ael1002.c
23.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
/*
* Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "common.h"
#include "regs.h"
enum {
AEL100X_TX_CONFIG1 = 0xc002,
AEL1002_PWR_DOWN_HI = 0xc011,
AEL1002_PWR_DOWN_LO = 0xc012,
AEL1002_XFI_EQL = 0xc015,
AEL1002_LB_EN = 0xc017,
AEL_OPT_SETTINGS = 0xc017,
AEL_I2C_CTRL = 0xc30a,
AEL_I2C_DATA = 0xc30b,
AEL_I2C_STAT = 0xc30c,
AEL2005_GPIO_CTRL = 0xc214,
AEL2005_GPIO_STAT = 0xc215,
AEL2020_GPIO_INTR = 0xc103, /* Latch High (LH) */
AEL2020_GPIO_CTRL = 0xc108, /* Store Clear (SC) */
AEL2020_GPIO_STAT = 0xc10c, /* Read Only (RO) */
AEL2020_GPIO_CFG = 0xc110, /* Read Write (RW) */
AEL2020_GPIO_SDA = 0, /* IN: i2c serial data */
AEL2020_GPIO_MODDET = 1, /* IN: Module Detect */
AEL2020_GPIO_0 = 3, /* IN: unassigned */
AEL2020_GPIO_1 = 2, /* OUT: unassigned */
AEL2020_GPIO_LSTAT = AEL2020_GPIO_1, /* wired to link status LED */
};
enum { edc_none, edc_sr, edc_twinax };
/* PHY module I2C device address */
enum {
MODULE_DEV_ADDR = 0xa0,
SFF_DEV_ADDR = 0xa2,
};
/* PHY transceiver type */
enum {
phy_transtype_unknown = 0,
phy_transtype_sfp = 3,
phy_transtype_xfp = 6,
};
#define AEL2005_MODDET_IRQ 4
struct reg_val {
unsigned short mmd_addr;
unsigned short reg_addr;
unsigned short clear_bits;
unsigned short set_bits;
};
static int set_phy_regs(struct cphy *phy, const struct reg_val *rv)
{
int err;
for (err = 0; rv->mmd_addr && !err; rv++) {
if (rv->clear_bits == 0xffff)
err = t3_mdio_write(phy, rv->mmd_addr, rv->reg_addr,
rv->set_bits);
else
err = t3_mdio_change_bits(phy, rv->mmd_addr,
rv->reg_addr, rv->clear_bits,
rv->set_bits);
}
return err;
}
static void ael100x_txon(struct cphy *phy)
{
int tx_on_gpio =
phy->mdio.prtad == 0 ? F_GPIO7_OUT_VAL : F_GPIO2_OUT_VAL;
msleep(100);
t3_set_reg_field(phy->adapter, A_T3DBG_GPIO_EN, 0, tx_on_gpio);
msleep(30);
}
/*
* Read an 8-bit word from a device attached to the PHY's i2c bus.
*/
static int ael_i2c_rd(struct cphy *phy, int dev_addr, int word_addr)
{
int i, err;
unsigned int stat, data;
err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL_I2C_CTRL,
(dev_addr << 8) | (1 << 8) | word_addr);
if (err)
return err;
for (i = 0; i < 200; i++) {
msleep(1);
err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL_I2C_STAT, &stat);
if (err)
return err;
if ((stat & 3) == 1) {
err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL_I2C_DATA,
&data);
if (err)
return err;
return data >> 8;
}
}
CH_WARN(phy->adapter, "PHY %u i2c read of dev.addr %#x.%#x timed out\n",
phy->mdio.prtad, dev_addr, word_addr);
return -ETIMEDOUT;
}
static int ael1002_power_down(struct cphy *phy, int enable)
{
int err;
err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_TXDIS, !!enable);
if (!err)
err = mdio_set_flag(&phy->mdio, phy->mdio.prtad,
MDIO_MMD_PMAPMD, MDIO_CTRL1,
MDIO_CTRL1_LPOWER, enable);
return err;
}
static int ael1002_reset(struct cphy *phy, int wait)
{
int err;
if ((err = ael1002_power_down(phy, 0)) ||
(err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL100X_TX_CONFIG1, 1)) ||
(err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL1002_PWR_DOWN_HI, 0)) ||
(err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL1002_PWR_DOWN_LO, 0)) ||
(err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL1002_XFI_EQL, 0x18)) ||
(err = t3_mdio_change_bits(phy, MDIO_MMD_PMAPMD, AEL1002_LB_EN,
0, 1 << 5)))
return err;
return 0;
}
static int ael1002_intr_noop(struct cphy *phy)
{
return 0;
}
/*
* Get link status for a 10GBASE-R device.
