cn66xx_device.c 23.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
/**********************************************************************
* Author: Cavium, Inc.
*
* Contact: support@cavium.com
*          Please include "LiquidIO" in the subject.
*
* Copyright (c) 2003-2015 Cavium, Inc.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, Version 2, as
* published by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful, but
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
* NONINFRINGEMENT.  See the GNU General Public License for more
* details.
*
* This file may also be available under a different license from Cavium.
* Contact Cavium, Inc. for more information
**********************************************************************/
#include <linux/version.h>
#include <linux/types.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/kthread.h>
#include <linux/netdevice.h>
#include "octeon_config.h"
#include "liquidio_common.h"
#include "octeon_droq.h"
#include "octeon_iq.h"
#include "response_manager.h"
#include "octeon_device.h"
#include "octeon_nic.h"
#include "octeon_main.h"
#include "octeon_network.h"
#include "cn66xx_regs.h"
#include "cn66xx_device.h"
#include "liquidio_image.h"
#include "octeon_mem_ops.h"

int lio_cn6xxx_soft_reset(struct octeon_device *oct)
{
	octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF);

	dev_dbg(&oct->pci_dev->dev, "BIST enabled for soft reset\n");

	lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_BIST);
	octeon_write_csr64(oct, CN6XXX_SLI_SCRATCH1, 0x1234ULL);

	lio_pci_readq(oct, CN6XXX_CIU_SOFT_RST);
	lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_RST);

	/* make sure that the reset is written before starting timer */
	mmiowb();

	/* Wait for 10ms as Octeon resets. */
	mdelay(100);

	if (octeon_read_csr64(oct, CN6XXX_SLI_SCRATCH1) == 0x1234ULL) {
		dev_err(&oct->pci_dev->dev, "Soft reset failed\n");
		return 1;
	}

	dev_dbg(&oct->pci_dev->dev, "Reset completed\n");
	octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF);

	return 0;
}

void lio_cn6xxx_enable_error_reporting(struct octeon_device *oct)
{
	u32 val;

	pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
	if (val & 0x000f0000) {
		dev_err(&oct->pci_dev->dev, "PCI-E Link error detected: 0x%08x\n",
			val & 0x000f0000);
	}

	val |= 0xf;          /* Enable Link error reporting */

	dev_dbg(&oct->pci_dev->dev, "Enabling PCI-E error reporting..\n");
	pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
}

void lio_cn6xxx_setup_pcie_mps(struct octeon_device *oct,
			       enum octeon_pcie_mps mps)
{
	u32 val;
	u64 r64;

	/* Read config register for MPS */
	pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);

	if (mps == PCIE_MPS_DEFAULT) {
		mps = ((val & (0x7 << 5)) >> 5);
	} else {
		val &= ~(0x7 << 5);  /* Turn off any MPS bits */
		val |= (mps << 5);   /* Set MPS */
		pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
	}

	/* Set MPS in DPI_SLI_PRT0_CFG to the same value. */
	r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
	r64 |= (mps << 4);
	lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
}

void lio_cn6xxx_setup_pcie_mrrs(struct octeon_device *oct,
				enum octeon_pcie_mrrs mrrs)
{
	u32 val;
	u64 r64;

	/* Read config register for MRRS */
	pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);

	if (mrrs == PCIE_MRRS_DEFAULT) {
		mrrs = ((val & (0x7 << 12)) >> 12);
	} else {
		val &= ~(0x7 << 12); /* Turn off any MRRS bits */
		val |= (mrrs << 12); /* Set MRRS */
		pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
	}

	/* Set MRRS in SLI_S2M_PORT0_CTL to the same value. */
	r64 = octeon_read_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port));
	r64 |= mrrs;
	octeon_write_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port), r64);

