hwlat_detector.c
36.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
/*
* hwlat_detector.c - A simple Hardware Latency detector.
*
* Use this module to detect large system latencies induced by the behavior of
* certain underlying system hardware or firmware, independent of Linux itself.
* The code was developed originally to detect the presence of SMIs on Intel
* and AMD systems, although there is no dependency upon x86 herein.
*
* The classical example usage of this module is in detecting the presence of
* SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a
* somewhat special form of hardware interrupt spawned from earlier CPU debug
* modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge
* LPC (or other device) to generate a special interrupt under certain
* circumstances, for example, upon expiration of a special SMI timer device,
* due to certain external thermal readings, on certain I/O address accesses,
* and other situations. An SMI hits a special CPU pin, triggers a special
* SMI mode (complete with special memory map), and the OS is unaware.
*
* Although certain hardware-inducing latencies are necessary (for example,
* a modern system often requires an SMI handler for correct thermal control
* and remote management) they can wreak havoc upon any OS-level performance
* guarantees toward low-latency, especially when the OS is not even made
* aware of the presence of these interrupts. For this reason, we need a
* somewhat brute force mechanism to detect these interrupts. In this case,
* we do it by hogging all of the CPU(s) for configurable timer intervals,
* sampling the built-in CPU timer, looking for discontiguous readings.
*
* WARNING: This implementation necessarily introduces latencies. Therefore,
* you should NEVER use this module in a production environment
* requiring any kind of low-latency performance guarantee(s).
*
* Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com>
*
* Includes useful feedback from Clark Williams <clark@redhat.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/ring_buffer.h>
#include <linux/time.h>
#include <linux/hrtimer.h>
#include <linux/kthread.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <linux/version.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/trace_clock.h>
#define BUF_SIZE_DEFAULT 262144UL /* 8K*(sizeof(entry)) */
#define BUF_FLAGS (RB_FL_OVERWRITE) /* no block on full */
#define U64STR_SIZE 22 /* 20 digits max */
#define VERSION "1.0.0"
#define BANNER "hwlat_detector: "
#define DRVNAME "hwlat_detector"
#define DEFAULT_SAMPLE_WINDOW 1000000 /* 1s */
#define DEFAULT_SAMPLE_WIDTH 500000 /* 0.5s */
#define DEFAULT_LAT_THRESHOLD 10 /* 10us */
/* Module metadata */
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Jon Masters <jcm@redhat.com>");
MODULE_DESCRIPTION("A simple hardware latency detector");
MODULE_VERSION(VERSION);
/* Module parameters */
static int debug;
static int enabled;
static int threshold;
module_param(debug, int, 0); /* enable debug */
module_param(enabled, int, 0); /* enable detector */
module_param(threshold, int, 0); /* latency threshold */
/* Buffering and sampling */
static struct ring_buffer *ring_buffer; /* sample buffer */
static DEFINE_MUTEX(ring_buffer_mutex); /* lock changes */
static unsigned long buf_size = BUF_SIZE_DEFAULT;
static struct task_struct *kthread; /* sampling thread */
/* DebugFS filesystem entries */
static struct dentry *debug_dir; /* debugfs directory */
static struct dentry *debug_max; /* maximum TSC delta */
static struct dentry *debug_count; /* total detect count */
static struct dentry *debug_sample_width; /* sample width us */
static struct dentry *debug_sample_window; /* sample window us */
static struct dentry *debug_sample; /* raw samples us */
static struct dentry *debug_threshold; /* threshold us */
static struct dentry *debug_enable; /* enable/disable */
/* Individual samples and global state */
struct sample; /* latency sample */
struct data; /* Global state */
/* Sampling functions */
static int __buffer_add_sample(struct sample *sample);
static struct sample *buffer_get_sample(struct sample *sample);
/* Threading and state */
static int kthread_fn(void *unused);
static int start_kthread(void);
static int stop_kthread(void);
static void __reset_stats(void);
static int init_stats(void);
/* Debugfs interface */
static ssize_t simple_data_read(struct file *filp, char __user *ubuf,
size_t cnt, loff_t *ppos, const u64 *entry);
static ssize_t simple_data_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos, u64 *entry);
static int debug_sample_fopen(struct inode *inode, struct file *filp);
static ssize_t debug_sample_fread(struct file *filp, char __user *ubuf,