*/
static int get_link_status_r(struct cphy *phy, int *link_ok, int *speed,
int *duplex, int *fc)
{
if (link_ok) {
unsigned int stat0, stat1, stat2;
int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD,
MDIO_PMA_RXDET, &stat0);
if (!err)
err = t3_mdio_read(phy, MDIO_MMD_PCS,
MDIO_PCS_10GBRT_STAT1, &stat1);
if (!err)
err = t3_mdio_read(phy, MDIO_MMD_PHYXS,
MDIO_PHYXS_LNSTAT, &stat2);
if (err)
return err;
*link_ok = (stat0 & stat1 & (stat2 >> 12)) & 1;
}
if (speed)
*speed = SPEED_10000;
if (duplex)
*duplex = DUPLEX_FULL;
return 0;
}
static struct cphy_ops ael1002_ops = {
.reset = ael1002_reset,
.intr_enable = ael1002_intr_noop,
.intr_disable = ael1002_intr_noop,
.intr_clear = ael1002_intr_noop,
.intr_handler = ael1002_intr_noop,
.get_link_status = get_link_status_r,
.power_down = ael1002_power_down,
.mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
};
int t3_ael1002_phy_prep(struct cphy *phy, struct adapter *adapter,
int phy_addr, const struct mdio_ops *mdio_ops)
{
cphy_init(phy, adapter, phy_addr, &ael1002_ops, mdio_ops,
SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE,
"10GBASE-R");
ael100x_txon(phy);
return 0;
}
static int ael1006_reset(struct cphy *phy, int wait)
{
return t3_phy_reset(phy, MDIO_MMD_PMAPMD, wait);
}
static struct cphy_ops ael1006_ops = {
.reset = ael1006_reset,
.intr_enable = t3_phy_lasi_intr_enable,
.intr_disable = t3_phy_lasi_intr_disable,
.intr_clear = t3_phy_lasi_intr_clear,
.intr_handler = t3_phy_lasi_intr_handler,
.get_link_status = get_link_status_r,
.power_down = ael1002_power_down,
.mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
};
int t3_ael1006_phy_prep(struct cphy *phy, struct adapter *adapter,
int phy_addr, const struct mdio_ops *mdio_ops)
{
cphy_init(phy, adapter, phy_addr, &ael1006_ops, mdio_ops,
SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE,
"10GBASE-SR");
ael100x_txon(phy);
return 0;
}
/*
* Decode our module type.
*/
static int ael2xxx_get_module_type(struct cphy *phy, int delay_ms)
{
int v;
if (delay_ms)
msleep(delay_ms);
/* see SFF-8472 for below */
v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 3);
if (v < 0)
return v;
if (v == 0x10)
return phy_modtype_sr;
if (v == 0x20)
return phy_modtype_lr;
if (v == 0x40)
return phy_modtype_lrm;
v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 6);
if (v < 0)
return v;
if (v != 4)
goto unknown;
v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 10);
if (v < 0)
return v;
if (v & 0x80) {
v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 0x12);
if (v < 0)
return v;
return v > 10 ? phy_modtype_twinax_long : phy_modtype_twinax;
}
unknown:
return phy_modtype_unknown;
}
/*
* Code to support the Aeluros/NetLogic 2005 10Gb PHY.