	/* Set MRRS in DPI_SLI_PRT0_CFG to the same value. */
	r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
	r64 |= mrrs;
	lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
}

u32 lio_cn6xxx_coprocessor_clock(struct octeon_device *oct)
{
	/* Bits 29:24 of MIO_RST_BOOT holds the ref. clock multiplier
	 * for SLI.
	 */
	return ((lio_pci_readq(oct, CN6XXX_MIO_RST_BOOT) >> 24) & 0x3f) * 50;
}

u32 lio_cn6xxx_get_oq_ticks(struct octeon_device *oct,
			    u32 time_intr_in_us)
{
	/* This gives the SLI clock per microsec */
	u32 oqticks_per_us = lio_cn6xxx_coprocessor_clock(oct);

	/* core clock per us / oq ticks will be fractional. TO avoid that
	 * we use the method below.
	 */

	/* This gives the clock cycles per millisecond */
	oqticks_per_us *= 1000;

	/* This gives the oq ticks (1024 core clock cycles) per millisecond */
	oqticks_per_us /= 1024;

	/* time_intr is in microseconds. The next 2 steps gives the oq ticks
	 * corressponding to time_intr.
	 */
	oqticks_per_us *= time_intr_in_us;
	oqticks_per_us /= 1000;

	return oqticks_per_us;
}

void lio_cn6xxx_setup_global_input_regs(struct octeon_device *oct)
{
	/* Select Round-Robin Arb, ES, RO, NS for Input Queues */
	octeon_write_csr(oct, CN6XXX_SLI_PKT_INPUT_CONTROL,
			 CN6XXX_INPUT_CTL_MASK);

	/* Instruction Read Size - Max 4 instructions per PCIE Read */
	octeon_write_csr64(oct, CN6XXX_SLI_PKT_INSTR_RD_SIZE,
			   0xFFFFFFFFFFFFFFFFULL);

	/* Select PCIE Port for all Input rings. */
	octeon_write_csr64(oct, CN6XXX_SLI_IN_PCIE_PORT,
			   (oct->pcie_port * 0x5555555555555555ULL));
}

static void lio_cn66xx_setup_pkt_ctl_regs(struct octeon_device *oct)
{
	u64 pktctl;

	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;

	pktctl = octeon_read_csr64(oct, CN6XXX_SLI_PKT_CTL);

	/* 66XX SPECIFIC */
	if (CFG_GET_OQ_MAX_Q(cn6xxx->conf) <= 4)
		/* Disable RING_EN if only upto 4 rings are used. */
		pktctl &= ~(1 << 4);
	else
		pktctl |= (1 << 4);

	if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf))
		pktctl |= 0xF;
	else
		/* Disable per-port backpressure. */
		pktctl &= ~0xF;
	octeon_write_csr64(oct, CN6XXX_SLI_PKT_CTL, pktctl);
}

void lio_cn6xxx_setup_global_output_regs(struct octeon_device *oct)
{
	u32 time_threshold;
	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;

	/* / Select PCI-E Port for all Output queues */
	octeon_write_csr64(oct, CN6XXX_SLI_PKT_PCIE_PORT64,
			   (oct->pcie_port * 0x5555555555555555ULL));

	if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf)) {
		octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 32);
	} else {
		/* / Set Output queue watermark to 0 to disable backpressure */
		octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 0);
	}

	/* / Select Info Ptr for length & data */
	octeon_write_csr(oct, CN6XXX_SLI_PKT_IPTR, 0xFFFFFFFF);

	/* / Select Packet count instead of bytes for SLI_PKTi_CNTS[CNT] */
	octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_BMODE, 0);

	/* / Select ES,RO,NS setting from register for Output Queue Packet
	 * Address
	 */
	octeon_write_csr(oct, CN6XXX_SLI_PKT_DPADDR, 0xFFFFFFFF);

	/* No Relaxed Ordering, No Snoop, 64-bit swap for Output
	 * Queue ScatterList
	 */
	octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_ROR, 0);
	octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_NS, 0);

