core.c 70.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
/*
 *  linux/drivers/mmc/core/core.c
 *
 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/pagemap.h>
#include <linux/err.h>
#include <linux/leds.h>
#include <linux/scatterlist.h>
#include <linux/log2.h>
#include <linux/regulator/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/pm_wakeup.h>
#include <linux/suspend.h>
#include <linux/fault-inject.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/of.h>

#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <linux/mmc/slot-gpio.h>

#include "core.h"
#include "bus.h"
#include "host.h"
#include "sdio_bus.h"
#include "pwrseq.h"

#include "mmc_ops.h"
#include "sd_ops.h"
#include "sdio_ops.h"

/* If the device is not responding */
#define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */

/*
 * Background operations can take a long time, depending on the housekeeping
 * operations the card has to perform.
 */
#define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */

static struct workqueue_struct *workqueue;
static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };

/*
 * Enabling software CRCs on the data blocks can be a significant (30%)
 * performance cost, and for other reasons may not always be desired.
 * So we allow it it to be disabled.
 */
bool use_spi_crc = 1;
module_param(use_spi_crc, bool, 0);

/*
 * Internal function. Schedule delayed work in the MMC work queue.
 */
static int mmc_schedule_delayed_work(struct delayed_work *work,
				     unsigned long delay)
{
	return queue_delayed_work(workqueue, work, delay);
}

/*
 * Internal function. Flush all scheduled work from the MMC work queue.
 */
static void mmc_flush_scheduled_work(void)
{
	flush_workqueue(workqueue);
}

#ifdef CONFIG_FAIL_MMC_REQUEST

/*
 * Internal function. Inject random data errors.
 * If mmc_data is NULL no errors are injected.
 */
static void mmc_should_fail_request(struct mmc_host *host,
				    struct mmc_request *mrq)
{
	struct mmc_command *cmd = mrq->cmd;
	struct mmc_data *data = mrq->data;
	static const int data_errors[] = {
		-ETIMEDOUT,
		-EILSEQ,
		-EIO,
	};

	if (!data)
		return;

	if (cmd->error || data->error ||
	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
		return;

	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
}

#else /* CONFIG_FAIL_MMC_REQUEST */

static inline void mmc_should_fail_request(struct mmc_host *host,
					   struct mmc_request *mrq)
{
}

#endif /* CONFIG_FAIL_MMC_REQUEST */

/**
 *	mmc_request_done - finish processing an MMC request
 *	@host: MMC host which completed request
 *	@mrq: MMC request which request
 *
 *	MMC drivers should call this function when they have completed
 *	their processing of a request.
 */
void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
{
	struct mmc_command *cmd = mrq->cmd;
	int err = cmd->error;

	/* Flag re-tuning needed on CRC errors */
	if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
	    (mrq->data && mrq->data->error == -EILSEQ) ||
	    (mrq->stop && mrq->stop->error == -EILSEQ)))
		mmc_retune_needed(host);

	if (err && cmd->retries && mmc_host_is_spi(host)) {
		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
			cmd->retries = 0;
	}

	if (err && cmd->retries && !mmc_card_removed(host->card)) {
		/*
		 * Request starter must handle retries - see
		 * mmc_wait_for_req_done().
		 */
		if (mrq->done)
			mrq->done(mrq);
	} else {
		mmc_should_fail_request(host, mrq);

		led_trigger_event(host->led, LED_OFF);

		if (mrq->sbc) {
			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
				mmc_hostname(host), mrq->sbc->opcode,
				mrq->sbc->error,
				mrq->sbc->resp[0], mrq->sbc->resp[1],
				mrq->sbc->resp[2], mrq->sbc->resp[3]);
		}

		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
			mmc_hostname(host), cmd->opcode, err,
			cmd->resp[0], cmd->resp[1],
			cmd->resp[2], cmd->resp[3]);

		if (mrq->data) {
			pr_debug("%s:     %d bytes transferred: %d\n",
				mmc_hostname(host),
				mrq->data->bytes_xfered, mrq->data->error);
		}

		if (mrq->stop) {
			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
				mmc_hostname(host), mrq->stop->opcode,
				mrq->stop->error,
				mrq->stop->resp[0], mrq->stop->resp[1],
				mrq->stop->resp[2], mrq->stop->resp[3]);
		}

		if (mrq->done)
			mrq->done(mrq);
	}
}

EXPORT_SYMBOL(mmc_request_done);

static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
{
	int err;

	/* Assumes host controller has been runtime resumed by mmc_claim_host */
	err = mmc_retune(host);
	if (err) {
		mrq->cmd->error = err;
		mmc_request_done(host, mrq);
		return;
	}

	/*
	 * For sdio rw commands we must wait for card busy otherwise some
	 * sdio devices won't work properly.
	 */
	if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
		int tries = 500; /* Wait aprox 500ms at maximum */

		while (host->ops->card_busy(host) && --tries)
			mmc_delay(1);

		if (tries == 0) {
			mrq->cmd->error = -EBUSY;
			mmc_request_done(host, mrq);
			return;
		}
	}

	host->ops->request(host, mrq);
}

static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
{
#ifdef CONFIG_MMC_DEBUG
	unsigned int i, sz;
	struct scatterlist *sg;
#endif
	mmc_retune_hold(host);

	if (mmc_card_removed(host->card))
		return -ENOMEDIUM;

	if (mrq->sbc) {
		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
			 mmc_hostname(host), mrq->sbc->opcode,
			 mrq->sbc->arg, mrq->sbc->flags);
	}

	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
		 mmc_hostname(host), mrq->cmd->opcode,
		 mrq->cmd->arg, mrq->cmd->flags);

	if (mrq->data) {
		pr_debug("%s:     blksz %d blocks %d flags %08x "
			"tsac %d ms nsac %d\n",
			mmc_hostname(host), mrq->data->blksz,
			mrq->data->blocks, mrq->data->flags,
			mrq->data->timeout_ns / 1000000,
			mrq->data->timeout_clks);
	}

	if (mrq->stop) {
		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
			 mmc_hostname(host), mrq->stop->opcode,
			 mrq->stop->arg, mrq->stop->flags);
	}

	WARN_ON(!host->claimed);

	mrq->cmd->error = 0;
	mrq->cmd->mrq = mrq;
	if (mrq->sbc) {
		mrq->sbc->error = 0;
		mrq->sbc->mrq = mrq;
	}
	if (mrq->data) {
		BUG_ON(mrq->data->blksz > host->max_blk_size);
		BUG_ON(mrq->data->blocks > host->max_blk_count);
		BUG_ON(mrq->data->blocks * mrq->data->blksz >
			host->max_req_size);

#ifdef CONFIG_MMC_DEBUG
		sz = 0;
		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
			sz += sg->length;
		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
#endif

		mrq->cmd->data = mrq->data;
		mrq->data->error = 0;
		mrq->data->mrq = mrq;
		if (mrq->stop) {
			mrq->data->stop = mrq->stop;
			mrq->stop->error = 0;
			mrq->stop->mrq = mrq;
		}
	}
	led_trigger_event(host->led, LED_FULL);
	__mmc_start_request(host, mrq);

	return 0;
}

/**
 *	mmc_start_bkops - start BKOPS for supported cards
 *	@card: MMC card to start BKOPS
 *	@form_exception: A flag to indicate if this function was
 *			 called due to an exception raised by the card
 *
 *	Start background operations whenever requested.
 *	When the urgent BKOPS bit is set in a R1 command response
 *	then background operations should be started immediately.
*/
void mmc_start_bkops(struct mmc_card *card, bool from_exception)
{
	int err;
	int timeout;
	bool use_busy_signal;

	BUG_ON(!card);

	if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
		return;

	err = mmc_read_bkops_status(card);
	if (err) {
		pr_err("%s: Failed to read bkops status: %d\n",
		       mmc_hostname(card->host), err);
		return;
	}

	if (!card->ext_csd.raw_bkops_status)
		return;

	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
	    from_exception)
		return;

	mmc_claim_host(card->host);
	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
		timeout = MMC_BKOPS_MAX_TIMEOUT;
		use_busy_signal = true;
	} else {
		timeout = 0;
		use_busy_signal = false;
	}

	mmc_retune_hold(card->host);

	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
			EXT_CSD_BKOPS_START, 1, timeout,
			use_busy_signal, true, false);
	if (err) {
		pr_warn("%s: Error %d starting bkops\n",
			mmc_hostname(card->host), err);
		mmc_retune_release(card->host);
		goto out;
	}

	/*
	 * For urgent bkops status (LEVEL_2 and more)
	 * bkops executed synchronously, otherwise
	 * the operation is in progress
	 */
	if (!use_busy_signal)
		mmc_card_set_doing_bkops(card);
	else
		mmc_retune_release(card->host);
out:
	mmc_release_host(card->host);
}
EXPORT_SYMBOL(mmc_start_bkops);

/*
 * mmc_wait_data_done() - done callback for data request
 * @mrq: done data request
 *
 * Wakes up mmc context, passed as a callback to host controller driver
 */
static void mmc_wait_data_done(struct mmc_request *mrq)
{
	struct mmc_context_info *context_info = &mrq->host->context_info;

	context_info->is_done_rcv = true;
	wake_up_interruptible(&context_info->wait);
}

static void mmc_wait_done(struct mmc_request *mrq)
{
	complete(&mrq->completion);
}