*/
static int ael2005_setup_sr_edc(struct cphy *phy)
{
static const struct reg_val regs[] = {
{ MDIO_MMD_PMAPMD, 0xc003, 0xffff, 0x181 },
{ MDIO_MMD_PMAPMD, 0xc010, 0xffff, 0x448a },
{ MDIO_MMD_PMAPMD, 0xc04a, 0xffff, 0x5200 },
{ 0, 0, 0, 0 }
};
int i, err;
err = set_phy_regs(phy, regs);
if (err)
return err;
msleep(50);
if (phy->priv != edc_sr)
err = t3_get_edc_fw(phy, EDC_OPT_AEL2005,
EDC_OPT_AEL2005_SIZE);
if (err)
return err;
for (i = 0; i < EDC_OPT_AEL2005_SIZE / sizeof(u16) && !err; i += 2)
err = t3_mdio_write(phy, MDIO_MMD_PMAPMD,
phy->phy_cache[i],
phy->phy_cache[i + 1]);
if (!err)
phy->priv = edc_sr;
return err;
}
static int ael2005_setup_twinax_edc(struct cphy *phy, int modtype)
{
static const struct reg_val regs[] = {
{ MDIO_MMD_PMAPMD, 0xc04a, 0xffff, 0x5a00 },
{ 0, 0, 0, 0 }
};
static const struct reg_val preemphasis[] = {
{ MDIO_MMD_PMAPMD, 0xc014, 0xffff, 0xfe16 },
{ MDIO_MMD_PMAPMD, 0xc015, 0xffff, 0xa000 },
{ 0, 0, 0, 0 }
};
int i, err;
err = set_phy_regs(phy, regs);
if (!err && modtype == phy_modtype_twinax_long)
err = set_phy_regs(phy, preemphasis);
if (err)
return err;
msleep(50);
if (phy->priv != edc_twinax)
err = t3_get_edc_fw(phy, EDC_TWX_AEL2005,
EDC_TWX_AEL2005_SIZE);
if (err)
return err;
for (i = 0; i < EDC_TWX_AEL2005_SIZE / sizeof(u16) && !err; i += 2)
err = t3_mdio_write(phy, MDIO_MMD_PMAPMD,
phy->phy_cache[i],
phy->phy_cache[i + 1]);
if (!err)
phy->priv = edc_twinax;
return err;
}
static int ael2005_get_module_type(struct cphy *phy, int delay_ms)
{
int v;
unsigned int stat;
v = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, &stat);
if (v)
return v;
if (stat & (1 << 8)) /* module absent */
return phy_modtype_none;
return ael2xxx_get_module_type(phy, delay_ms);
}
static int ael2005_intr_enable(struct cphy *phy)
{
int err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, 0x200);
return err ? err : t3_phy_lasi_intr_enable(phy);
}
static int ael2005_intr_disable(struct cphy *phy)
{
int err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, 0x100);
return err ? err : t3_phy_lasi_intr_disable(phy);
}
static int ael2005_intr_clear(struct cphy *phy)
{
int err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, 0xd00);
return err ? err : t3_phy_lasi_intr_clear(phy);
}
static int ael2005_reset(struct cphy *phy, int wait)
{
static const struct reg_val regs0[] = {
{ MDIO_MMD_PMAPMD, 0xc001, 0, 1 << 5 },
{ MDIO_MMD_PMAPMD, 0xc017, 0, 1 << 5 },
{ MDIO_MMD_PMAPMD, 0xc013, 0xffff, 0xf341 },
{ MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0x8000 },
{ MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0x8100 },
{ MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0x8000 },
{ MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0 },
{ 0, 0, 0, 0 }
};
static const struct reg_val regs1[] = {
{ MDIO_MMD_PMAPMD, 0xca00, 0xffff, 0x0080 },
{ MDIO_MMD_PMAPMD, 0xca12, 0xffff, 0 },
{ 0, 0, 0, 0 }
};
int err;
unsigned int lasi_ctrl;