	/* / ENDIAN_SPECIFIC CHANGES - 0 works for LE. */
#ifdef __BIG_ENDIAN_BITFIELD
	octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64,
			   0x5555555555555555ULL);
#else
	octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64, 0ULL);
#endif

	/* / No Relaxed Ordering, No Snoop, 64-bit swap for Output Queue Data */
	octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_ROR, 0);
	octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_NS, 0);
	octeon_write_csr64(oct, CN6XXX_SLI_PKT_DATA_OUT_ES64,
			   0x5555555555555555ULL);

	/* / Set up interrupt packet and time threshold */
	octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_PKTS,
			 (u32)CFG_GET_OQ_INTR_PKT(cn6xxx->conf));
	time_threshold =
		lio_cn6xxx_get_oq_ticks(oct, (u32)
					CFG_GET_OQ_INTR_TIME(cn6xxx->conf));

	octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_TIME, time_threshold);
}

static int lio_cn6xxx_setup_device_regs(struct octeon_device *oct)
{
	lio_cn6xxx_setup_pcie_mps(oct, PCIE_MPS_DEFAULT);
	lio_cn6xxx_setup_pcie_mrrs(oct, PCIE_MRRS_512B);
	lio_cn6xxx_enable_error_reporting(oct);

	lio_cn6xxx_setup_global_input_regs(oct);
	lio_cn66xx_setup_pkt_ctl_regs(oct);
	lio_cn6xxx_setup_global_output_regs(oct);

	/* Default error timeout value should be 0x200000 to avoid host hang
	 * when reads invalid register
	 */
	octeon_write_csr64(oct, CN6XXX_SLI_WINDOW_CTL, 0x200000ULL);
	return 0;
}

void lio_cn6xxx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
{
	struct octeon_instr_queue *iq = oct->instr_queue[iq_no];

	/* Disable Packet-by-Packet mode; No Parse Mode or Skip length */
	octeon_write_csr64(oct, CN6XXX_SLI_IQ_PKT_INSTR_HDR64(iq_no), 0);

	/* Write the start of the input queue's ring and its size  */
	octeon_write_csr64(oct, CN6XXX_SLI_IQ_BASE_ADDR64(iq_no),
			   iq->base_addr_dma);
	octeon_write_csr(oct, CN6XXX_SLI_IQ_SIZE(iq_no), iq->max_count);

	/* Remember the doorbell & instruction count register addr for this
	 * queue
	 */
	iq->doorbell_reg = oct->mmio[0].hw_addr + CN6XXX_SLI_IQ_DOORBELL(iq_no);
	iq->inst_cnt_reg = oct->mmio[0].hw_addr
			   + CN6XXX_SLI_IQ_INSTR_COUNT(iq_no);
	dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n",
		iq_no, iq->doorbell_reg, iq->inst_cnt_reg);

	/* Store the current instruction counter
	 * (used in flush_iq calculation)
	 */
	iq->reset_instr_cnt = readl(iq->inst_cnt_reg);
}

static void lio_cn66xx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
{
	lio_cn6xxx_setup_iq_regs(oct, iq_no);

	/* Backpressure for this queue - WMARK set to all F's. This effectively
	 * disables the backpressure mechanism.
	 */
	octeon_write_csr64(oct, CN66XX_SLI_IQ_BP64(iq_no),
			   (0xFFFFFFFFULL << 32));
}

void lio_cn6xxx_setup_oq_regs(struct octeon_device *oct, u32 oq_no)
{
	u32 intr;
	struct octeon_droq *droq = oct->droq[oq_no];

	octeon_write_csr64(oct, CN6XXX_SLI_OQ_BASE_ADDR64(oq_no),
			   droq->desc_ring_dma);
	octeon_write_csr(oct, CN6XXX_SLI_OQ_SIZE(oq_no), droq->max_count);

	octeon_write_csr(oct, CN6XXX_SLI_OQ_BUFF_INFO_SIZE(oq_no),
			 (droq->buffer_size | (OCT_RH_SIZE << 16)));

