		reg |= (1 << 28);
	reg |= (1 << 24) | (1 << 26) | (1 << 30);
	ew32(TARC(1), reg);

	/* Device Status */
	if (hw->mac.type == e1000_ich8lan) {
		reg = er32(STATUS);
		reg &= ~(1 << 31);
		ew32(STATUS, reg);
	}

	/* work-around descriptor data corruption issue during nfs v2 udp
	 * traffic, just disable the nfs filtering capability
	 */
	reg = er32(RFCTL);
	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);

	/* Disable IPv6 extension header parsing because some malformed
	 * IPv6 headers can hang the Rx.
	 */
	if (hw->mac.type == e1000_ich8lan)
		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
	ew32(RFCTL, reg);

	/* Enable ECC on Lynxpoint */
	if ((hw->mac.type == e1000_pch_lpt) ||
	    (hw->mac.type == e1000_pch_spt)) {
		reg = er32(PBECCSTS);
		reg |= E1000_PBECCSTS_ECC_ENABLE;
		ew32(PBECCSTS, reg);

		reg = er32(CTRL);
		reg |= E1000_CTRL_MEHE;
		ew32(CTRL, reg);
	}
}

/**
 *  e1000_setup_link_ich8lan - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;

	if (hw->phy.ops.check_reset_block(hw))
		return 0;

	/* ICH parts do not have a word in the NVM to determine
	 * the default flow control setting, so we explicitly
	 * set it to full.
	 */
	if (hw->fc.requested_mode == e1000_fc_default) {
		/* Workaround h/w hang when Tx flow control enabled */
		if (hw->mac.type == e1000_pchlan)
			hw->fc.requested_mode = e1000_fc_rx_pause;
		else
			hw->fc.requested_mode = e1000_fc_full;
	}

	/* Save off the requested flow control mode for use later.  Depending
	 * on the link partner's capabilities, we may or may not use this mode.
	 */
	hw->fc.current_mode = hw->fc.requested_mode;

	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);

	/* Continue to configure the copper link. */
	ret_val = hw->mac.ops.setup_physical_interface(hw);
	if (ret_val)
		return ret_val;

	ew32(FCTTV, hw->fc.pause_time);
	if ((hw->phy.type == e1000_phy_82578) ||
	    (hw->phy.type == e1000_phy_82579) ||
	    (hw->phy.type == e1000_phy_i217) ||
	    (hw->phy.type == e1000_phy_82577)) {
		ew32(FCRTV_PCH, hw->fc.refresh_time);

		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
				   hw->fc.pause_time);
		if (ret_val)
			return ret_val;
	}

	return e1000e_set_fc_watermarks(hw);
}

/**
 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
 *  @hw: pointer to the HW structure
 *
 *  Configures the kumeran interface to the PHY to wait the appropriate time
 *  when polling the PHY, then call the generic setup_copper_link to finish
 *  configuring the copper link.
 **/
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;
	u16 reg_data;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

	/* Set the mac to wait the maximum time between each iteration
	 * and increase the max iterations when polling the phy;
	 * this fixes erroneous timeouts at 10Mbps.
	 */
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
	if (ret_val)
		return ret_val;
	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
				       &reg_data);
	if (ret_val)
		return ret_val;
	reg_data |= 0x3F;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
					reg_data);
	if (ret_val)
		return ret_val;

	switch (hw->phy.type) {
	case e1000_phy_igp_3:
		ret_val = e1000e_copper_link_setup_igp(hw);
		if (ret_val)
			return ret_val;
		break;
	case e1000_phy_bm:
	case e1000_phy_82578:
		ret_val = e1000e_copper_link_setup_m88(hw);
		if (ret_val)
			return ret_val;
		break;
	case e1000_phy_82577:
	case e1000_phy_82579:
		ret_val = e1000_copper_link_setup_82577(hw);
		if (ret_val)
			return ret_val;
		break;
	case e1000_phy_ife:
		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
		if (ret_val)
			return ret_val;

		reg_data &= ~IFE_PMC_AUTO_MDIX;