err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
&lasi_ctrl);
if (err)
return err;
err = t3_phy_reset(phy, MDIO_MMD_PMAPMD, 0);
if (err)
return err;
msleep(125);
phy->priv = edc_none;
err = set_phy_regs(phy, regs0);
if (err)
return err;
msleep(50);
err = ael2005_get_module_type(phy, 0);
if (err < 0)
return err;
phy->modtype = err;
if (err == phy_modtype_twinax || err == phy_modtype_twinax_long)
err = ael2005_setup_twinax_edc(phy, err);
else
err = ael2005_setup_sr_edc(phy);
if (err)
return err;
err = set_phy_regs(phy, regs1);
if (err)
return err;
/* reset wipes out interrupts, reenable them if they were on */
if (lasi_ctrl & 1)
err = ael2005_intr_enable(phy);
return err;
}
static int ael2005_intr_handler(struct cphy *phy)
{
unsigned int stat;
int ret, edc_needed, cause = 0;
ret = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_STAT, &stat);
if (ret)
return ret;
if (stat & AEL2005_MODDET_IRQ) {
ret = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL,
0xd00);
if (ret)
return ret;
/* modules have max 300 ms init time after hot plug */
ret = ael2005_get_module_type(phy, 300);
if (ret < 0)
return ret;
phy->modtype = ret;
if (ret == phy_modtype_none)
edc_needed = phy->priv; /* on unplug retain EDC */
else if (ret == phy_modtype_twinax ||
ret == phy_modtype_twinax_long)
edc_needed = edc_twinax;
else
edc_needed = edc_sr;
if (edc_needed != phy->priv) {
ret = ael2005_reset(phy, 0);
return ret ? ret : cphy_cause_module_change;
}
cause = cphy_cause_module_change;
}
ret = t3_phy_lasi_intr_handler(phy);
if (ret < 0)
return ret;
ret |= cause;
return ret ? ret : cphy_cause_link_change;
}
static struct cphy_ops ael2005_ops = {
.reset = ael2005_reset,
.intr_enable = ael2005_intr_enable,
.intr_disable = ael2005_intr_disable,
.intr_clear = ael2005_intr_clear,
.intr_handler = ael2005_intr_handler,
.get_link_status = get_link_status_r,
.power_down = ael1002_power_down,
.mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
};
int t3_ael2005_phy_prep(struct cphy *phy, struct adapter *adapter,
int phy_addr, const struct mdio_ops *mdio_ops)
{
cphy_init(phy, adapter, phy_addr, &ael2005_ops, mdio_ops,
SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE |
SUPPORTED_IRQ, "10GBASE-R");
msleep(125);
return t3_mdio_change_bits(phy, MDIO_MMD_PMAPMD, AEL_OPT_SETTINGS, 0,
1 << 5);
}
/*
* Setup EDC and other parameters for operation with an optical module.
*/
static int ael2020_setup_sr_edc(struct cphy *phy)
{
static const struct reg_val regs[] = {
/* set CDR offset to 10 */
{ MDIO_MMD_PMAPMD, 0xcc01, 0xffff, 0x488a },
/* adjust 10G RX bias current */
{ MDIO_MMD_PMAPMD, 0xcb1b, 0xffff, 0x0200 },
{ MDIO_MMD_PMAPMD, 0xcb1c, 0xffff, 0x00f0 },
{ MDIO_MMD_PMAPMD, 0xcc06, 0xffff, 0x00e0 },
/* end */
{ 0, 0, 0, 0 }
};
int err;
err = set_phy_regs(phy, regs);
msleep(50);
if (err)
return err;
phy->priv = edc_sr;
return 0;
}
/*
* Setup EDC and other parameters for operation with an TWINAX module.