	/* Get the mapped address of the pkt_sent and pkts_credit regs */
	droq->pkts_sent_reg =
		oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_SENT(oq_no);
	droq->pkts_credit_reg =
		oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_CREDIT(oq_no);

	/* Enable this output queue to generate Packet Timer Interrupt */
	intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB);
	intr |= (1 << oq_no);
	octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB, intr);

	/* Enable this output queue to generate Packet Timer Interrupt */
	intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB);
	intr |= (1 << oq_no);
	octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB, intr);
}

void lio_cn6xxx_enable_io_queues(struct octeon_device *oct)
{
	u32 mask;

	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE);
	mask |= oct->io_qmask.iq64B;
	octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE, mask);

	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB);
	mask |= oct->io_qmask.iq;
	octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask);

	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
	mask |= oct->io_qmask.oq;
	octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask);
}

void lio_cn6xxx_disable_io_queues(struct octeon_device *oct)
{
	u32 mask, i, loop = HZ;
	u32 d32;

	/* Reset the Enable bits for Input Queues. */
	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB);
	mask ^= oct->io_qmask.iq;
	octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask);

	/* Wait until hardware indicates that the queues are out of reset. */
	mask = oct->io_qmask.iq;
	d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ);
	while (((d32 & mask) != mask) && loop--) {
		d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ);
		schedule_timeout_uninterruptible(1);
	}

	/* Reset the doorbell register for each Input queue. */
	for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
		if (!(oct->io_qmask.iq & (1UL << i)))
			continue;
		octeon_write_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i), 0xFFFFFFFF);
		d32 = octeon_read_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i));
	}

	/* Reset the Enable bits for Output Queues. */
	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
	mask ^= oct->io_qmask.oq;
	octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask);

	/* Wait until hardware indicates that the queues are out of reset. */
	loop = HZ;
	mask = oct->io_qmask.oq;
	d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ);
	while (((d32 & mask) != mask) && loop--) {
		d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ);
		schedule_timeout_uninterruptible(1);
	}
	;

	/* Reset the doorbell register for each Output queue. */
	/* for (i = 0; i < oct->num_oqs; i++) { */
	for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
		if (!(oct->io_qmask.oq & (1UL << i)))
			continue;
		octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i), 0xFFFFFFFF);
		d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i));

		d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i));
		octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i), d32);
	}

	d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT);
	if (d32)
		octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, d32);

	d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT);
	if (d32)
		octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, d32);
}

void lio_cn6xxx_reinit_regs(struct octeon_device *oct)
{
	u32 i;

	for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
		if (!(oct->io_qmask.iq & (1UL << i)))
			continue;
		oct->fn_list.setup_iq_regs(oct, i);
	}

	for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
		if (!(oct->io_qmask.oq & (1UL << i)))
			continue;
		oct->fn_list.setup_oq_regs(oct, i);
	}

	oct->fn_list.setup_device_regs(oct);

	oct->fn_list.enable_interrupt(oct->chip);

	oct->fn_list.enable_io_queues(oct);

	/* for (i = 0; i < oct->num_oqs; i++) { */
	for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
		if (!(oct->io_qmask.oq & (1UL << i)))
			continue;
		writel(oct->droq[i]->max_count, oct->droq[i]->pkts_credit_reg);
	}
}

void
lio_cn6xxx_bar1_idx_setup(struct octeon_device *oct,
			  u64 core_addr,
			  u32 idx,
			  int valid)
{
	u64 bar1;

	if (valid == 0) {
		bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
		lio_pci_writeq(oct, (bar1 & 0xFFFFFFFEULL),
			       CN6XXX_BAR1_REG(idx, oct->pcie_port));
		bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
		return;
	}