		switch (hw->phy.mdix) {
		case 1:
			reg_data &= ~IFE_PMC_FORCE_MDIX;
			break;
		case 2:
			reg_data |= IFE_PMC_FORCE_MDIX;
			break;
		case 0:
		default:
			reg_data |= IFE_PMC_AUTO_MDIX;
			break;
		}
		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
		if (ret_val)
			return ret_val;
		break;
	default:
		break;
	}

	return e1000e_setup_copper_link(hw);
}

/**
 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
 *  @hw: pointer to the HW structure
 *
 *  Calls the PHY specific link setup function and then calls the
 *  generic setup_copper_link to finish configuring the link for
 *  Lynxpoint PCH devices
 **/
static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

	ret_val = e1000_copper_link_setup_82577(hw);
	if (ret_val)
		return ret_val;

	return e1000e_setup_copper_link(hw);
}

/**
 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
 *  @hw: pointer to the HW structure
 *  @speed: pointer to store current link speed
 *  @duplex: pointer to store the current link duplex
 *
 *  Calls the generic get_speed_and_duplex to retrieve the current link
 *  information and then calls the Kumeran lock loss workaround for links at
 *  gigabit speeds.
 **/
static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
					  u16 *duplex)
{
	s32 ret_val;

	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
	if (ret_val)
		return ret_val;

	if ((hw->mac.type == e1000_ich8lan) &&
	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
	}

	return ret_val;
}

/**
 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
 *  @hw: pointer to the HW structure
 *
 *  Work-around for 82566 Kumeran PCS lock loss:
 *  On link status change (i.e. PCI reset, speed change) and link is up and
 *  speed is gigabit-
 *    0) if workaround is optionally disabled do nothing
 *    1) wait 1ms for Kumeran link to come up
 *    2) check Kumeran Diagnostic register PCS lock loss bit
 *    3) if not set the link is locked (all is good), otherwise...
 *    4) reset the PHY
 *    5) repeat up to 10 times
 *  Note: this is only called for IGP3 copper when speed is 1gb.
 **/
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 phy_ctrl;
	s32 ret_val;
	u16 i, data;
	bool link;

	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
		return 0;

	/* Make sure link is up before proceeding.  If not just return.
	 * Attempting this while link is negotiating fouled up link
	 * stability
	 */
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (!link)
		return 0;

	for (i = 0; i < 10; i++) {
		/* read once to clear */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;
		/* and again to get new status */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;

		/* check for PCS lock */
		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
			return 0;

		/* Issue PHY reset */
		e1000_phy_hw_reset(hw);
		mdelay(5);
	}
	/* Disable GigE link negotiation */
	phy_ctrl = er32(PHY_CTRL);
	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
	ew32(PHY_CTRL, phy_ctrl);

	/* Call gig speed drop workaround on Gig disable before accessing
	 * any PHY registers
	 */
	e1000e_gig_downshift_workaround_ich8lan(hw);

	/* unable to acquire PCS lock */
	return -E1000_ERR_PHY;
}

/**
 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
 *  @hw: pointer to the HW structure
 *  @state: boolean value used to set the current Kumeran workaround state
 *
 *  If ICH8, set the current Kumeran workaround state (enabled - true
 *  /disabled - false).
 **/
void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
						  bool state)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;

	if (hw->mac.type != e1000_ich8lan) {
		e_dbg("Workaround applies to ICH8 only.\n");
		return;
	}

	dev_spec->kmrn_lock_loss_workaround_enabled = state;
}

/**
 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
 *  @hw: pointer to the HW structure
 *
 *  Workaround for 82566 power-down on D3 entry:
 *    1) disable gigabit link
 *    2) write VR power-down enable
 *    3) read it back
 *  Continue if successful, else issue LCD reset and repeat
 **/
void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
{
	u32 reg;
	u16 data;
	u8 retry = 0;

	if (hw->phy.type != e1000_phy_igp_3)
		return;