*/
static int ael2020_setup_twinax_edc(struct cphy *phy, int modtype)
{
/* set uC to 40MHz */
static const struct reg_val uCclock40MHz[] = {
{ MDIO_MMD_PMAPMD, 0xff28, 0xffff, 0x4001 },
{ MDIO_MMD_PMAPMD, 0xff2a, 0xffff, 0x0002 },
{ 0, 0, 0, 0 }
};
/* activate uC clock */
static const struct reg_val uCclockActivate[] = {
{ MDIO_MMD_PMAPMD, 0xd000, 0xffff, 0x5200 },
{ 0, 0, 0, 0 }
};
/* set PC to start of SRAM and activate uC */
static const struct reg_val uCactivate[] = {
{ MDIO_MMD_PMAPMD, 0xd080, 0xffff, 0x0100 },
{ MDIO_MMD_PMAPMD, 0xd092, 0xffff, 0x0000 },
{ 0, 0, 0, 0 }
};
int i, err;
/* set uC clock and activate it */
err = set_phy_regs(phy, uCclock40MHz);
msleep(500);
if (err)
return err;
err = set_phy_regs(phy, uCclockActivate);
msleep(500);
if (err)
return err;
if (phy->priv != edc_twinax)
err = t3_get_edc_fw(phy, EDC_TWX_AEL2020,
EDC_TWX_AEL2020_SIZE);
if (err)
return err;
for (i = 0; i < EDC_TWX_AEL2020_SIZE / sizeof(u16) && !err; i += 2)
err = t3_mdio_write(phy, MDIO_MMD_PMAPMD,
phy->phy_cache[i],
phy->phy_cache[i + 1]);
/* activate uC */
err = set_phy_regs(phy, uCactivate);
if (!err)
phy->priv = edc_twinax;
return err;
}
/*
* Return Module Type.
*/
static int ael2020_get_module_type(struct cphy *phy, int delay_ms)
{
int v;
unsigned int stat;
v = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2020_GPIO_STAT, &stat);
if (v)
return v;
if (stat & (0x1 << (AEL2020_GPIO_MODDET*4))) {
/* module absent */
return phy_modtype_none;
}
return ael2xxx_get_module_type(phy, delay_ms);
}
/*
* Enable PHY interrupts. We enable "Module Detection" interrupts (on any
* state transition) and then generic Link Alarm Status Interrupt (LASI).
*/
static int ael2020_intr_enable(struct cphy *phy)
{
static const struct reg_val regs[] = {
/* output Module's Loss Of Signal (LOS) to LED */
{ MDIO_MMD_PMAPMD, AEL2020_GPIO_CFG+AEL2020_GPIO_LSTAT,
0xffff, 0x4 },
{ MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL,
0xffff, 0x8 << (AEL2020_GPIO_LSTAT*4) },
/* enable module detect status change interrupts */
{ MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL,
0xffff, 0x2 << (AEL2020_GPIO_MODDET*4) },
/* end */
{ 0, 0, 0, 0 }
};
int err, link_ok = 0;
/* set up "link status" LED and enable module change interrupts */
err = set_phy_regs(phy, regs);
if (err)
return err;
err = get_link_status_r(phy, &link_ok, NULL, NULL, NULL);
if (err)
return err;
if (link_ok)
t3_link_changed(phy->adapter,
phy2portid(phy));
err = t3_phy_lasi_intr_enable(phy);
if (err)
return err;
return 0;
}
/*
* Disable PHY interrupts. The mirror of the above ...
*/
static int ael2020_intr_disable(struct cphy *phy)
{
static const struct reg_val regs[] = {
/* reset "link status" LED to "off" */
{ MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL,
0xffff, 0xb << (AEL2020_GPIO_LSTAT*4) },
/* disable module detect status change interrupts */
{ MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL,
0xffff, 0x1 << (AEL2020_GPIO_MODDET*4) },
/* end */
{ 0, 0, 0, 0 }
};
int err;
/* turn off "link status" LED and disable module change interrupts */
err = set_phy_regs(phy, regs);
if (err)
return err;
return t3_phy_lasi_intr_disable(phy);
}
/*
* Clear PHY interrupt state.