size_t cnt, loff_t *ppos);
static int debug_sample_release(struct inode *inode, struct file *filp);
static int debug_enable_fopen(struct inode *inode, struct file *filp);
static ssize_t debug_enable_fread(struct file *filp, char __user *ubuf,
size_t cnt, loff_t *ppos);
static ssize_t debug_enable_fwrite(struct file *file,
const char __user *user_buffer,
size_t user_size, loff_t *offset);
/* Initialization functions */
static int init_debugfs(void);
static void free_debugfs(void);
static int detector_init(void);
static void detector_exit(void);
/* Individual latency samples are stored here when detected and packed into
* the ring_buffer circular buffer, where they are overwritten when
* more than buf_size/sizeof(sample) samples are received. */
struct sample {
u64 seqnum; /* unique sequence */
u64 duration; /* ktime delta */
u64 outer_duration; /* ktime delta (outer loop) */
struct timespec timestamp; /* wall time */
unsigned long lost;
};
/* keep the global state somewhere. */
static struct data {
struct mutex lock; /* protect changes */
u64 count; /* total since reset */
u64 max_sample; /* max hardware latency */
u64 threshold; /* sample threshold level */
u64 sample_window; /* total sampling window (on+off) */
u64 sample_width; /* active sampling portion of window */
atomic_t sample_open; /* whether the sample file is open */
wait_queue_head_t wq; /* waitqeue for new sample values */
} data;
/**
* __buffer_add_sample - add a new latency sample recording to the ring buffer
* @sample: The new latency sample value
*
* This receives a new latency sample and records it in a global ring buffer.
* No additional locking is used in this case.
*/
static int __buffer_add_sample(struct sample *sample)
{
return ring_buffer_write(ring_buffer,
sizeof(struct sample), sample);
}
/**
* buffer_get_sample - remove a hardware latency sample from the ring buffer
* @sample: Pre-allocated storage for the sample
*
* This retrieves a hardware latency sample from the global circular buffer
*/
static struct sample *buffer_get_sample(struct sample *sample)
{
struct ring_buffer_event *e = NULL;
struct sample *s = NULL;
unsigned int cpu = 0;
if (!sample)
return NULL;
mutex_lock(&ring_buffer_mutex);
for_each_online_cpu(cpu) {
e = ring_buffer_consume(ring_buffer, cpu, NULL, &sample->lost);
if (e)
break;
}
if (e) {
s = ring_buffer_event_data(e);
memcpy(sample, s, sizeof(struct sample));
} else
sample = NULL;
mutex_unlock(&ring_buffer_mutex);
return sample;
}
#ifndef CONFIG_TRACING
#define time_type ktime_t
#define time_get() ktime_get()
#define time_to_us(x) ktime_to_us(x)
#define time_sub(a, b) ktime_sub(a, b)
#define init_time(a, b) (a).tv64 = b
#define time_u64(a) ((a).tv64)
#else
#define time_type u64
#define time_get() trace_clock_local()
#define time_to_us(x) div_u64(x, 1000)
#define time_sub(a, b) ((a) - (b))
#define init_time(a, b) (a = b)
#define time_u64(a) a
#endif
/**
* get_sample - sample the CPU TSC and look for likely hardware latencies
*
* Used to repeatedly capture the CPU TSC (or similar), looking for potential
* hardware-induced latency. Called with interrupts disabled and with
* data.lock held.
*/
static int get_sample(void)
{
time_type start, t1, t2, last_t2;
s64 diff, total = 0;
u64 sample = 0;
u64 outer_sample = 0;
int ret = -1;
init_time(last_t2, 0);
start = time_get(); /* start timestamp */
do {
t1 = time_get(); /* we'll look for a discontinuity */
t2 = time_get();
if (time_u64(last_t2)) {
/* Check the delta from outer loop (t2 to next t1) */
diff = time_to_us(time_sub(t1, last_t2));
/* This shouldn't happen */
if (diff < 0) {
pr_err(BANNER "time running backwards\n");
goto out;
}
if (diff > outer_sample)
outer_sample = diff;
}
last_t2 = t2;
total = time_to_us(time_sub(t2, start)); /* sample width */
/* This checks the inner loop (t1 to t2) */
diff = time_to_us(time_sub(t2, t1)); /* current diff */
/* This shouldn't happen */
if (diff < 0) {
pr_err(BANNER "time running backwards\n");
goto out;
}
if (diff > sample)
sample = diff; /* only want highest value */
} while (total <= data.sample_width);
ret = 0;
/* If we exceed the threshold value, we have found a hardware latency */
if (sample > data.threshold || outer_sample > data.threshold) {
struct sample s;
ret = 1;
data.count++;
s.seqnum = data.count;
s.duration = sample;
s.outer_duration = outer_sample;
s.timestamp = CURRENT_TIME;
__buffer_add_sample(&s);
/* Keep a running maximum ever recorded hardware latency */
if (sample > data.max_sample)
data.max_sample = sample;
}
out:
return ret;
}
/*
* kthread_fn - The CPU time sampling/hardware latency detection kernel thread
* @unused: A required part of the kthread API.