/*
 *__mmc_start_data_req() - starts data request
 * @host: MMC host to start the request
 * @mrq: data request to start
 *
 * Sets the done callback to be called when request is completed by the card.
 * Starts data mmc request execution
 */
static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
{
	int err;

	mrq->done = mmc_wait_data_done;
	mrq->host = host;

	err = mmc_start_request(host, mrq);
	if (err) {
		mrq->cmd->error = err;
		mmc_wait_data_done(mrq);
	}

	return err;
}

static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
{
	int err;

	init_completion(&mrq->completion);
	mrq->done = mmc_wait_done;

	err = mmc_start_request(host, mrq);
	if (err) {
		mrq->cmd->error = err;
		complete(&mrq->completion);
	}

	return err;
}

/*
 * mmc_wait_for_data_req_done() - wait for request completed
 * @host: MMC host to prepare the command.
 * @mrq: MMC request to wait for
 *
 * Blocks MMC context till host controller will ack end of data request
 * execution or new request notification arrives from the block layer.
 * Handles command retries.
 *
 * Returns enum mmc_blk_status after checking errors.
 */
static int mmc_wait_for_data_req_done(struct mmc_host *host,
				      struct mmc_request *mrq,
				      struct mmc_async_req *next_req)
{
	struct mmc_command *cmd;
	struct mmc_context_info *context_info = &host->context_info;
	int err;
	unsigned long flags;

	while (1) {
		wait_event_interruptible(context_info->wait,
				(context_info->is_done_rcv ||
				 context_info->is_new_req));
		spin_lock_irqsave(&context_info->lock, flags);
		context_info->is_waiting_last_req = false;
		spin_unlock_irqrestore(&context_info->lock, flags);
		if (context_info->is_done_rcv) {
			context_info->is_done_rcv = false;
			context_info->is_new_req = false;
			cmd = mrq->cmd;

			if (!cmd->error || !cmd->retries ||
			    mmc_card_removed(host->card)) {
				err = host->areq->err_check(host->card,
							    host->areq);
				break; /* return err */
			} else {
				mmc_retune_recheck(host);
				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
					mmc_hostname(host),
					cmd->opcode, cmd->error);
				cmd->retries--;
				cmd->error = 0;
				__mmc_start_request(host, mrq);
				continue; /* wait for done/new event again */
			}
		} else if (context_info->is_new_req) {
			context_info->is_new_req = false;
			if (!next_req)
				return MMC_BLK_NEW_REQUEST;
		}
	}
	mmc_retune_release(host);
	return err;
}

static void mmc_wait_for_req_done(struct mmc_host *host,
				  struct mmc_request *mrq)
{
	struct mmc_command *cmd;

	while (1) {
		wait_for_completion(&mrq->completion);

		cmd = mrq->cmd;

		/*
		 * If host has timed out waiting for the sanitize
		 * to complete, card might be still in programming state
		 * so let's try to bring the card out of programming
		 * state.
		 */
		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
			if (!mmc_interrupt_hpi(host->card)) {
				pr_warn("%s: %s: Interrupted sanitize\n",
					mmc_hostname(host), __func__);
				cmd->error = 0;
				break;
			} else {
				pr_err("%s: %s: Failed to interrupt sanitize\n",
				       mmc_hostname(host), __func__);
			}
		}
		if (!cmd->error || !cmd->retries ||
		    mmc_card_removed(host->card))
			break;

		mmc_retune_recheck(host);

		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
			 mmc_hostname(host), cmd->opcode, cmd->error);
		cmd->retries--;
		cmd->error = 0;
		__mmc_start_request(host, mrq);
	}

	mmc_retune_release(host);
}

/**
 *	mmc_pre_req - Prepare for a new request
 *	@host: MMC host to prepare command
 *	@mrq: MMC request to prepare for
 *	@is_first_req: true if there is no previous started request
 *                     that may run in parellel to this call, otherwise false
 *
 *	mmc_pre_req() is called in prior to mmc_start_req() to let
 *	host prepare for the new request. Preparation of a request may be
 *	performed while another request is running on the host.
 */
static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
		 bool is_first_req)
{
	if (host->ops->pre_req)
		host->ops->pre_req(host, mrq, is_first_req);
}

/**
 *	mmc_post_req - Post process a completed request
 *	@host: MMC host to post process command
 *	@mrq: MMC request to post process for
 *	@err: Error, if non zero, clean up any resources made in pre_req
 *
 *	Let the host post process a completed request. Post processing of
 *	a request may be performed while another reuqest is running.
 */
static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
			 int err)
{
	if (host->ops->post_req)
		host->ops->post_req(host, mrq, err);
}

/**
 *	mmc_start_req - start a non-blocking request
 *	@host: MMC host to start command
 *	@areq: async request to start
 *	@error: out parameter returns 0 for success, otherwise non zero
 *
 *	Start a new MMC custom command request for a host.
 *	If there is on ongoing async request wait for completion
 *	of that request and start the new one and return.
 *	Does not wait for the new request to complete.
 *
 *      Returns the completed request, NULL in case of none completed.
 *	Wait for the an ongoing request (previoulsy started) to complete and
 *	return the completed request. If there is no ongoing request, NULL
 *	is returned without waiting. NULL is not an error condition.
 */
struct mmc_async_req *mmc_start_req(struct mmc_host *host,
				    struct mmc_async_req *areq, int *error)
{
	int err = 0;
	int start_err = 0;
	struct mmc_async_req *data = host->areq;

	/* Prepare a new request */
	if (areq)
		mmc_pre_req(host, areq->mrq, !host->areq);

	if (host->areq) {
		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
		if (err == MMC_BLK_NEW_REQUEST) {
			if (error)
				*error = err;
			/*
			 * The previous request was not completed,
			 * nothing to return
			 */
			return NULL;
		}
		/*
		 * Check BKOPS urgency for each R1 response
		 */
		if (host->card && mmc_card_mmc(host->card) &&
		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {

			/* Cancel the prepared request */
			if (areq)
				mmc_post_req(host, areq->mrq, -EINVAL);

			mmc_start_bkops(host->card, true);

			/* prepare the request again */
			if (areq)
				mmc_pre_req(host, areq->mrq, !host->areq);
		}
	}

	if (!err && areq)
		start_err = __mmc_start_data_req(host, areq->mrq);

	if (host->areq)
		mmc_post_req(host, host->areq->mrq, 0);

	 /* Cancel a prepared request if it was not started. */
	if ((err || start_err) && areq)
		mmc_post_req(host, areq->mrq, -EINVAL);

	if (err)
		host->areq = NULL;
	else
		host->areq = areq;

	if (error)
		*error = err;
	return data;
}
EXPORT_SYMBOL(mmc_start_req);

/**
 *	mmc_wait_for_req - start a request and wait for completion
 *	@host: MMC host to start command
 *	@mrq: MMC request to start
 *
 *	Start a new MMC custom command request for a host, and wait
 *	for the command to complete. Does not attempt to parse the
 *	response.
 */
void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
{
	__mmc_start_req(host, mrq);
	mmc_wait_for_req_done(host, mrq);
}
EXPORT_SYMBOL(mmc_wait_for_req);

/**
 *	mmc_interrupt_hpi - Issue for High priority Interrupt
 *	@card: the MMC card associated with the HPI transfer
 *
 *	Issued High Priority Interrupt, and check for card status
 *	until out-of prg-state.
 */
int mmc_interrupt_hpi(struct mmc_card *card)
{
	int err;
	u32 status;
	unsigned long prg_wait;

	BUG_ON(!card);

	if (!card->ext_csd.hpi_en) {
		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
		return 1;
	}

	mmc_claim_host(card->host);
	err = mmc_send_status(card, &status);
	if (err) {
		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
		goto out;
	}

	switch (R1_CURRENT_STATE(status)) {
	case R1_STATE_IDLE:
	case R1_STATE_READY:
	case R1_STATE_STBY:
	case R1_STATE_TRAN:
		/*
		 * In idle and transfer states, HPI is not needed and the caller
		 * can issue the next intended command immediately
		 */
		goto out;
	case R1_STATE_PRG:
		break;
	default:
		/* In all other states, it's illegal to issue HPI */
		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
			mmc_hostname(card->host), R1_CURRENT_STATE(status));
		err = -EINVAL;
		goto out;
	}

	err = mmc_send_hpi_cmd(card, &status);
	if (err)
		goto out;

	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
	do {
		err = mmc_send_status(card, &status);

		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
			break;
		if (time_after(jiffies, prg_wait))
			err = -ETIMEDOUT;
	} while (!err);

out:
	mmc_release_host(card->host);
	return err;
}
EXPORT_SYMBOL(mmc_interrupt_hpi);

/**
 *	mmc_wait_for_cmd - start a command and wait for completion
 *	@host: MMC host to start command
 *	@cmd: MMC command to start
 *	@retries: maximum number of retries
 *
 *	Start a new MMC command for a host, and wait for the command
 *	to complete.  Return any error that occurred while the command
 *	was executing.  Do not attempt to parse the response.
 */
int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
{
	struct mmc_request mrq = {NULL};