	/* Try the workaround twice (if needed) */
	do {
		/* Disable link */
		reg = er32(PHY_CTRL);
		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
		ew32(PHY_CTRL, reg);

		/* Call gig speed drop workaround on Gig disable before
		 * accessing any PHY registers
		 */
		if (hw->mac.type == e1000_ich8lan)
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* Write VR power-down enable */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);

		/* Read it back and test */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
			break;

		/* Issue PHY reset and repeat at most one more time */
		reg = er32(CTRL);
		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
		retry++;
	} while (retry);
}

/**
 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
 *  @hw: pointer to the HW structure
 *
 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
 *  LPLU, Gig disable, MDIC PHY reset):
 *    1) Set Kumeran Near-end loopback
 *    2) Clear Kumeran Near-end loopback
 *  Should only be called for ICH8[m] devices with any 1G Phy.
 **/
void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 reg_data;

	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
		return;

	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				       &reg_data);
	if (ret_val)
		return;
	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
					reg_data);
	if (ret_val)
		return;
	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
}

/**
 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
 *  @hw: pointer to the HW structure
 *
 *  During S0 to Sx transition, it is possible the link remains at gig
 *  instead of negotiating to a lower speed.  Before going to Sx, set
 *  'Gig Disable' to force link speed negotiation to a lower speed based on
 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
 *  needs to be written.
 *  Parts that support (and are linked to a partner which support) EEE in
 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
 *  than 10Mbps w/o EEE.
 **/
void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 phy_ctrl;
	s32 ret_val;

	phy_ctrl = er32(PHY_CTRL);
	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;

	if (hw->phy.type == e1000_phy_i217) {
		u16 phy_reg, device_id = hw->adapter->pdev->device;

		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
		    (hw->mac.type == e1000_pch_spt)) {
			u32 fextnvm6 = er32(FEXTNVM6);

			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
		}

		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			goto out;

		if (!dev_spec->eee_disable) {
			u16 eee_advert;

			ret_val =
			    e1000_read_emi_reg_locked(hw,
						      I217_EEE_ADVERTISEMENT,
						      &eee_advert);
			if (ret_val)
				goto release;

			/* Disable LPLU if both link partners support 100BaseT
			 * EEE and 100Full is advertised on both ends of the
			 * link, and enable Auto Enable LPI since there will
			 * be no driver to enable LPI while in Sx.
			 */
			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
			    (dev_spec->eee_lp_ability &
			     I82579_EEE_100_SUPPORTED) &&
			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
					      E1000_PHY_CTRL_NOND0A_LPLU);

				/* Set Auto Enable LPI after link up */
				e1e_rphy_locked(hw,
						I217_LPI_GPIO_CTRL, &phy_reg);
				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
				e1e_wphy_locked(hw,
						I217_LPI_GPIO_CTRL, phy_reg);
			}
		}

		/* For i217 Intel Rapid Start Technology support,
		 * when the system is going into Sx and no manageability engine
		 * is present, the driver must configure proxy to reset only on
		 * power good.  LPI (Low Power Idle) state must also reset only
		 * on power good, as well as the MTA (Multicast table array).
		 * The SMBus release must also be disabled on LCD reset.
		 */
		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
			/* Enable proxy to reset only on power good. */
			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);

			/* Set bit enable LPI (EEE) to reset only on
			 * power good.
			 */
			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);

			/* Disable the SMB release on LCD reset. */
			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
		}

		/* Enable MTA to reset for Intel Rapid Start Technology
		 * Support
		 */
		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);

release:
		hw->phy.ops.release(hw);
	}
out:
	ew32(PHY_CTRL, phy_ctrl);

	if (hw->mac.type == e1000_ich8lan)
		e1000e_gig_downshift_workaround_ich8lan(hw);

	if (hw->mac.type >= e1000_pchlan) {
		e1000_oem_bits_config_ich8lan(hw, false);

		/* Reset PHY to activate OEM bits on 82577/8 */
		if (hw->mac.type == e1000_pchlan)
			e1000e_phy_hw_reset_generic(hw);