*
* Used to periodically sample the CPU TSC via a call to get_sample. We
* disable interrupts, which does (intentionally) introduce latency since we
* need to ensure nothing else might be running (and thus pre-empting).
* Obviously this should never be used in production environments.
*
* Currently this runs on which ever CPU it was scheduled on, but most
* real-worald hardware latency situations occur across several CPUs,
* but we might later generalize this if we find there are any actualy
* systems with alternate SMI delivery or other hardware latencies.
*/
static int kthread_fn(void *unused)
{
int ret;
u64 interval;
while (!kthread_should_stop()) {
mutex_lock(&data.lock);
local_irq_disable();
ret = get_sample();
local_irq_enable();
if (ret > 0)
wake_up(&data.wq); /* wake up reader(s) */
interval = data.sample_window - data.sample_width;
do_div(interval, USEC_PER_MSEC); /* modifies interval value */
mutex_unlock(&data.lock);
if (msleep_interruptible(interval))
break;
}
return 0;
}
/**
* start_kthread - Kick off the hardware latency sampling/detector kthread
*
* This starts a kernel thread that will sit and sample the CPU timestamp
* counter (TSC or similar) and look for potential hardware latencies.
*/
static int start_kthread(void)
{
kthread = kthread_run(kthread_fn, NULL,
DRVNAME);
if (IS_ERR(kthread)) {
pr_err(BANNER "could not start sampling thread\n");
enabled = 0;
return -ENOMEM;
}
return 0;
}
/**
* stop_kthread - Inform the hardware latency samping/detector kthread to stop
*
* This kicks the running hardware latency sampling/detector kernel thread and
* tells it to stop sampling now. Use this on unload and at system shutdown.
*/
static int stop_kthread(void)
{
int ret;
ret = kthread_stop(kthread);
return ret;
}
/**
* __reset_stats - Reset statistics for the hardware latency detector
*
* We use data to store various statistics and global state. We call this
* function in order to reset those when "enable" is toggled on or off, and
* also at initialization. Should be called with data.lock held.
*/
static void __reset_stats(void)
{
data.count = 0;
data.max_sample = 0;
ring_buffer_reset(ring_buffer); /* flush out old sample entries */
}
/**
* init_stats - Setup global state statistics for the hardware latency detector
*
* We use data to store various statistics and global state. We also use
* a global ring buffer (ring_buffer) to keep raw samples of detected hardware
* induced system latencies. This function initializes these structures and
* allocates the global ring buffer also.
*/
static int init_stats(void)
{
int ret = -ENOMEM;
mutex_init(&data.lock);
init_waitqueue_head(&data.wq);
atomic_set(&data.sample_open, 0);
ring_buffer = ring_buffer_alloc(buf_size, BUF_FLAGS);
if (WARN(!ring_buffer, KERN_ERR BANNER
"failed to allocate ring buffer!\n"))
goto out;
__reset_stats();
data.threshold = threshold ?: DEFAULT_LAT_THRESHOLD; /* threshold us */
data.sample_window = DEFAULT_SAMPLE_WINDOW; /* window us */
data.sample_width = DEFAULT_SAMPLE_WIDTH; /* width us */
ret = 0;
out:
return ret;
}
/*
* simple_data_read - Wrapper read function for global state debugfs entries
* @filp: The active open file structure for the debugfs "file"
* @ubuf: The userspace provided buffer to read value into
* @cnt: The maximum number of bytes to read
* @ppos: The current "file" position
* @entry: The entry to read from
*
* This function provides a generic read implementation for the global state
* "data" structure debugfs filesystem entries. It would be nice to use
* simple_attr_read directly, but we need to make sure that the data.lock
* is held during the actual read.