	WARN_ON(!host->claimed);

	memset(cmd->resp, 0, sizeof(cmd->resp));
	cmd->retries = retries;

	mrq.cmd = cmd;
	cmd->data = NULL;

	mmc_wait_for_req(host, &mrq);

	return cmd->error;
}

EXPORT_SYMBOL(mmc_wait_for_cmd);

/**
 *	mmc_stop_bkops - stop ongoing BKOPS
 *	@card: MMC card to check BKOPS
 *
 *	Send HPI command to stop ongoing background operations to
 *	allow rapid servicing of foreground operations, e.g. read/
 *	writes. Wait until the card comes out of the programming state
 *	to avoid errors in servicing read/write requests.
 */
int mmc_stop_bkops(struct mmc_card *card)
{
	int err = 0;

	BUG_ON(!card);
	err = mmc_interrupt_hpi(card);

	/*
	 * If err is EINVAL, we can't issue an HPI.
	 * It should complete the BKOPS.
	 */
	if (!err || (err == -EINVAL)) {
		mmc_card_clr_doing_bkops(card);
		mmc_retune_release(card->host);
		err = 0;
	}

	return err;
}
EXPORT_SYMBOL(mmc_stop_bkops);

int mmc_read_bkops_status(struct mmc_card *card)
{
	int err;
	u8 *ext_csd;

	mmc_claim_host(card->host);
	err = mmc_get_ext_csd(card, &ext_csd);
	mmc_release_host(card->host);
	if (err)
		return err;

	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
	kfree(ext_csd);
	return 0;
}
EXPORT_SYMBOL(mmc_read_bkops_status);

/**
 *	mmc_set_data_timeout - set the timeout for a data command
 *	@data: data phase for command
 *	@card: the MMC card associated with the data transfer
 *
 *	Computes the data timeout parameters according to the
 *	correct algorithm given the card type.
 */
void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
{
	unsigned int mult;

	/*
	 * SDIO cards only define an upper 1 s limit on access.
	 */
	if (mmc_card_sdio(card)) {
		data->timeout_ns = 1000000000;
		data->timeout_clks = 0;
		return;
	}

	/*
	 * SD cards use a 100 multiplier rather than 10
	 */
	mult = mmc_card_sd(card) ? 100 : 10;

	/*
	 * Scale up the multiplier (and therefore the timeout) by
	 * the r2w factor for writes.
	 */
	if (data->flags & MMC_DATA_WRITE)
		mult <<= card->csd.r2w_factor;

	data->timeout_ns = card->csd.tacc_ns * mult;
	data->timeout_clks = card->csd.tacc_clks * mult;

	/*
	 * SD cards also have an upper limit on the timeout.
	 */
	if (mmc_card_sd(card)) {
		unsigned int timeout_us, limit_us;

		timeout_us = data->timeout_ns / 1000;
		if (card->host->ios.clock)
			timeout_us += data->timeout_clks * 1000 /
				(card->host->ios.clock / 1000);

		if (data->flags & MMC_DATA_WRITE)
			/*
			 * The MMC spec "It is strongly recommended
			 * for hosts to implement more than 500ms
			 * timeout value even if the card indicates
			 * the 250ms maximum busy length."  Even the
			 * previous value of 300ms is known to be
			 * insufficient for some cards.
			 */
			limit_us = 3000000;
		else
			limit_us = 100000;

		/*
		 * SDHC cards always use these fixed values.
		 */
		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
			data->timeout_ns = limit_us * 1000;
			data->timeout_clks = 0;
		}

		/* assign limit value if invalid */
		if (timeout_us == 0)
			data->timeout_ns = limit_us * 1000;
	}

	/*
	 * Some cards require longer data read timeout than indicated in CSD.
	 * Address this by setting the read timeout to a "reasonably high"
	 * value. For the cards tested, 600ms has proven enough. If necessary,
	 * this value can be increased if other problematic cards require this.
	 */
	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
		data->timeout_ns = 600000000;
		data->timeout_clks = 0;
	}

	/*
	 * Some cards need very high timeouts if driven in SPI mode.
	 * The worst observed timeout was 900ms after writing a
	 * continuous stream of data until the internal logic
	 * overflowed.
	 */
	if (mmc_host_is_spi(card->host)) {
		if (data->flags & MMC_DATA_WRITE) {
			if (data->timeout_ns < 1000000000)
				data->timeout_ns = 1000000000;	/* 1s */
		} else {
			if (data->timeout_ns < 100000000)
				data->timeout_ns =  100000000;	/* 100ms */
		}
	}
}
EXPORT_SYMBOL(mmc_set_data_timeout);

/**
 *	mmc_align_data_size - pads a transfer size to a more optimal value
 *	@card: the MMC card associated with the data transfer
 *	@sz: original transfer size
 *
 *	Pads the original data size with a number of extra bytes in
 *	order to avoid controller bugs and/or performance hits
 *	(e.g. some controllers revert to PIO for certain sizes).
 *
 *	Returns the improved size, which might be unmodified.
 *
 *	Note that this function is only relevant when issuing a
 *	single scatter gather entry.
 */
unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
{
	/*
	 * FIXME: We don't have a system for the controller to tell
	 * the core about its problems yet, so for now we just 32-bit
	 * align the size.
	 */
	sz = ((sz + 3) / 4) * 4;

	return sz;
}
EXPORT_SYMBOL(mmc_align_data_size);

/**
 *	__mmc_claim_host - exclusively claim a host
 *	@host: mmc host to claim
 *	@abort: whether or not the operation should be aborted
 *
 *	Claim a host for a set of operations.  If @abort is non null and
 *	dereference a non-zero value then this will return prematurely with
 *	that non-zero value without acquiring the lock.  Returns zero
 *	with the lock held otherwise.
 */
int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
{
	DECLARE_WAITQUEUE(wait, current);
	unsigned long flags;
	int stop;
	bool pm = false;

	might_sleep();

	add_wait_queue(&host->wq, &wait);
	spin_lock_irqsave(&host->lock, flags);
	while (1) {
		set_current_state(TASK_UNINTERRUPTIBLE);
		stop = abort ? atomic_read(abort) : 0;
		if (stop || !host->claimed || host->claimer == current)
			break;
		spin_unlock_irqrestore(&host->lock, flags);
		schedule();
		spin_lock_irqsave(&host->lock, flags);
	}
	set_current_state(TASK_RUNNING);
	if (!stop) {
		host->claimed = 1;
		host->claimer = current;
		host->claim_cnt += 1;
		if (host->claim_cnt == 1)
			pm = true;
	} else
		wake_up(&host->wq);
	spin_unlock_irqrestore(&host->lock, flags);
	remove_wait_queue(&host->wq, &wait);

	if (pm)
		pm_runtime_get_sync(mmc_dev(host));

	return stop;
}
EXPORT_SYMBOL(__mmc_claim_host);

/**
 *	mmc_release_host - release a host
 *	@host: mmc host to release
 *
 *	Release a MMC host, allowing others to claim the host
 *	for their operations.
 */
void mmc_release_host(struct mmc_host *host)
{
	unsigned long flags;

	WARN_ON(!host->claimed);

	spin_lock_irqsave(&host->lock, flags);
	if (--host->claim_cnt) {
		/* Release for nested claim */
		spin_unlock_irqrestore(&host->lock, flags);
	} else {
		host->claimed = 0;
		host->claimer = NULL;
		spin_unlock_irqrestore(&host->lock, flags);
		wake_up(&host->wq);
		pm_runtime_mark_last_busy(mmc_dev(host));
		pm_runtime_put_autosuspend(mmc_dev(host));
	}
}
EXPORT_SYMBOL(mmc_release_host);

/*
 * This is a helper function, which fetches a runtime pm reference for the
 * card device and also claims the host.
 */
void mmc_get_card(struct mmc_card *card)
{
	pm_runtime_get_sync(&card->dev);
	mmc_claim_host(card->host);
}
EXPORT_SYMBOL(mmc_get_card);

/*
 * This is a helper function, which releases the host and drops the runtime
 * pm reference for the card device.
 */
void mmc_put_card(struct mmc_card *card)
{
	mmc_release_host(card->host);
	pm_runtime_mark_last_busy(&card->dev);
	pm_runtime_put_autosuspend(&card->dev);
}
EXPORT_SYMBOL(mmc_put_card);

/*
 * Internal function that does the actual ios call to the host driver,
 * optionally printing some debug output.
 */
static inline void mmc_set_ios(struct mmc_host *host)
{
	struct mmc_ios *ios = &host->ios;

	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
		"width %u timing %u\n",
		 mmc_hostname(host), ios->clock, ios->bus_mode,
		 ios->power_mode, ios->chip_select, ios->vdd,
		 ios->bus_width, ios->timing);

	host->ops->set_ios(host, ios);
}

/*
 * Control chip select pin on a host.
 */
void mmc_set_chip_select(struct mmc_host *host, int mode)
{
	host->ios.chip_select = mode;
	mmc_set_ios(host);
}