*/
static int ael2020_intr_clear(struct cphy *phy)
{
/*
* The GPIO Interrupt register on the AEL2020 is a "Latching High"
* (LH) register which is cleared to the current state when it's read.
* Thus, we simply read the register and discard the result.
*/
unsigned int stat;
int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2020_GPIO_INTR, &stat);
return err ? err : t3_phy_lasi_intr_clear(phy);
}
static const struct reg_val ael2020_reset_regs[] = {
/* Erratum #2: CDRLOL asserted, causing PMA link down status */
{ MDIO_MMD_PMAPMD, 0xc003, 0xffff, 0x3101 },
/* force XAUI to send LF when RX_LOS is asserted */
{ MDIO_MMD_PMAPMD, 0xcd40, 0xffff, 0x0001 },
/* allow writes to transceiver module EEPROM on i2c bus */
{ MDIO_MMD_PMAPMD, 0xff02, 0xffff, 0x0023 },
{ MDIO_MMD_PMAPMD, 0xff03, 0xffff, 0x0000 },
{ MDIO_MMD_PMAPMD, 0xff04, 0xffff, 0x0000 },
/* end */
{ 0, 0, 0, 0 }
};
/*
* Reset the PHY and put it into a canonical operating state.
*/
static int ael2020_reset(struct cphy *phy, int wait)
{
int err;
unsigned int lasi_ctrl;
/* grab current interrupt state */
err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
&lasi_ctrl);
if (err)
return err;
err = t3_phy_reset(phy, MDIO_MMD_PMAPMD, 125);
if (err)
return err;
msleep(100);
/* basic initialization for all module types */
phy->priv = edc_none;
err = set_phy_regs(phy, ael2020_reset_regs);
if (err)
return err;
/* determine module type and perform appropriate initialization */
err = ael2020_get_module_type(phy, 0);
if (err < 0)
return err;
phy->modtype = (u8)err;
if (err == phy_modtype_twinax || err == phy_modtype_twinax_long)
err = ael2020_setup_twinax_edc(phy, err);
else
err = ael2020_setup_sr_edc(phy);
if (err)
return err;
/* reset wipes out interrupts, reenable them if they were on */
if (lasi_ctrl & 1)
err = ael2005_intr_enable(phy);
return err;
}
/*
* Handle a PHY interrupt.
*/
static int ael2020_intr_handler(struct cphy *phy)
{
unsigned int stat;
int ret, edc_needed, cause = 0;
ret = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2020_GPIO_INTR, &stat);
if (ret)
return ret;
if (stat & (0x1 << AEL2020_GPIO_MODDET)) {
/* modules have max 300 ms init time after hot plug */
ret = ael2020_get_module_type(phy, 300);
if (ret < 0)
return ret;
phy->modtype = (u8)ret;
if (ret == phy_modtype_none)
edc_needed = phy->priv; /* on unplug retain EDC */
else if (ret == phy_modtype_twinax ||
ret == phy_modtype_twinax_long)
edc_needed = edc_twinax;
else
edc_needed = edc_sr;
if (edc_needed != phy->priv) {
ret = ael2020_reset(phy, 0);
return ret ? ret : cphy_cause_module_change;
}
cause = cphy_cause_module_change;
}
ret = t3_phy_lasi_intr_handler(phy);
if (ret < 0)
return ret;
ret |= cause;
return ret ? ret : cphy_cause_link_change;
}
static struct cphy_ops ael2020_ops = {
.reset = ael2020_reset,
.intr_enable = ael2020_intr_enable,
.intr_disable = ael2020_intr_disable,
.intr_clear = ael2020_intr_clear,
.intr_handler = ael2020_intr_handler,
.get_link_status = get_link_status_r,
.power_down = ael1002_power_down,
.mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
};
int t3_ael2020_phy_prep(struct cphy *phy, struct adapter *adapter, int phy_addr,
const struct mdio_ops *mdio_ops)
{
int err;
cphy_init(phy, adapter, phy_addr, &ael2020_ops, mdio_ops,
SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE |
SUPPORTED_IRQ, "10GBASE-R");
msleep(125);
err = set_phy_regs(phy, ael2020_reset_regs);
if (err)
return err;
return 0;
}
/*
* Get link status for a 10GBASE-X device.