*/
static ssize_t simple_data_read(struct file *filp, char __user *ubuf,
size_t cnt, loff_t *ppos, const u64 *entry)
{
char buf[U64STR_SIZE];
u64 val = 0;
int len = 0;
memset(buf, 0, sizeof(buf));
if (!entry)
return -EFAULT;
mutex_lock(&data.lock);
val = *entry;
mutex_unlock(&data.lock);
len = snprintf(buf, sizeof(buf), "%llu\n", (unsigned long long)val);
return simple_read_from_buffer(ubuf, cnt, ppos, buf, len);
}
/*
* simple_data_write - Wrapper write function for global state debugfs entries
* @filp: The active open file structure for the debugfs "file"
* @ubuf: The userspace provided buffer to write value from
* @cnt: The maximum number of bytes to write
* @ppos: The current "file" position
* @entry: The entry to write to
*
* This function provides a generic write implementation for the global state
* "data" structure debugfs filesystem entries. It would be nice to use
* simple_attr_write directly, but we need to make sure that the data.lock
* is held during the actual write.
*/
static ssize_t simple_data_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos, u64 *entry)
{
char buf[U64STR_SIZE];
int csize = min(cnt, sizeof(buf));
u64 val = 0;
int err = 0;
memset(buf, '\0', sizeof(buf));
if (copy_from_user(buf, ubuf, csize))
return -EFAULT;
buf[U64STR_SIZE-1] = '\0'; /* just in case */
err = kstrtoull(buf, 10, &val);
if (err)
return -EINVAL;
mutex_lock(&data.lock);
*entry = val;
mutex_unlock(&data.lock);
return csize;
}
/**
* debug_count_fopen - Open function for "count" debugfs entry
* @inode: The in-kernel inode representation of the debugfs "file"
* @filp: The active open file structure for the debugfs "file"
*
* This function provides an open implementation for the "count" debugfs
* interface to the hardware latency detector.
*/
static int debug_count_fopen(struct inode *inode, struct file *filp)
{
return 0;
}
/**
* debug_count_fread - Read function for "count" debugfs entry
* @filp: The active open file structure for the debugfs "file"
* @ubuf: The userspace provided buffer to read value into
* @cnt: The maximum number of bytes to read
* @ppos: The current "file" position
*
* This function provides a read implementation for the "count" debugfs
* interface to the hardware latency detector. Can be used to read the
* number of latency readings exceeding the configured threshold since
* the detector was last reset (e.g. by writing a zero into "count").
*/
static ssize_t debug_count_fread(struct file *filp, char __user *ubuf,
size_t cnt, loff_t *ppos)
{
return simple_data_read(filp, ubuf, cnt, ppos, &data.count);
}
/**
* debug_count_fwrite - Write function for "count" debugfs entry
* @filp: The active open file structure for the debugfs "file"
* @ubuf: The user buffer that contains the value to write
* @cnt: The maximum number of bytes to write to "file"
* @ppos: The current position in the debugfs "file"
*
* This function provides a write implementation for the "count" debugfs
* interface to the hardware latency detector. Can be used to write a
* desired value, especially to zero the total count.
*/
static ssize_t debug_count_fwrite(struct file *filp,
const char __user *ubuf,
size_t cnt,
loff_t *ppos)
{
return simple_data_write(filp, ubuf, cnt, ppos, &data.count);
}
/**
* debug_enable_fopen - Dummy open function for "enable" debugfs interface
* @inode: The in-kernel inode representation of the debugfs "file"
* @filp: The active open file structure for the debugfs "file"
*
* This function provides an open implementation for the "enable" debugfs
* interface to the hardware latency detector.
*/
static int debug_enable_fopen(struct inode *inode, struct file *filp)
{
return 0;
}
/**
* debug_enable_fread - Read function for "enable" debugfs interface
* @filp: The active open file structure for the debugfs "file"
* @ubuf: The userspace provided buffer to read value into
* @cnt: The maximum number of bytes to read
* @ppos: The current "file" position
*
* This function provides a read implementation for the "enable" debugfs
* interface to the hardware latency detector. Can be used to determine
* whether the detector is currently enabled ("0\n" or "1\n" returned).