/*
 * Sets the host clock to the highest possible frequency that
 * is below "hz".
 */
void mmc_set_clock(struct mmc_host *host, unsigned int hz)
{
	WARN_ON(hz && hz < host->f_min);

	if (hz > host->f_max)
		hz = host->f_max;

	host->ios.clock = hz;
	mmc_set_ios(host);
}

int mmc_execute_tuning(struct mmc_card *card)
{
	struct mmc_host *host = card->host;
	u32 opcode;
	int err;

	if (!host->ops->execute_tuning)
		return 0;

	if (mmc_card_mmc(card))
		opcode = MMC_SEND_TUNING_BLOCK_HS200;
	else
		opcode = MMC_SEND_TUNING_BLOCK;

	err = host->ops->execute_tuning(host, opcode);

	if (err)
		pr_err("%s: tuning execution failed\n", mmc_hostname(host));
	else
		mmc_retune_enable(host);

	return err;
}

/*
 * Change the bus mode (open drain/push-pull) of a host.
 */
void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
{
	host->ios.bus_mode = mode;
	mmc_set_ios(host);
}

/*
 * Change data bus width of a host.
 */
void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
{
	host->ios.bus_width = width;
	mmc_set_ios(host);
}

/*
 * Set initial state after a power cycle or a hw_reset.
 */
void mmc_set_initial_state(struct mmc_host *host)
{
	mmc_retune_disable(host);

	if (mmc_host_is_spi(host))
		host->ios.chip_select = MMC_CS_HIGH;
	else
		host->ios.chip_select = MMC_CS_DONTCARE;
	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
	host->ios.bus_width = MMC_BUS_WIDTH_1;
	host->ios.timing = MMC_TIMING_LEGACY;
	host->ios.drv_type = 0;

	mmc_set_ios(host);
}

/**
 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
 * @vdd:	voltage (mV)
 * @low_bits:	prefer low bits in boundary cases
 *
 * This function returns the OCR bit number according to the provided @vdd
 * value. If conversion is not possible a negative errno value returned.
 *
 * Depending on the @low_bits flag the function prefers low or high OCR bits
 * on boundary voltages. For example,
 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
 *
 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
 */
static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
{
	const int max_bit = ilog2(MMC_VDD_35_36);
	int bit;

	if (vdd < 1650 || vdd > 3600)
		return -EINVAL;

	if (vdd >= 1650 && vdd <= 1950)
		return ilog2(MMC_VDD_165_195);

	if (low_bits)
		vdd -= 1;

	/* Base 2000 mV, step 100 mV, bit's base 8. */
	bit = (vdd - 2000) / 100 + 8;
	if (bit > max_bit)
		return max_bit;
	return bit;
}

/**
 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
 * @vdd_min:	minimum voltage value (mV)
 * @vdd_max:	maximum voltage value (mV)
 *
 * This function returns the OCR mask bits according to the provided @vdd_min
 * and @vdd_max values. If conversion is not possible the function returns 0.
 *
 * Notes wrt boundary cases:
 * This function sets the OCR bits for all boundary voltages, for example
 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
 * MMC_VDD_34_35 mask.
 */
u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
{
	u32 mask = 0;

	if (vdd_max < vdd_min)
		return 0;

	/* Prefer high bits for the boundary vdd_max values. */
	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
	if (vdd_max < 0)
		return 0;

	/* Prefer low bits for the boundary vdd_min values. */
	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
	if (vdd_min < 0)
		return 0;

	/* Fill the mask, from max bit to min bit. */
	while (vdd_max >= vdd_min)
		mask |= 1 << vdd_max--;

	return mask;
}
EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);

#ifdef CONFIG_OF

/**
 * mmc_of_parse_voltage - return mask of supported voltages
 * @np: The device node need to be parsed.
 * @mask: mask of voltages available for MMC/SD/SDIO
 *
 * 1. Return zero on success.
 * 2. Return negative errno: voltage-range is invalid.
 */
int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
{
	const u32 *voltage_ranges;
	int num_ranges, i;

	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
	if (!voltage_ranges || !num_ranges) {
		pr_info("%s: voltage-ranges unspecified\n", np->full_name);
		return -EINVAL;
	}

	for (i = 0; i < num_ranges; i++) {
		const int j = i * 2;
		u32 ocr_mask;

		ocr_mask = mmc_vddrange_to_ocrmask(
				be32_to_cpu(voltage_ranges[j]),
				be32_to_cpu(voltage_ranges[j + 1]));
		if (!ocr_mask) {
			pr_err("%s: voltage-range #%d is invalid\n",
				np->full_name, i);
			return -EINVAL;
		}
		*mask |= ocr_mask;
	}

	return 0;
}
EXPORT_SYMBOL(mmc_of_parse_voltage);

#endif /* CONFIG_OF */

static int mmc_of_get_func_num(struct device_node *node)
{
	u32 reg;
	int ret;

	ret = of_property_read_u32(node, "reg", &reg);
	if (ret < 0)
		return ret;

	return reg;
}

struct device_node *mmc_of_find_child_device(struct mmc_host *host,
		unsigned func_num)
{
	struct device_node *node;

	if (!host->parent || !host->parent->of_node)
		return NULL;

	for_each_child_of_node(host->parent->of_node, node) {
		if (mmc_of_get_func_num(node) == func_num)
			return node;
	}

	return NULL;
}

#ifdef CONFIG_REGULATOR

/**
 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
 * @vdd_bit:	OCR bit number
 * @min_uV:	minimum voltage value (mV)
 * @max_uV:	maximum voltage value (mV)
 *
 * This function returns the voltage range according to the provided OCR
 * bit number. If conversion is not possible a negative errno value returned.
 */
static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
{
	int		tmp;

	if (!vdd_bit)
		return -EINVAL;

	/*
	 * REVISIT mmc_vddrange_to_ocrmask() may have set some
	 * bits this regulator doesn't quite support ... don't
	 * be too picky, most cards and regulators are OK with
	 * a 0.1V range goof (it's a small error percentage).
	 */
	tmp = vdd_bit - ilog2(MMC_VDD_165_195);
	if (tmp == 0) {
		*min_uV = 1650 * 1000;
		*max_uV = 1950 * 1000;
	} else {
		*min_uV = 1900 * 1000 + tmp * 100 * 1000;
		*max_uV = *min_uV + 100 * 1000;
	}

	return 0;
}

/**
 * mmc_regulator_get_ocrmask - return mask of supported voltages
 * @supply: regulator to use
 *
 * This returns either a negative errno, or a mask of voltages that
 * can be provided to MMC/SD/SDIO devices using the specified voltage
 * regulator.  This would normally be called before registering the
 * MMC host adapter.
 */
int mmc_regulator_get_ocrmask(struct regulator *supply)
{
	int			result = 0;
	int			count;
	int			i;
	int			vdd_uV;
	int			vdd_mV;

	count = regulator_count_voltages(supply);
	if (count < 0)
		return count;

	for (i = 0; i < count; i++) {
		vdd_uV = regulator_list_voltage(supply, i);
		if (vdd_uV <= 0)
			continue;

		vdd_mV = vdd_uV / 1000;
		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
	}

	if (!result) {
		vdd_uV = regulator_get_voltage(supply);
		if (vdd_uV <= 0)
			return vdd_uV;

		vdd_mV = vdd_uV / 1000;
		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
	}

	return result;
}
EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);

/**
 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
 * @mmc: the host to regulate
 * @supply: regulator to use
 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
 *
 * Returns zero on success, else negative errno.
 *
 * MMC host drivers may use this to enable or disable a regulator using
 * a particular supply voltage.  This would normally be called from the
 * set_ios() method.
 */
int mmc_regulator_set_ocr(struct mmc_host *mmc,
			struct regulator *supply,
			unsigned short vdd_bit)
{
	int			result = 0;
	int			min_uV, max_uV;

	if (vdd_bit) {
		mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);

		result = regulator_set_voltage(supply, min_uV, max_uV);
		if (result == 0 && !mmc->regulator_enabled) {
			result = regulator_enable(supply);
			if (!result)
				mmc->regulator_enabled = true;
		}
	} else if (mmc->regulator_enabled) {
		result = regulator_disable(supply);
		if (result == 0)
			mmc->regulator_enabled = false;
	}

	if (result)
		dev_err(mmc_dev(mmc),
			"could not set regulator OCR (%d)\n", result);
	return result;
}
EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);

static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
						  int min_uV, int target_uV,
						  int max_uV)
{
	/*
	 * Check if supported first to avoid errors since we may try several
	 * signal levels during power up and don't want to show errors.
	 */
	if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
		return -EINVAL;

	return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
					     max_uV);
}

/**
 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
 *
 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
 * That will match the behavior of old boards where VQMMC and VMMC were supplied
 * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
 * SD card spec also define VQMMC in terms of VMMC.
 * If this is not possible we'll try the full 2.7-3.6V of the spec.
 *
 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
 * requested voltage.  This is definitely a good idea for UHS where there's a
 * separate regulator on the card that's trying to make 1.8V and it's best if
 * we match.
 *
 * This function is expected to be used by a controller's
 * start_signal_voltage_switch() function.
 */
int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
{
	struct device *dev = mmc_dev(mmc);
	int ret, volt, min_uV, max_uV;

	/* If no vqmmc supply then we can't change the voltage */
	if (IS_ERR(mmc->supply.vqmmc))
		return -EINVAL;

	switch (ios->signal_voltage) {
	case MMC_SIGNAL_VOLTAGE_120:
		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
						1100000, 1200000, 1300000);
	case MMC_SIGNAL_VOLTAGE_180:
		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
						1700000, 1800000, 1950000);
	case MMC_SIGNAL_VOLTAGE_330:
		ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
		if (ret < 0)
			return ret;

		dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
			__func__, volt, max_uV);

		min_uV = max(volt - 300000, 2700000);
		max_uV = min(max_uV + 200000, 3600000);