		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return;
		e1000_write_smbus_addr(hw);
		hw->phy.ops.release(hw);
	}
}

/**
 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
 *  @hw: pointer to the HW structure
 *
 *  During Sx to S0 transitions on non-managed devices or managed devices
 *  on which PHY resets are not blocked, if the PHY registers cannot be
 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
 *  the PHY.
 *  On i217, setup Intel Rapid Start Technology.
 **/
void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
{
	s32 ret_val;

	if (hw->mac.type < e1000_pch2lan)
		return;

	ret_val = e1000_init_phy_workarounds_pchlan(hw);
	if (ret_val) {
		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
		return;
	}

	/* For i217 Intel Rapid Start Technology support when the system
	 * is transitioning from Sx and no manageability engine is present
	 * configure SMBus to restore on reset, disable proxy, and enable
	 * the reset on MTA (Multicast table array).
	 */
	if (hw->phy.type == e1000_phy_i217) {
		u16 phy_reg;

		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val) {
			e_dbg("Failed to setup iRST\n");
			return;
		}

		/* Clear Auto Enable LPI after link up */
		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);

		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
			/* Restore clear on SMB if no manageability engine
			 * is present
			 */
			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
			if (ret_val)
				goto release;
			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);

			/* Disable Proxy */
			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
		}
		/* Enable reset on MTA */
		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
		if (ret_val)
			goto release;
		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
release:
		if (ret_val)
			e_dbg("Error %d in resume workarounds\n", ret_val);
		hw->phy.ops.release(hw);
	}
}

/**
 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.
 **/
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);

	ew32(LEDCTL, hw->mac.ledctl_default);
	return 0;
}

/**
 *  e1000_led_on_ich8lan - Turn LEDs on
 *  @hw: pointer to the HW structure
 *
 *  Turn on the LEDs.
 **/
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));

	ew32(LEDCTL, hw->mac.ledctl_mode2);
	return 0;
}

/**
 *  e1000_led_off_ich8lan - Turn LEDs off
 *  @hw: pointer to the HW structure
 *
 *  Turn off the LEDs.
 **/
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
				(IFE_PSCL_PROBE_MODE |
				 IFE_PSCL_PROBE_LEDS_OFF));

	ew32(LEDCTL, hw->mac.ledctl_mode1);
	return 0;
}

/**
 *  e1000_setup_led_pchlan - Configures SW controllable LED
 *  @hw: pointer to the HW structure
 *
 *  This prepares the SW controllable LED for use.
 **/
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
{
	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
}

/**
 *  e1000_cleanup_led_pchlan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.
 **/
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
{
	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
}

/**
 *  e1000_led_on_pchlan - Turn LEDs on
 *  @hw: pointer to the HW structure
 *
 *  Turn on the LEDs.
 **/
static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
{
	u16 data = (u16)hw->mac.ledctl_mode2;
	u32 i, led;

	/* If no link, then turn LED on by setting the invert bit
	 * for each LED that's mode is "link_up" in ledctl_mode2.
	 */
	if (!(er32(STATUS) & E1000_STATUS_LU)) {
		for (i = 0; i < 3; i++) {
			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
			if ((led & E1000_PHY_LED0_MODE_MASK) !=
			    E1000_LEDCTL_MODE_LINK_UP)
				continue;
			if (led & E1000_PHY_LED0_IVRT)
				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
			else
				data |= (E1000_PHY_LED0_IVRT << (i * 5));
		}
	}

	return e1e_wphy(hw, HV_LED_CONFIG, data);
}

/**
 *  e1000_led_off_pchlan - Turn LEDs off
 *  @hw: pointer to the HW structure
 *
 *  Turn off the LEDs.
 **/
static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
{
	u16 data = (u16)hw->mac.ledctl_mode1;
	u32 i, led;