	/* Bits 17:4 of the PCI_BAR1_INDEXx stores bits 35:22 of
	 * the Core Addr
	 */
	lio_pci_writeq(oct, (((core_addr >> 22) << 4) | PCI_BAR1_MASK),
		       CN6XXX_BAR1_REG(idx, oct->pcie_port));

	bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
}

void lio_cn6xxx_bar1_idx_write(struct octeon_device *oct,
			       u32 idx,
			       u32 mask)
{
	lio_pci_writeq(oct, mask, CN6XXX_BAR1_REG(idx, oct->pcie_port));
}

u32 lio_cn6xxx_bar1_idx_read(struct octeon_device *oct, u32 idx)
{
	return (u32)lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
}

u32
lio_cn6xxx_update_read_index(struct octeon_device *oct __attribute__((unused)),
			     struct octeon_instr_queue *iq)
{
	u32 new_idx = readl(iq->inst_cnt_reg);

	/* The new instr cnt reg is a 32-bit counter that can roll over. We have
	 * noted the counter's initial value at init time into
	 * reset_instr_cnt
	 */
	if (iq->reset_instr_cnt < new_idx)
		new_idx -= iq->reset_instr_cnt;
	else
		new_idx += (0xffffffff - iq->reset_instr_cnt) + 1;

	/* Modulo of the new index with the IQ size will give us
	 * the new index.
	 */
	new_idx %= iq->max_count;

	return new_idx;
}

void lio_cn6xxx_enable_interrupt(void *chip)
{
	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)chip;
	u64 mask = cn6xxx->intr_mask64 | CN6XXX_INTR_DMA0_FORCE;

	/* Enable Interrupt */
	writeq(mask, cn6xxx->intr_enb_reg64);
}

void lio_cn6xxx_disable_interrupt(void *chip)
{
	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)chip;

	/* Disable Interrupts */
	writeq(0, cn6xxx->intr_enb_reg64);

	/* make sure interrupts are really disabled */
	mmiowb();
}

static void lio_cn6xxx_get_pcie_qlmport(struct octeon_device *oct)
{
	/* CN63xx Pass2 and newer parts implements the SLI_MAC_NUMBER register
	 * to determine the PCIE port #
	 */
	oct->pcie_port = octeon_read_csr(oct, CN6XXX_SLI_MAC_NUMBER) & 0xff;

	dev_dbg(&oct->pci_dev->dev, "Using PCIE Port %d\n", oct->pcie_port);
}

void
lio_cn6xxx_process_pcie_error_intr(struct octeon_device *oct, u64 intr64)
{
	dev_err(&oct->pci_dev->dev, "Error Intr: 0x%016llx\n",
		CVM_CAST64(intr64));
}

int lio_cn6xxx_process_droq_intr_regs(struct octeon_device *oct)
{
	struct octeon_droq *droq;
	u32 oq_no, pkt_count, droq_time_mask, droq_mask, droq_int_enb;
	u32 droq_cnt_enb, droq_cnt_mask;

	droq_cnt_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB);
	droq_cnt_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT);
	droq_mask = droq_cnt_mask & droq_cnt_enb;

	droq_time_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT);
	droq_int_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB);
	droq_mask |= (droq_time_mask & droq_int_enb);

	droq_mask &= oct->io_qmask.oq;

	oct->droq_intr = 0;

	/* for (oq_no = 0; oq_no < oct->num_oqs; oq_no++) { */
	for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES; oq_no++) {
		if (!(droq_mask & (1 << oq_no)))
			continue;

		droq = oct->droq[oq_no];
		pkt_count = octeon_droq_check_hw_for_pkts(oct, droq);
		if (pkt_count) {
			oct->droq_intr |= (1ULL << oq_no);
			if (droq->ops.poll_mode) {
				u32 value;
				u32 reg;

				struct octeon_cn6xxx *cn6xxx =
					(struct octeon_cn6xxx *)oct->chip;