		/*
		 * Due to a limitation in the current implementation of
		 * regulator_set_voltage_triplet() which is taking the lowest
		 * voltage possible if below the target, search for a suitable
		 * voltage in two steps and try to stay close to vmmc
		 * with a 0.3V tolerance at first.
		 */
		if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
						min_uV, volt, max_uV))
			return 0;

		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
						2700000, volt, 3600000);
	default:
		return -EINVAL;
	}
}
EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);

#endif /* CONFIG_REGULATOR */

int mmc_regulator_get_supply(struct mmc_host *mmc)
{
	struct device *dev = mmc_dev(mmc);
	int ret;

	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");

	if (IS_ERR(mmc->supply.vmmc)) {
		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
			return -EPROBE_DEFER;
		dev_info(dev, "No vmmc regulator found\n");
	} else {
		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
		if (ret > 0)
			mmc->ocr_avail = ret;
		else
			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
	}

	if (IS_ERR(mmc->supply.vqmmc)) {
		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
			return -EPROBE_DEFER;
		dev_info(dev, "No vqmmc regulator found\n");
	}

	return 0;
}
EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);

/*
 * Mask off any voltages we don't support and select
 * the lowest voltage
 */
u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
{
	int bit;

	/*
	 * Sanity check the voltages that the card claims to
	 * support.
	 */
	if (ocr & 0x7F) {
		dev_warn(mmc_dev(host),
		"card claims to support voltages below defined range\n");
		ocr &= ~0x7F;
	}

	ocr &= host->ocr_avail;
	if (!ocr) {
		dev_warn(mmc_dev(host), "no support for card's volts\n");
		return 0;
	}

	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
		bit = ffs(ocr) - 1;
		ocr &= 3 << bit;
		mmc_power_cycle(host, ocr);
	} else {
		bit = fls(ocr) - 1;
		ocr &= 3 << bit;
		if (bit != host->ios.vdd)
			dev_warn(mmc_dev(host), "exceeding card's volts\n");
	}

	return ocr;
}

int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
{
	int err = 0;
	int old_signal_voltage = host->ios.signal_voltage;

	host->ios.signal_voltage = signal_voltage;
	if (host->ops->start_signal_voltage_switch)
		err = host->ops->start_signal_voltage_switch(host, &host->ios);

	if (err)
		host->ios.signal_voltage = old_signal_voltage;

	return err;

}

int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
{
	struct mmc_command cmd = {0};
	int err = 0;
	u32 clock;

	BUG_ON(!host);

	/*
	 * Send CMD11 only if the request is to switch the card to
	 * 1.8V signalling.
	 */
	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
		return __mmc_set_signal_voltage(host, signal_voltage);

	/*
	 * If we cannot switch voltages, return failure so the caller
	 * can continue without UHS mode
	 */
	if (!host->ops->start_signal_voltage_switch)
		return -EPERM;
	if (!host->ops->card_busy)
		pr_warn("%s: cannot verify signal voltage switch\n",
			mmc_hostname(host));

	cmd.opcode = SD_SWITCH_VOLTAGE;
	cmd.arg = 0;
	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;

	err = mmc_wait_for_cmd(host, &cmd, 0);
	if (err)
		return err;

	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
		return -EIO;

	/*
	 * The card should drive cmd and dat[0:3] low immediately
	 * after the response of cmd11, but wait 1 ms to be sure
	 */
	mmc_delay(1);
	if (host->ops->card_busy && !host->ops->card_busy(host)) {
		err = -EAGAIN;
		goto power_cycle;
	}
	/*
	 * During a signal voltage level switch, the clock must be gated
	 * for 5 ms according to the SD spec
	 */
	clock = host->ios.clock;
	host->ios.clock = 0;
	mmc_set_ios(host);

	if (__mmc_set_signal_voltage(host, signal_voltage)) {
		/*
		 * Voltages may not have been switched, but we've already
		 * sent CMD11, so a power cycle is required anyway
		 */
		err = -EAGAIN;
		goto power_cycle;
	}

	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
	mmc_delay(10);
	host->ios.clock = clock;
	mmc_set_ios(host);

	/* Wait for at least 1 ms according to spec */
	mmc_delay(1);

	/*
	 * Failure to switch is indicated by the card holding
	 * dat[0:3] low
	 */
	if (host->ops->card_busy && host->ops->card_busy(host))
		err = -EAGAIN;

power_cycle:
	if (err) {
		pr_debug("%s: Signal voltage switch failed, "
			"power cycling card\n", mmc_hostname(host));
		mmc_power_cycle(host, ocr);
	}

	return err;
}

/*
 * Select timing parameters for host.
 */
void mmc_set_timing(struct mmc_host *host, unsigned int timing)
{
	host->ios.timing = timing;
	mmc_set_ios(host);
}

/*
 * Select appropriate driver type for host.
 */
void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
{
	host->ios.drv_type = drv_type;
	mmc_set_ios(host);
}

int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
			      int card_drv_type, int *drv_type)
{
	struct mmc_host *host = card->host;
	int host_drv_type = SD_DRIVER_TYPE_B;

	*drv_type = 0;

	if (!host->ops->select_drive_strength)
		return 0;

	/* Use SD definition of driver strength for hosts */
	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
		host_drv_type |= SD_DRIVER_TYPE_A;

	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
		host_drv_type |= SD_DRIVER_TYPE_C;

	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
		host_drv_type |= SD_DRIVER_TYPE_D;

	/*
	 * The drive strength that the hardware can support
	 * depends on the board design.  Pass the appropriate
	 * information and let the hardware specific code
	 * return what is possible given the options
	 */
	return host->ops->select_drive_strength(card, max_dtr,
						host_drv_type,
						card_drv_type,
						drv_type);
}

/*
 * Apply power to the MMC stack.  This is a two-stage process.
 * First, we enable power to the card without the clock running.
 * We then wait a bit for the power to stabilise.  Finally,
 * enable the bus drivers and clock to the card.
 *
 * We must _NOT_ enable the clock prior to power stablising.
 *
 * If a host does all the power sequencing itself, ignore the
 * initial MMC_POWER_UP stage.
 */
void mmc_power_up(struct mmc_host *host, u32 ocr)
{
	if (host->ios.power_mode == MMC_POWER_ON)
		return;

	mmc_pwrseq_pre_power_on(host);

	host->ios.vdd = fls(ocr) - 1;
	host->ios.power_mode = MMC_POWER_UP;
	/* Set initial state and call mmc_set_ios */
	mmc_set_initial_state(host);

	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
	if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");

	/*
	 * This delay should be sufficient to allow the power supply
	 * to reach the minimum voltage.
	 */
	mmc_delay(10);

	mmc_pwrseq_post_power_on(host);

	host->ios.clock = host->f_init;

	host->ios.power_mode = MMC_POWER_ON;
	mmc_set_ios(host);

	/*
	 * This delay must be at least 74 clock sizes, or 1 ms, or the
	 * time required to reach a stable voltage.
	 */
	mmc_delay(10);
}

void mmc_power_off(struct mmc_host *host)
{
	if (host->ios.power_mode == MMC_POWER_OFF)
		return;

	mmc_pwrseq_power_off(host);

	host->ios.clock = 0;
	host->ios.vdd = 0;

	host->ios.power_mode = MMC_POWER_OFF;
	/* Set initial state and call mmc_set_ios */
	mmc_set_initial_state(host);

	/*
	 * Some configurations, such as the 802.11 SDIO card in the OLPC
	 * XO-1.5, require a short delay after poweroff before the card
	 * can be successfully turned on again.
	 */
	mmc_delay(1);
}

void mmc_power_cycle(struct mmc_host *host, u32 ocr)
{
	mmc_power_off(host);
	/* Wait at least 1 ms according to SD spec */
	mmc_delay(1);
	mmc_power_up(host, ocr);
}

/*
 * Cleanup when the last reference to the bus operator is dropped.
 */
static void __mmc_release_bus(struct mmc_host *host)
{
	BUG_ON(!host);
	BUG_ON(host->bus_refs);
	BUG_ON(!host->bus_dead);

	host->bus_ops = NULL;
}

/*
 * Increase reference count of bus operator
 */
static inline void mmc_bus_get(struct mmc_host *host)
{
	unsigned long flags;

	spin_lock_irqsave(&host->lock, flags);
	host->bus_refs++;
	spin_unlock_irqrestore(&host->lock, flags);
}

/*
 * Decrease reference count of bus operator and free it if
 * it is the last reference.
 */
static inline void mmc_bus_put(struct mmc_host *host)
{
	unsigned long flags;

	spin_lock_irqsave(&host->lock, flags);
	host->bus_refs--;
	if ((host->bus_refs == 0) && host->bus_ops)
		__mmc_release_bus(host);
	spin_unlock_irqrestore(&host->lock, flags);
}

/*
 * Assign a mmc bus handler to a host. Only one bus handler may control a
 * host at any given time.
 */
void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
{
	unsigned long flags;

	BUG_ON(!host);
	BUG_ON(!ops);

	WARN_ON(!host->claimed);

	spin_lock_irqsave(&host->lock, flags);