	/* If no link, then turn LED off by clearing the invert bit
	 * for each LED that's mode is "link_up" in ledctl_mode1.
	 */
	if (!(er32(STATUS) & E1000_STATUS_LU)) {
		for (i = 0; i < 3; i++) {
			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
			if ((led & E1000_PHY_LED0_MODE_MASK) !=
			    E1000_LEDCTL_MODE_LINK_UP)
				continue;
			if (led & E1000_PHY_LED0_IVRT)
				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
			else
				data |= (E1000_PHY_LED0_IVRT << (i * 5));
		}
	}

	return e1e_wphy(hw, HV_LED_CONFIG, data);
}

/**
 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
 *  @hw: pointer to the HW structure
 *
 *  Read appropriate register for the config done bit for completion status
 *  and configure the PHY through s/w for EEPROM-less parts.
 *
 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
 *  config done bit, so only an error is logged and continues.  If we were
 *  to return with error, EEPROM-less silicon would not be able to be reset
 *  or change link.
 **/
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u32 bank = 0;
	u32 status;

	e1000e_get_cfg_done_generic(hw);

	/* Wait for indication from h/w that it has completed basic config */
	if (hw->mac.type >= e1000_ich10lan) {
		e1000_lan_init_done_ich8lan(hw);
	} else {
		ret_val = e1000e_get_auto_rd_done(hw);
		if (ret_val) {
			/* When auto config read does not complete, do not
			 * return with an error. This can happen in situations
			 * where there is no eeprom and prevents getting link.
			 */
			e_dbg("Auto Read Done did not complete\n");
			ret_val = 0;
		}
	}

	/* Clear PHY Reset Asserted bit */
	status = er32(STATUS);
	if (status & E1000_STATUS_PHYRA)
		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
	else
		e_dbg("PHY Reset Asserted not set - needs delay\n");

	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
	if (hw->mac.type <= e1000_ich9lan) {
		if (!(er32(EECD) & E1000_EECD_PRES) &&
		    (hw->phy.type == e1000_phy_igp_3)) {
			e1000e_phy_init_script_igp3(hw);
		}
	} else {
		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
			/* Maybe we should do a basic PHY config */
			e_dbg("EEPROM not present\n");
			ret_val = -E1000_ERR_CONFIG;
		}
	}

	return ret_val;
}

/**
 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 **/
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
{
	/* If the management interface is not enabled, then power down */
	if (!(hw->mac.ops.check_mng_mode(hw) ||
	      hw->phy.ops.check_reset_block(hw)))
		e1000_power_down_phy_copper(hw);
}

/**
 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
 *  @hw: pointer to the HW structure
 *
 *  Clears hardware counters specific to the silicon family and calls
 *  clear_hw_cntrs_generic to clear all general purpose counters.
 **/
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
{
	u16 phy_data;
	s32 ret_val;

	e1000e_clear_hw_cntrs_base(hw);

	er32(ALGNERRC);
	er32(RXERRC);
	er32(TNCRS);
	er32(CEXTERR);
	er32(TSCTC);
	er32(TSCTFC);

	er32(MGTPRC);
	er32(MGTPDC);
	er32(MGTPTC);

	er32(IAC);
	er32(ICRXOC);

	/* Clear PHY statistics registers */
	if ((hw->phy.type == e1000_phy_82578) ||
	    (hw->phy.type == e1000_phy_82579) ||
	    (hw->phy.type == e1000_phy_i217) ||
	    (hw->phy.type == e1000_phy_82577)) {
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return;
		ret_val = hw->phy.ops.set_page(hw,
					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
		if (ret_val)
			goto release;
		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
release:
		hw->phy.ops.release(hw);
	}
}

static const struct e1000_mac_operations ich8_mac_ops = {
	/* check_mng_mode dependent on mac type */
	.check_for_link		= e1000_check_for_copper_link_ich8lan,
	/* cleanup_led dependent on mac type */
	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
	.get_bus_info		= e1000_get_bus_info_ich8lan,
	.set_lan_id		= e1000_set_lan_id_single_port,
	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
	/* led_on dependent on mac type */
	/* led_off dependent on mac type */
	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
	.reset_hw		= e1000_reset_hw_ich8lan,
	.init_hw		= e1000_init_hw_ich8lan,
	.setup_link		= e1000_setup_link_ich8lan,
	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
	/* id_led_init dependent on mac type */
	.config_collision_dist	= e1000e_config_collision_dist_generic,
	.rar_set		= e1000e_rar_set_generic,
	.rar_get_count		= e1000e_rar_get_count_generic,
};