*/
static ssize_t debug_enable_fread(struct file *filp, char __user *ubuf,
size_t cnt, loff_t *ppos)
{
char buf[4];
if ((cnt < sizeof(buf)) || (*ppos))
return 0;
buf[0] = enabled ? '1' : '0';
buf[1] = '\n';
buf[2] = '\0';
if (copy_to_user(ubuf, buf, strlen(buf)))
return -EFAULT;
return *ppos = strlen(buf);
}
/**
* debug_enable_fwrite - Write function for "enable" debugfs interface
* @filp: The active open file structure for the debugfs "file"
* @ubuf: The user buffer that contains the value to write
* @cnt: The maximum number of bytes to write to "file"
* @ppos: The current position in the debugfs "file"
*
* This function provides a write implementation for the "enable" debugfs
* interface to the hardware latency detector. Can be used to enable or
* disable the detector, which will have the side-effect of possibly
* also resetting the global stats and kicking off the measuring
* kthread (on an enable) or the converse (upon a disable).
*/
static ssize_t debug_enable_fwrite(struct file *filp,
const char __user *ubuf,
size_t cnt,
loff_t *ppos)
{
char buf[4];
int csize = min(cnt, sizeof(buf));
long val = 0;
int err = 0;
memset(buf, '\0', sizeof(buf));
if (copy_from_user(buf, ubuf, csize))
return -EFAULT;
buf[sizeof(buf)-1] = '\0'; /* just in case */
err = kstrtoul(buf, 10, &val);
if (err)
return -EINVAL;
if (val) {
if (enabled)
goto unlock;
enabled = 1;
__reset_stats();
if (start_kthread())
return -EFAULT;
} else {
if (!enabled)
goto unlock;
enabled = 0;
err = stop_kthread();
if (err) {
pr_err(BANNER "cannot stop kthread\n");
return -EFAULT;
}
wake_up(&data.wq); /* reader(s) should return */
}
unlock:
return csize;
}
/**
* debug_max_fopen - Open function for "max" debugfs entry
* @inode: The in-kernel inode representation of the debugfs "file"
* @filp: The active open file structure for the debugfs "file"
*
* This function provides an open implementation for the "max" debugfs
* interface to the hardware latency detector.
*/
static int debug_max_fopen(struct inode *inode, struct file *filp)
{
return 0;
}
/**
* debug_max_fread - Read function for "max" debugfs entry
* @filp: The active open file structure for the debugfs "file"
* @ubuf: The userspace provided buffer to read value into
* @cnt: The maximum number of bytes to read
* @ppos: The current "file" position
*
* This function provides a read implementation for the "max" debugfs
* interface to the hardware latency detector. Can be used to determine
* the maximum latency value observed since it was last reset.
*/
static ssize_t debug_max_fread(struct file *filp, char __user *ubuf,
size_t cnt, loff_t *ppos)
{
return simple_data_read(filp, ubuf, cnt, ppos, &data.max_sample);
}
/**
* debug_max_fwrite - Write function for "max" debugfs entry
* @filp: The active open file structure for the debugfs "file"
* @ubuf: The user buffer that contains the value to write
* @cnt: The maximum number of bytes to write to "file"
* @ppos: The current position in the debugfs "file"
*
* This function provides a write implementation for the "max" debugfs
* interface to the hardware latency detector. Can be used to reset the
* maximum or set it to some other desired value - if, then, subsequent
* measurements exceed this value, the maximum will be updated.
*/
static ssize_t debug_max_fwrite(struct file *filp,
const char __user *ubuf,
size_t cnt,
loff_t *ppos)
{
return simple_data_write(filp, ubuf, cnt, ppos, &data.max_sample);
}
/**
* debug_sample_fopen - An open function for "sample" debugfs interface
* @inode: The in-kernel inode representation of this debugfs "file"
* @filp: The active open file structure for the debugfs "file"
*
* This function handles opening the "sample" file within the hardware
* latency detector debugfs directory interface. This file is used to read
* raw samples from the global ring_buffer and allows the user to see a
* running latency history. Can be opened blocking or non-blocking,
* affecting whether it behaves as a buffer read pipe, or does not.
* Implements simple locking to prevent multiple simultaneous use.
*/
static int debug_sample_fopen(struct inode *inode, struct file *filp)
{
if (!atomic_add_unless(&data.sample_open, 1, 1))
return -EBUSY;
else
return 0;
}
/**
* debug_sample_fread - A read function for "sample" debugfs interface
* @filp: The active open file structure for the debugfs "file"
* @ubuf: The user buffer that will contain the samples read
* @cnt: The maximum bytes to read from the debugfs "file"
* @ppos: The current position in the debugfs "file"
*
* This function handles reading from the "sample" file within the hardware
* latency detector debugfs directory interface. This file is used to read
* raw samples from the global ring_buffer and allows the user to see a
* running latency history. By default this will block pending a new
* value written into the sample buffer, unless there are already a
* number of value(s) waiting in the buffer, or the sample file was
* previously opened in a non-blocking mode of operation.