	BUG_ON(host->bus_ops);
	BUG_ON(host->bus_refs);

	host->bus_ops = ops;
	host->bus_refs = 1;
	host->bus_dead = 0;

	spin_unlock_irqrestore(&host->lock, flags);
}

/*
 * Remove the current bus handler from a host.
 */
void mmc_detach_bus(struct mmc_host *host)
{
	unsigned long flags;

	BUG_ON(!host);

	WARN_ON(!host->claimed);
	WARN_ON(!host->bus_ops);

	spin_lock_irqsave(&host->lock, flags);

	host->bus_dead = 1;

	spin_unlock_irqrestore(&host->lock, flags);

	mmc_bus_put(host);
}

static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
				bool cd_irq)
{
#ifdef CONFIG_MMC_DEBUG
	unsigned long flags;
	spin_lock_irqsave(&host->lock, flags);
	WARN_ON(host->removed);
	spin_unlock_irqrestore(&host->lock, flags);
#endif

	/*
	 * If the device is configured as wakeup, we prevent a new sleep for
	 * 5 s to give provision for user space to consume the event.
	 */
	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
		device_can_wakeup(mmc_dev(host)))
		pm_wakeup_event(mmc_dev(host), 5000);

	host->detect_change = 1;
	mmc_schedule_delayed_work(&host->detect, delay);
}

/**
 *	mmc_detect_change - process change of state on a MMC socket
 *	@host: host which changed state.
 *	@delay: optional delay to wait before detection (jiffies)
 *
 *	MMC drivers should call this when they detect a card has been
 *	inserted or removed. The MMC layer will confirm that any
 *	present card is still functional, and initialize any newly
 *	inserted.
 */
void mmc_detect_change(struct mmc_host *host, unsigned long delay)
{
	_mmc_detect_change(host, delay, true);
}
EXPORT_SYMBOL(mmc_detect_change);

void mmc_init_erase(struct mmc_card *card)
{
	unsigned int sz;

	if (is_power_of_2(card->erase_size))
		card->erase_shift = ffs(card->erase_size) - 1;
	else
		card->erase_shift = 0;

	/*
	 * It is possible to erase an arbitrarily large area of an SD or MMC
	 * card.  That is not desirable because it can take a long time
	 * (minutes) potentially delaying more important I/O, and also the
	 * timeout calculations become increasingly hugely over-estimated.
	 * Consequently, 'pref_erase' is defined as a guide to limit erases
	 * to that size and alignment.
	 *
	 * For SD cards that define Allocation Unit size, limit erases to one
	 * Allocation Unit at a time.  For MMC cards that define High Capacity
	 * Erase Size, whether it is switched on or not, limit to that size.
	 * Otherwise just have a stab at a good value.  For modern cards it
	 * will end up being 4MiB.  Note that if the value is too small, it
	 * can end up taking longer to erase.
	 */
	if (mmc_card_sd(card) && card->ssr.au) {
		card->pref_erase = card->ssr.au;
		card->erase_shift = ffs(card->ssr.au) - 1;
	} else if (card->ext_csd.hc_erase_size) {
		card->pref_erase = card->ext_csd.hc_erase_size;
	} else if (card->erase_size) {
		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
		if (sz < 128)
			card->pref_erase = 512 * 1024 / 512;
		else if (sz < 512)
			card->pref_erase = 1024 * 1024 / 512;
		else if (sz < 1024)
			card->pref_erase = 2 * 1024 * 1024 / 512;
		else
			card->pref_erase = 4 * 1024 * 1024 / 512;
		if (card->pref_erase < card->erase_size)
			card->pref_erase = card->erase_size;
		else {
			sz = card->pref_erase % card->erase_size;
			if (sz)
				card->pref_erase += card->erase_size - sz;
		}
	} else
		card->pref_erase = 0;
}

static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
				          unsigned int arg, unsigned int qty)
{
	unsigned int erase_timeout;

	if (arg == MMC_DISCARD_ARG ||
	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
		erase_timeout = card->ext_csd.trim_timeout;
	} else if (card->ext_csd.erase_group_def & 1) {
		/* High Capacity Erase Group Size uses HC timeouts */
		if (arg == MMC_TRIM_ARG)
			erase_timeout = card->ext_csd.trim_timeout;
		else
			erase_timeout = card->ext_csd.hc_erase_timeout;
	} else {
		/* CSD Erase Group Size uses write timeout */
		unsigned int mult = (10 << card->csd.r2w_factor);
		unsigned int timeout_clks = card->csd.tacc_clks * mult;
		unsigned int timeout_us;

		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
		if (card->csd.tacc_ns < 1000000)
			timeout_us = (card->csd.tacc_ns * mult) / 1000;
		else
			timeout_us = (card->csd.tacc_ns / 1000) * mult;

		/*
		 * ios.clock is only a target.  The real clock rate might be
		 * less but not that much less, so fudge it by multiplying by 2.
		 */
		timeout_clks <<= 1;
		timeout_us += (timeout_clks * 1000) /
			      (card->host->ios.clock / 1000);

		erase_timeout = timeout_us / 1000;

		/*
		 * Theoretically, the calculation could underflow so round up
		 * to 1ms in that case.
		 */
		if (!erase_timeout)
			erase_timeout = 1;
	}

	/* Multiplier for secure operations */
	if (arg & MMC_SECURE_ARGS) {
		if (arg == MMC_SECURE_ERASE_ARG)
			erase_timeout *= card->ext_csd.sec_erase_mult;
		else
			erase_timeout *= card->ext_csd.sec_trim_mult;
	}

	erase_timeout *= qty;

	/*
	 * Ensure at least a 1 second timeout for SPI as per
	 * 'mmc_set_data_timeout()'
	 */
	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
		erase_timeout = 1000;

	return erase_timeout;
}

static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
					 unsigned int arg,
					 unsigned int qty)
{
	unsigned int erase_timeout;

	if (card->ssr.erase_timeout) {
		/* Erase timeout specified in SD Status Register (SSR) */
		erase_timeout = card->ssr.erase_timeout * qty +
				card->ssr.erase_offset;
	} else {
		/*
		 * Erase timeout not specified in SD Status Register (SSR) so
		 * use 250ms per write block.
		 */
		erase_timeout = 250 * qty;
	}

	/* Must not be less than 1 second */
	if (erase_timeout < 1000)
		erase_timeout = 1000;

	return erase_timeout;
}

static unsigned int mmc_erase_timeout(struct mmc_card *card,
				      unsigned int arg,
				      unsigned int qty)
{
	if (mmc_card_sd(card))
		return mmc_sd_erase_timeout(card, arg, qty);
	else
		return mmc_mmc_erase_timeout(card, arg, qty);
}

static int mmc_do_erase(struct mmc_card *card, unsigned int from,
			unsigned int to, unsigned int arg)
{
	struct mmc_command cmd = {0};
	unsigned int qty = 0;
	unsigned long timeout;
	int err;

	mmc_retune_hold(card->host);

	/*
	 * qty is used to calculate the erase timeout which depends on how many
	 * erase groups (or allocation units in SD terminology) are affected.
	 * We count erasing part of an erase group as one erase group.
	 * For SD, the allocation units are always a power of 2.  For MMC, the
	 * erase group size is almost certainly also power of 2, but it does not
	 * seem to insist on that in the JEDEC standard, so we fall back to
	 * division in that case.  SD may not specify an allocation unit size,
	 * in which case the timeout is based on the number of write blocks.
	 *
	 * Note that the timeout for secure trim 2 will only be correct if the
	 * number of erase groups specified is the same as the total of all
	 * preceding secure trim 1 commands.  Since the power may have been
	 * lost since the secure trim 1 commands occurred, it is generally
	 * impossible to calculate the secure trim 2 timeout correctly.
	 */
	if (card->erase_shift)
		qty += ((to >> card->erase_shift) -
			(from >> card->erase_shift)) + 1;
	else if (mmc_card_sd(card))
		qty += to - from + 1;
	else
		qty += ((to / card->erase_size) -
			(from / card->erase_size)) + 1;

	if (!mmc_card_blockaddr(card)) {
		from <<= 9;
		to <<= 9;
	}

	if (mmc_card_sd(card))
		cmd.opcode = SD_ERASE_WR_BLK_START;
	else
		cmd.opcode = MMC_ERASE_GROUP_START;
	cmd.arg = from;
	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
	err = mmc_wait_for_cmd(card->host, &cmd, 0);
	if (err) {
		pr_err("mmc_erase: group start error %d, "
		       "status %#x\n", err, cmd.resp[0]);
		err = -EIO;
		goto out;
	}

	memset(&cmd, 0, sizeof(struct mmc_command));
	if (mmc_card_sd(card))
		cmd.opcode = SD_ERASE_WR_BLK_END;
	else
		cmd.opcode = MMC_ERASE_GROUP_END;
	cmd.arg = to;
	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
	err = mmc_wait_for_cmd(card->host, &cmd, 0);
	if (err) {
		pr_err("mmc_erase: group end error %d, status %#x\n",
		       err, cmd.resp[0]);
		err = -EIO;
		goto out;
	}

	memset(&cmd, 0, sizeof(struct mmc_command));
	cmd.opcode = MMC_ERASE;
	cmd.arg = arg;
	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
	cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
	err = mmc_wait_for_cmd(card->host, &cmd, 0);
	if (err) {
		pr_err("mmc_erase: erase error %d, status %#x\n",
		       err, cmd.resp[0]);
		err = -EIO;
		goto out;
	}

	if (mmc_host_is_spi(card->host))
		goto out;