static const struct e1000_phy_operations ich8_phy_ops = {
	.acquire		= e1000_acquire_swflag_ich8lan,
	.check_reset_block	= e1000_check_reset_block_ich8lan,
	.commit			= NULL,
	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
	.get_cable_length	= e1000e_get_cable_length_igp_2,
	.read_reg		= e1000e_read_phy_reg_igp,
	.release		= e1000_release_swflag_ich8lan,
	.reset			= e1000_phy_hw_reset_ich8lan,
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
	.write_reg		= e1000e_write_phy_reg_igp,
};

static const struct e1000_nvm_operations ich8_nvm_ops = {
	.acquire		= e1000_acquire_nvm_ich8lan,
	.read			= e1000_read_nvm_ich8lan,
	.release		= e1000_release_nvm_ich8lan,
	.reload			= e1000e_reload_nvm_generic,
	.update			= e1000_update_nvm_checksum_ich8lan,
	.valid_led_default	= e1000_valid_led_default_ich8lan,
	.validate		= e1000_validate_nvm_checksum_ich8lan,
	.write			= e1000_write_nvm_ich8lan,
};

static const struct e1000_nvm_operations spt_nvm_ops = {
	.acquire		= e1000_acquire_nvm_ich8lan,
	.release		= e1000_release_nvm_ich8lan,
	.read			= e1000_read_nvm_spt,
	.update			= e1000_update_nvm_checksum_spt,
	.reload			= e1000e_reload_nvm_generic,
	.valid_led_default	= e1000_valid_led_default_ich8lan,
	.validate		= e1000_validate_nvm_checksum_ich8lan,
	.write			= e1000_write_nvm_ich8lan,
};

const struct e1000_info e1000_ich8_info = {
	.mac			= e1000_ich8lan,
	.flags			= FLAG_HAS_WOL
				  | FLAG_IS_ICH
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 8,
	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

const struct e1000_info e1000_ich9_info = {
	.mac			= e1000_ich9lan,
	.flags			= FLAG_HAS_JUMBO_FRAMES
				  | FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 18,
	.max_hw_frame_size	= DEFAULT_JUMBO,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

const struct e1000_info e1000_ich10_info = {
	.mac			= e1000_ich10lan,
	.flags			= FLAG_HAS_JUMBO_FRAMES
				  | FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 18,
	.max_hw_frame_size	= DEFAULT_JUMBO,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

const struct e1000_info e1000_pch_info = {
	.mac			= e1000_pchlan,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
				  | FLAG_APME_IN_WUC,
	.flags2			= FLAG2_HAS_PHY_STATS,
	.pba			= 26,
	.max_hw_frame_size	= 4096,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

const struct e1000_info e1000_pch2_info = {
	.mac			= e1000_pch2lan,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_HW_TIMESTAMP
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_APME_IN_WUC,
	.flags2			= FLAG2_HAS_PHY_STATS
				  | FLAG2_HAS_EEE,
	.pba			= 26,
	.max_hw_frame_size	= 9022,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

const struct e1000_info e1000_pch_lpt_info = {
	.mac			= e1000_pch_lpt,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_HW_TIMESTAMP
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_APME_IN_WUC,
	.flags2			= FLAG2_HAS_PHY_STATS
				  | FLAG2_HAS_EEE,
	.pba			= 26,
	.max_hw_frame_size	= 9022,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

const struct e1000_info e1000_pch_spt_info = {
	.mac			= e1000_pch_spt,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_HW_TIMESTAMP
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_APME_IN_WUC,
	.flags2			= FLAG2_HAS_PHY_STATS
				  | FLAG2_HAS_EEE,
	.pba			= 26,
	.max_hw_frame_size	= 9022,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &spt_nvm_ops,
};