				/* disable interrupts for this droq */
				spin_lock
					(&cn6xxx->lock_for_droq_int_enb_reg);
				reg = CN6XXX_SLI_PKT_TIME_INT_ENB;
				value = octeon_read_csr(oct, reg);
				value &= ~(1 << oq_no);
				octeon_write_csr(oct, reg, value);
				reg = CN6XXX_SLI_PKT_CNT_INT_ENB;
				value = octeon_read_csr(oct, reg);
				value &= ~(1 << oq_no);
				octeon_write_csr(oct, reg, value);

				/* Ensure that the enable register is written.
				 */
				mmiowb();

				spin_unlock(&cn6xxx->lock_for_droq_int_enb_reg);
			}
		}
	}

	droq_time_mask &= oct->io_qmask.oq;
	droq_cnt_mask &= oct->io_qmask.oq;

	/* Reset the PKT_CNT/TIME_INT registers. */
	if (droq_time_mask)
		octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, droq_time_mask);

	if (droq_cnt_mask)      /* reset PKT_CNT register:66xx */
		octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, droq_cnt_mask);

	return 0;
}

irqreturn_t lio_cn6xxx_process_interrupt_regs(void *dev)
{
	struct octeon_device *oct = (struct octeon_device *)dev;
	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
	u64 intr64;

	intr64 = readq(cn6xxx->intr_sum_reg64);

	/* If our device has interrupted, then proceed.
	 * Also check for all f's if interrupt was triggered on an error
	 * and the PCI read fails.
	 */
	if (!intr64 || (intr64 == 0xFFFFFFFFFFFFFFFFULL))
		return IRQ_NONE;

	oct->int_status = 0;

	if (intr64 & CN6XXX_INTR_ERR)
		lio_cn6xxx_process_pcie_error_intr(oct, intr64);

	if (intr64 & CN6XXX_INTR_PKT_DATA) {
		lio_cn6xxx_process_droq_intr_regs(oct);
		oct->int_status |= OCT_DEV_INTR_PKT_DATA;
	}

	if (intr64 & CN6XXX_INTR_DMA0_FORCE)
		oct->int_status |= OCT_DEV_INTR_DMA0_FORCE;

	if (intr64 & CN6XXX_INTR_DMA1_FORCE)
		oct->int_status |= OCT_DEV_INTR_DMA1_FORCE;

	/* Clear the current interrupts */
	writeq(intr64, cn6xxx->intr_sum_reg64);

	return IRQ_HANDLED;
}

void lio_cn6xxx_setup_reg_address(struct octeon_device *oct,
				  void *chip,
				  struct octeon_reg_list *reg_list)
{
	u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr;
	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)chip;

	reg_list->pci_win_wr_addr_hi =
		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_HI);
	reg_list->pci_win_wr_addr_lo =
		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_LO);
	reg_list->pci_win_wr_addr =
		(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR64);

	reg_list->pci_win_rd_addr_hi =
		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_HI);
	reg_list->pci_win_rd_addr_lo =
		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_LO);
	reg_list->pci_win_rd_addr =
		(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR64);

	reg_list->pci_win_wr_data_hi =
		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_HI);
	reg_list->pci_win_wr_data_lo =
		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_LO);
	reg_list->pci_win_wr_data =
		(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA64);

	reg_list->pci_win_rd_data_hi =
		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_HI);
	reg_list->pci_win_rd_data_lo =
		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_LO);
	reg_list->pci_win_rd_data =
		(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA64);

	lio_cn6xxx_get_pcie_qlmport(oct);

	cn6xxx->intr_sum_reg64 = bar0_pciaddr + CN6XXX_SLI_INT_SUM64;
	cn6xxx->intr_mask64 = CN6XXX_INTR_MASK;
	cn6xxx->intr_enb_reg64 =
		bar0_pciaddr + CN6XXX_SLI_INT_ENB64(oct->pcie_port);
}

int lio_setup_cn66xx_octeon_device(struct octeon_device *oct)
{
	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;

	if (octeon_map_pci_barx(oct, 0, 0))
		return 1;