	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
	do {
		memset(&cmd, 0, sizeof(struct mmc_command));
		cmd.opcode = MMC_SEND_STATUS;
		cmd.arg = card->rca << 16;
		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
		/* Do not retry else we can't see errors */
		err = mmc_wait_for_cmd(card->host, &cmd, 0);
		if (err || (cmd.resp[0] & 0xFDF92000)) {
			pr_err("error %d requesting status %#x\n",
				err, cmd.resp[0]);
			err = -EIO;
			goto out;
		}

		/* Timeout if the device never becomes ready for data and
		 * never leaves the program state.
		 */
		if (time_after(jiffies, timeout)) {
			pr_err("%s: Card stuck in programming state! %s\n",
				mmc_hostname(card->host), __func__);
			err =  -EIO;
			goto out;
		}

	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
out:
	mmc_retune_release(card->host);
	return err;
}

/**
 * mmc_erase - erase sectors.
 * @card: card to erase
 * @from: first sector to erase
 * @nr: number of sectors to erase
 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
 *
 * Caller must claim host before calling this function.
 */
int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
	      unsigned int arg)
{
	unsigned int rem, to = from + nr;
	int err;

	if (!(card->host->caps & MMC_CAP_ERASE) ||
	    !(card->csd.cmdclass & CCC_ERASE))
		return -EOPNOTSUPP;

	if (!card->erase_size)
		return -EOPNOTSUPP;

	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
		return -EOPNOTSUPP;

	if ((arg & MMC_SECURE_ARGS) &&
	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
		return -EOPNOTSUPP;

	if ((arg & MMC_TRIM_ARGS) &&
	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
		return -EOPNOTSUPP;

	if (arg == MMC_SECURE_ERASE_ARG) {
		if (from % card->erase_size || nr % card->erase_size)
			return -EINVAL;
	}

	if (arg == MMC_ERASE_ARG) {
		rem = from % card->erase_size;
		if (rem) {
			rem = card->erase_size - rem;
			from += rem;
			if (nr > rem)
				nr -= rem;
			else
				return 0;
		}
		rem = nr % card->erase_size;
		if (rem)
			nr -= rem;
	}

	if (nr == 0)
		return 0;

	to = from + nr;

	if (to <= from)
		return -EINVAL;

	/* 'from' and 'to' are inclusive */
	to -= 1;

	/*
	 * Special case where only one erase-group fits in the timeout budget:
	 * If the region crosses an erase-group boundary on this particular
	 * case, we will be trimming more than one erase-group which, does not
	 * fit in the timeout budget of the controller, so we need to split it
	 * and call mmc_do_erase() twice if necessary. This special case is
	 * identified by the card->eg_boundary flag.
	 */
	rem = card->erase_size - (from % card->erase_size);
	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
		err = mmc_do_erase(card, from, from + rem - 1, arg);
		from += rem;
		if ((err) || (to <= from))
			return err;
	}

	return mmc_do_erase(card, from, to, arg);
}
EXPORT_SYMBOL(mmc_erase);

int mmc_can_erase(struct mmc_card *card)
{
	if ((card->host->caps & MMC_CAP_ERASE) &&
	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
		return 1;
	return 0;
}
EXPORT_SYMBOL(mmc_can_erase);

int mmc_can_trim(struct mmc_card *card)
{
	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
		return 1;
	return 0;
}
EXPORT_SYMBOL(mmc_can_trim);

int mmc_can_discard(struct mmc_card *card)
{
	/*
	 * As there's no way to detect the discard support bit at v4.5
	 * use the s/w feature support filed.
	 */
	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
		return 1;
	return 0;
}
EXPORT_SYMBOL(mmc_can_discard);

int mmc_can_sanitize(struct mmc_card *card)
{
	if (!mmc_can_trim(card) && !mmc_can_erase(card))
		return 0;
	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
		return 1;
	return 0;
}
EXPORT_SYMBOL(mmc_can_sanitize);

int mmc_can_secure_erase_trim(struct mmc_card *card)
{
	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
		return 1;
	return 0;
}
EXPORT_SYMBOL(mmc_can_secure_erase_trim);

int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
			    unsigned int nr)
{
	if (!card->erase_size)
		return 0;
	if (from % card->erase_size || nr % card->erase_size)
		return 0;
	return 1;
}
EXPORT_SYMBOL(mmc_erase_group_aligned);

static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
					    unsigned int arg)
{
	struct mmc_host *host = card->host;
	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
	unsigned int last_timeout = 0;

	if (card->erase_shift)
		max_qty = UINT_MAX >> card->erase_shift;
	else if (mmc_card_sd(card))
		max_qty = UINT_MAX;
	else
		max_qty = UINT_MAX / card->erase_size;

	/* Find the largest qty with an OK timeout */
	do {
		y = 0;
		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
			timeout = mmc_erase_timeout(card, arg, qty + x);
			if (timeout > host->max_busy_timeout)
				break;
			if (timeout < last_timeout)
				break;
			last_timeout = timeout;
			y = x;
		}
		qty += y;
	} while (y);

	if (!qty)
		return 0;

	/*
	 * When specifying a sector range to trim, chances are we might cross
	 * an erase-group boundary even if the amount of sectors is less than
	 * one erase-group.
	 * If we can only fit one erase-group in the controller timeout budget,
	 * we have to care that erase-group boundaries are not crossed by a
	 * single trim operation. We flag that special case with "eg_boundary".
	 * In all other cases we can just decrement qty and pretend that we
	 * always touch (qty + 1) erase-groups as a simple optimization.
	 */
	if (qty == 1)
		card->eg_boundary = 1;
	else
		qty--;

	/* Convert qty to sectors */
	if (card->erase_shift)
		max_discard = qty << card->erase_shift;
	else if (mmc_card_sd(card))
		max_discard = qty + 1;
	else
		max_discard = qty * card->erase_size;

	return max_discard;
}

unsigned int mmc_calc_max_discard(struct mmc_card *card)
{
	struct mmc_host *host = card->host;
	unsigned int max_discard, max_trim;

	if (!host->max_busy_timeout)
		return UINT_MAX;

	/*
	 * Without erase_group_def set, MMC erase timeout depends on clock
	 * frequence which can change.  In that case, the best choice is
	 * just the preferred erase size.
	 */
	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
		return card->pref_erase;

	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
	if (mmc_can_trim(card)) {
		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
		if (max_trim < max_discard)
			max_discard = max_trim;
	} else if (max_discard < card->erase_size) {
		max_discard = 0;
	}
	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
		 mmc_hostname(host), max_discard, host->max_busy_timeout);
	return max_discard;
}
EXPORT_SYMBOL(mmc_calc_max_discard);

int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
{
	struct mmc_command cmd = {0};

	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
		return 0;

	cmd.opcode = MMC_SET_BLOCKLEN;
	cmd.arg = blocklen;
	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
	return mmc_wait_for_cmd(card->host, &cmd, 5);
}
EXPORT_SYMBOL(mmc_set_blocklen);

int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
			bool is_rel_write)
{
	struct mmc_command cmd = {0};

	cmd.opcode = MMC_SET_BLOCK_COUNT;
	cmd.arg = blockcount & 0x0000FFFF;
	if (is_rel_write)
		cmd.arg |= 1 << 31;
	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
	return mmc_wait_for_cmd(card->host, &cmd, 5);
}
EXPORT_SYMBOL(mmc_set_blockcount);

static void mmc_hw_reset_for_init(struct mmc_host *host)
{
	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
		return;
	host->ops->hw_reset(host);
}

int mmc_hw_reset(struct mmc_host *host)
{
	int ret;

	if (!host->card)
		return -EINVAL;

	mmc_bus_get(host);
	if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
		mmc_bus_put(host);
		return -EOPNOTSUPP;
	}

	ret = host->bus_ops->reset(host);
	mmc_bus_put(host);

	if (ret != -EOPNOTSUPP)
		pr_warn("%s: tried to reset card\n", mmc_hostname(host));

	return ret;
}
EXPORT_SYMBOL(mmc_hw_reset);

static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
{
	host->f_init = freq;

#ifdef CONFIG_MMC_DEBUG
	pr_info("%s: %s: trying to init card at %u Hz\n",
		mmc_hostname(host), __func__, host->f_init);
#endif
	mmc_power_up(host, host->ocr_avail);

	/*
	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
	 * do a hardware reset if possible.
	 */
	mmc_hw_reset_for_init(host);

	/*
	 * sdio_reset sends CMD52 to reset card.  Since we do not know
	 * if the card is being re-initialized, just send it.  CMD52
	 * should be ignored by SD/eMMC cards.
	 */
	sdio_reset(host);
	mmc_go_idle(host);

	mmc_send_if_cond(host, host->ocr_avail);