*/
static int get_link_status_x(struct cphy *phy, int *link_ok, int *speed,
int *duplex, int *fc)
{
if (link_ok) {
unsigned int stat0, stat1, stat2;
int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD,
MDIO_PMA_RXDET, &stat0);
if (!err)
err = t3_mdio_read(phy, MDIO_MMD_PCS,
MDIO_PCS_10GBX_STAT1, &stat1);
if (!err)
err = t3_mdio_read(phy, MDIO_MMD_PHYXS,
MDIO_PHYXS_LNSTAT, &stat2);
if (err)
return err;
*link_ok = (stat0 & (stat1 >> 12) & (stat2 >> 12)) & 1;
}
if (speed)
*speed = SPEED_10000;
if (duplex)
*duplex = DUPLEX_FULL;
return 0;
}
static struct cphy_ops qt2045_ops = {
.reset = ael1006_reset,
.intr_enable = t3_phy_lasi_intr_enable,
.intr_disable = t3_phy_lasi_intr_disable,
.intr_clear = t3_phy_lasi_intr_clear,
.intr_handler = t3_phy_lasi_intr_handler,
.get_link_status = get_link_status_x,
.power_down = ael1002_power_down,
.mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
};
int t3_qt2045_phy_prep(struct cphy *phy, struct adapter *adapter,
int phy_addr, const struct mdio_ops *mdio_ops)
{
unsigned int stat;
cphy_init(phy, adapter, phy_addr, &qt2045_ops, mdio_ops,
SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_TP,
"10GBASE-CX4");
/*
* Some cards where the PHY is supposed to be at address 0 actually
* have it at 1.
*/
if (!phy_addr &&
!t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_STAT1, &stat) &&
stat == 0xffff)
phy->mdio.prtad = 1;
return 0;
}
static int xaui_direct_reset(struct cphy *phy, int wait)
{
return 0;
}
static int xaui_direct_get_link_status(struct cphy *phy, int *link_ok,
int *speed, int *duplex, int *fc)
{
if (link_ok) {
unsigned int status;
int prtad = phy->mdio.prtad;
status = t3_read_reg(phy->adapter,
XGM_REG(A_XGM_SERDES_STAT0, prtad)) |
t3_read_reg(phy->adapter,
XGM_REG(A_XGM_SERDES_STAT1, prtad)) |
t3_read_reg(phy->adapter,
XGM_REG(A_XGM_SERDES_STAT2, prtad)) |
t3_read_reg(phy->adapter,
XGM_REG(A_XGM_SERDES_STAT3, prtad));
*link_ok = !(status & F_LOWSIG0);
}
if (speed)
*speed = SPEED_10000;
if (duplex)
*duplex = DUPLEX_FULL;
return 0;
}
static int xaui_direct_power_down(struct cphy *phy, int enable)
{
return 0;
}
static struct cphy_ops xaui_direct_ops = {
.reset = xaui_direct_reset,
.intr_enable = ael1002_intr_noop,
.intr_disable = ael1002_intr_noop,
.intr_clear = ael1002_intr_noop,
.intr_handler = ael1002_intr_noop,
.get_link_status = xaui_direct_get_link_status,
.power_down = xaui_direct_power_down,
};
int t3_xaui_direct_phy_prep(struct cphy *phy, struct adapter *adapter,
int phy_addr, const struct mdio_ops *mdio_ops)
{
cphy_init(phy, adapter, phy_addr, &xaui_direct_ops, mdio_ops,
SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_TP,
"10GBASE-CX4");
return 0;
}