	if (octeon_map_pci_barx(oct, 1, MAX_BAR1_IOREMAP_SIZE)) {
		dev_err(&oct->pci_dev->dev, "%s CN66XX BAR1 map failed\n",
			__func__);
		octeon_unmap_pci_barx(oct, 0);
		return 1;
	}

	spin_lock_init(&cn6xxx->lock_for_droq_int_enb_reg);

	oct->fn_list.setup_iq_regs = lio_cn66xx_setup_iq_regs;
	oct->fn_list.setup_oq_regs = lio_cn6xxx_setup_oq_regs;

	oct->fn_list.soft_reset = lio_cn6xxx_soft_reset;
	oct->fn_list.setup_device_regs = lio_cn6xxx_setup_device_regs;
	oct->fn_list.reinit_regs = lio_cn6xxx_reinit_regs;
	oct->fn_list.update_iq_read_idx = lio_cn6xxx_update_read_index;

	oct->fn_list.bar1_idx_setup = lio_cn6xxx_bar1_idx_setup;
	oct->fn_list.bar1_idx_write = lio_cn6xxx_bar1_idx_write;
	oct->fn_list.bar1_idx_read = lio_cn6xxx_bar1_idx_read;

	oct->fn_list.process_interrupt_regs = lio_cn6xxx_process_interrupt_regs;
	oct->fn_list.enable_interrupt = lio_cn6xxx_enable_interrupt;
	oct->fn_list.disable_interrupt = lio_cn6xxx_disable_interrupt;

	oct->fn_list.enable_io_queues = lio_cn6xxx_enable_io_queues;
	oct->fn_list.disable_io_queues = lio_cn6xxx_disable_io_queues;

	lio_cn6xxx_setup_reg_address(oct, oct->chip, &oct->reg_list);

	cn6xxx->conf = (struct octeon_config *)
		       oct_get_config_info(oct, LIO_210SV);
	if (!cn6xxx->conf) {
		dev_err(&oct->pci_dev->dev, "%s No Config found for CN66XX\n",
			__func__);
		octeon_unmap_pci_barx(oct, 0);
		octeon_unmap_pci_barx(oct, 1);
		return 1;
	}

	oct->coproc_clock_rate = 1000000ULL * lio_cn6xxx_coprocessor_clock(oct);

	return 0;
}

int lio_validate_cn6xxx_config_info(struct octeon_device *oct,
				    struct octeon_config *conf6xxx)
{
	/* int total_instrs = 0; */

	if (CFG_GET_IQ_MAX_Q(conf6xxx) > CN6XXX_MAX_INPUT_QUEUES) {
		dev_err(&oct->pci_dev->dev, "%s: Num IQ (%d) exceeds Max (%d)\n",
			__func__, CFG_GET_IQ_MAX_Q(conf6xxx),
			CN6XXX_MAX_INPUT_QUEUES);
		return 1;
	}

	if (CFG_GET_OQ_MAX_Q(conf6xxx) > CN6XXX_MAX_OUTPUT_QUEUES) {
		dev_err(&oct->pci_dev->dev, "%s: Num OQ (%d) exceeds Max (%d)\n",
			__func__, CFG_GET_OQ_MAX_Q(conf6xxx),
			CN6XXX_MAX_OUTPUT_QUEUES);
		return 1;
	}

	if (CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_32BYTE_INSTR &&
	    CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_64BYTE_INSTR) {
		dev_err(&oct->pci_dev->dev, "%s: Invalid instr type for IQ\n",
			__func__);
		return 1;
	}
	if (!(CFG_GET_OQ_INFO_PTR(conf6xxx)) ||
	    !(CFG_GET_OQ_REFILL_THRESHOLD(conf6xxx))) {
		dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n",
			__func__);
		return 1;
	}

	if (!(CFG_GET_OQ_INTR_TIME(conf6xxx))) {
		dev_err(&oct->pci_dev->dev, "%s: No Time Interrupt for OQ\n",
			__func__);
		return 1;
	}

	return 0;
}