	/* Order's important: probe SDIO, then SD, then MMC */
	if (!mmc_attach_sdio(host))
		return 0;
	if (!mmc_attach_sd(host))
		return 0;
	if (!mmc_attach_mmc(host))
		return 0;

	mmc_power_off(host);
	return -EIO;
}

int _mmc_detect_card_removed(struct mmc_host *host)
{
	int ret;

	if (host->caps & MMC_CAP_NONREMOVABLE)
		return 0;

	if (!host->card || mmc_card_removed(host->card))
		return 1;

	ret = host->bus_ops->alive(host);

	/*
	 * Card detect status and alive check may be out of sync if card is
	 * removed slowly, when card detect switch changes while card/slot
	 * pads are still contacted in hardware (refer to "SD Card Mechanical
	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
	 * detect work 200ms later for this case.
	 */
	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
		mmc_detect_change(host, msecs_to_jiffies(200));
		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
	}

	if (ret) {
		mmc_card_set_removed(host->card);
		pr_debug("%s: card remove detected\n", mmc_hostname(host));
	}

	return ret;
}

int mmc_detect_card_removed(struct mmc_host *host)
{
	struct mmc_card *card = host->card;
	int ret;

	WARN_ON(!host->claimed);

	if (!card)
		return 1;

	ret = mmc_card_removed(card);
	/*
	 * The card will be considered unchanged unless we have been asked to
	 * detect a change or host requires polling to provide card detection.
	 */
	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
		return ret;

	host->detect_change = 0;
	if (!ret) {
		ret = _mmc_detect_card_removed(host);
		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
			/*
			 * Schedule a detect work as soon as possible to let a
			 * rescan handle the card removal.
			 */
			cancel_delayed_work(&host->detect);
			_mmc_detect_change(host, 0, false);
		}
	}

	return ret;
}
EXPORT_SYMBOL(mmc_detect_card_removed);

void mmc_rescan(struct work_struct *work)
{
	struct mmc_host *host =
		container_of(work, struct mmc_host, detect.work);
	int i;

	if (host->trigger_card_event && host->ops->card_event) {
		host->ops->card_event(host);
		host->trigger_card_event = false;
	}

	if (host->rescan_disable)
		return;

	/* If there is a non-removable card registered, only scan once */
	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
		return;
	host->rescan_entered = 1;

	mmc_bus_get(host);

	/*
	 * if there is a _removable_ card registered, check whether it is
	 * still present
	 */
	if (host->bus_ops && !host->bus_dead
	    && !(host->caps & MMC_CAP_NONREMOVABLE))
		host->bus_ops->detect(host);

	host->detect_change = 0;

	/*
	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
	 * the card is no longer present.
	 */
	mmc_bus_put(host);
	mmc_bus_get(host);

	/* if there still is a card present, stop here */
	if (host->bus_ops != NULL) {
		mmc_bus_put(host);
		goto out;
	}

	/*
	 * Only we can add a new handler, so it's safe to
	 * release the lock here.
	 */
	mmc_bus_put(host);

	if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
			host->ops->get_cd(host) == 0) {
		mmc_claim_host(host);
		mmc_power_off(host);
		mmc_release_host(host);
		goto out;
	}

	mmc_claim_host(host);
	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
			break;
		if (freqs[i] <= host->f_min)
			break;
	}
	mmc_release_host(host);

 out:
	if (host->caps & MMC_CAP_NEEDS_POLL)
		mmc_schedule_delayed_work(&host->detect, HZ);
}

void mmc_start_host(struct mmc_host *host)
{
	host->f_init = max(freqs[0], host->f_min);
	host->rescan_disable = 0;
	host->ios.power_mode = MMC_POWER_UNDEFINED;

	mmc_claim_host(host);
	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
		mmc_power_off(host);
	else
		mmc_power_up(host, host->ocr_avail);
	mmc_release_host(host);

	mmc_gpiod_request_cd_irq(host);
	_mmc_detect_change(host, 0, false);
}

void mmc_stop_host(struct mmc_host *host)
{
#ifdef CONFIG_MMC_DEBUG
	unsigned long flags;
	spin_lock_irqsave(&host->lock, flags);
	host->removed = 1;
	spin_unlock_irqrestore(&host->lock, flags);
#endif
	if (host->slot.cd_irq >= 0)
		disable_irq(host->slot.cd_irq);

	host->rescan_disable = 1;
	cancel_delayed_work_sync(&host->detect);
	mmc_flush_scheduled_work();

	/* clear pm flags now and let card drivers set them as needed */
	host->pm_flags = 0;

	mmc_bus_get(host);
	if (host->bus_ops && !host->bus_dead) {
		/* Calling bus_ops->remove() with a claimed host can deadlock */
		host->bus_ops->remove(host);
		mmc_claim_host(host);
		mmc_detach_bus(host);
		mmc_power_off(host);
		mmc_release_host(host);
		mmc_bus_put(host);
		return;
	}
	mmc_bus_put(host);

	BUG_ON(host->card);

	mmc_claim_host(host);
	mmc_power_off(host);
	mmc_release_host(host);
}

int mmc_power_save_host(struct mmc_host *host)
{
	int ret = 0;

#ifdef CONFIG_MMC_DEBUG
	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
#endif

	mmc_bus_get(host);

	if (!host->bus_ops || host->bus_dead) {
		mmc_bus_put(host);
		return -EINVAL;
	}

	if (host->bus_ops->power_save)
		ret = host->bus_ops->power_save(host);

	mmc_bus_put(host);

	mmc_power_off(host);

	return ret;
}
EXPORT_SYMBOL(mmc_power_save_host);

int mmc_power_restore_host(struct mmc_host *host)
{
	int ret;

#ifdef CONFIG_MMC_DEBUG
	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
#endif

	mmc_bus_get(host);

	if (!host->bus_ops || host->bus_dead) {
		mmc_bus_put(host);
		return -EINVAL;
	}

	mmc_power_up(host, host->card->ocr);
	ret = host->bus_ops->power_restore(host);

	mmc_bus_put(host);

	return ret;
}
EXPORT_SYMBOL(mmc_power_restore_host);

/*
 * Flush the cache to the non-volatile storage.
 */
int mmc_flush_cache(struct mmc_card *card)
{
	int err = 0;

	if (mmc_card_mmc(card) &&
			(card->ext_csd.cache_size > 0) &&
			(card->ext_csd.cache_ctrl & 1)) {
		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
				EXT_CSD_FLUSH_CACHE, 1, 0);
		if (err)
			pr_err("%s: cache flush error %d\n",
					mmc_hostname(card->host), err);
	}

	return err;
}
EXPORT_SYMBOL(mmc_flush_cache);

#ifdef CONFIG_PM

/* Do the card removal on suspend if card is assumed removeable
 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
   to sync the card.
*/
int mmc_pm_notify(struct notifier_block *notify_block,
					unsigned long mode, void *unused)
{
	struct mmc_host *host = container_of(
		notify_block, struct mmc_host, pm_notify);
	unsigned long flags;
	int err = 0;

	switch (mode) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
	case PM_RESTORE_PREPARE:
		spin_lock_irqsave(&host->lock, flags);
		host->rescan_disable = 1;
		spin_unlock_irqrestore(&host->lock, flags);
		cancel_delayed_work_sync(&host->detect);

		if (!host->bus_ops)
			break;

		/* Validate prerequisites for suspend */
		if (host->bus_ops->pre_suspend)
			err = host->bus_ops->pre_suspend(host);
		if (!err)
			break;

		/* Calling bus_ops->remove() with a claimed host can deadlock */
		host->bus_ops->remove(host);
		mmc_claim_host(host);
		mmc_detach_bus(host);
		mmc_power_off(host);
		mmc_release_host(host);
		host->pm_flags = 0;
		break;

	case PM_POST_SUSPEND:
	case PM_POST_HIBERNATION:
	case PM_POST_RESTORE:

		spin_lock_irqsave(&host->lock, flags);
		host->rescan_disable = 0;
		spin_unlock_irqrestore(&host->lock, flags);
		_mmc_detect_change(host, 0, false);

	}

	return 0;
}
#endif

/**
 * mmc_init_context_info() - init synchronization context
 * @host: mmc host
 *
 * Init struct context_info needed to implement asynchronous
 * request mechanism, used by mmc core, host driver and mmc requests
 * supplier.
 */
void mmc_init_context_info(struct mmc_host *host)
{
	spin_lock_init(&host->context_info.lock);
	host->context_info.is_new_req = false;
	host->context_info.is_done_rcv = false;
	host->context_info.is_waiting_last_req = false;
	init_waitqueue_head(&host->context_info.wait);
}

static int __init mmc_init(void)
{
	int ret;

	workqueue = alloc_ordered_workqueue("kmmcd", 0);
	if (!workqueue)
		return -ENOMEM;

	ret = mmc_register_bus();
	if (ret)
		goto destroy_workqueue;

	ret = mmc_register_host_class();
	if (ret)
		goto unregister_bus;

	ret = sdio_register_bus();
	if (ret)
		goto unregister_host_class;

	return 0;

unregister_host_class:
	mmc_unregister_host_class();
unregister_bus:
	mmc_unregister_bus();
destroy_workqueue:
	destroy_workqueue(workqueue);

	return ret;
}

static void __exit mmc_exit(void)
{
	sdio_unregister_bus();
	mmc_unregister_host_class();
	mmc_unregister_bus();
	destroy_workqueue(workqueue);
}

subsys_initcall(mmc_init);
module_exit(mmc_exit);

MODULE_LICENSE("GPL");