*/
static ssize_t debug_sample_fread(struct file *filp, char __user *ubuf,
size_t cnt, loff_t *ppos)
{
int len = 0;
char buf[64];
struct sample *sample = NULL;
if (!enabled)
return 0;
sample = kzalloc(sizeof(struct sample), GFP_KERNEL);
if (!sample)
return -ENOMEM;
while (!buffer_get_sample(sample)) {
DEFINE_WAIT(wait);
if (filp->f_flags & O_NONBLOCK) {
len = -EAGAIN;
goto out;
}
prepare_to_wait(&data.wq, &wait, TASK_INTERRUPTIBLE);
schedule();
finish_wait(&data.wq, &wait);
if (signal_pending(current)) {
len = -EINTR;
goto out;
}
if (!enabled) { /* enable was toggled */
len = 0;
goto out;
}
}
len = snprintf(buf, sizeof(buf), "%010lu.%010lu\t%llu\t%llu\n",
sample->timestamp.tv_sec,
sample->timestamp.tv_nsec,
sample->duration,
sample->outer_duration);
/* handling partial reads is more trouble than it's worth */
if (len > cnt)
goto out;
if (copy_to_user(ubuf, buf, len))
len = -EFAULT;
out:
kfree(sample);
return len;
}
/**
* debug_sample_release - Release function for "sample" debugfs interface
* @inode: The in-kernel inode represenation of the debugfs "file"
* @filp: The active open file structure for the debugfs "file"
*
* This function completes the close of the debugfs interface "sample" file.
* Frees the sample_open "lock" so that other users may open the interface.
*/
static int debug_sample_release(struct inode *inode, struct file *filp)
{
atomic_dec(&data.sample_open);
return 0;
}
/**
* debug_threshold_fopen - Open function for "threshold" debugfs entry
* @inode: The in-kernel inode representation of the debugfs "file"
* @filp: The active open file structure for the debugfs "file"
*
* This function provides an open implementation for the "threshold" debugfs
* interface to the hardware latency detector.
*/
static int debug_threshold_fopen(struct inode *inode, struct file *filp)
{
return 0;
}
/**
* debug_threshold_fread - Read function for "threshold" debugfs entry
* @filp: The active open file structure for the debugfs "file"
* @ubuf: The userspace provided buffer to read value into
* @cnt: The maximum number of bytes to read
* @ppos: The current "file" position
*
* This function provides a read implementation for the "threshold" debugfs
* interface to the hardware latency detector. It can be used to determine
* the current threshold level at which a latency will be recorded in the
* global ring buffer, typically on the order of 10us.
*/
static ssize_t debug_threshold_fread(struct file *filp, char __user *ubuf,
size_t cnt, loff_t *ppos)
{
return simple_data_read(filp, ubuf, cnt, ppos, &data.threshold);
}
/**
* debug_threshold_fwrite - Write function for "threshold" debugfs entry
* @filp: The active open file structure for the debugfs "file"
* @ubuf: The user buffer that contains the value to write
* @cnt: The maximum number of bytes to write to "file"
* @ppos: The current position in the debugfs "file"
*
* This function provides a write implementation for the "threshold" debugfs
* interface to the hardware latency detector. It can be used to configure
* the threshold level at which any subsequently detected latencies will
* be recorded into the global ring buffer.
*/
static ssize_t debug_threshold_fwrite(struct file *filp,
const char __user *ubuf,
size_t cnt,
loff_t *ppos)
{
int ret;
ret = simple_data_write(filp, ubuf, cnt, ppos, &data.threshold);
if (enabled)
wake_up_process(kthread);
return ret;
}
/**
* debug_width_fopen - Open function for "width" debugfs entry
* @inode: The in-kernel inode representation of the debugfs "file"
* @filp: The active open file structure for the debugfs "file"
*
* This function provides an open implementation for the "width" debugfs
* interface to the hardware latency detector.
*/
static int debug_width_fopen(struct inode *inode, struct file *filp)
{
return 0;
}
/**
* debug_width_fread - Read function for "width" debugfs entry
* @filp: The active open file structure for the debugfs "file"
* @ubuf: The userspace provided buffer to read value into
* @cnt: The maximum number of bytes to read
* @ppos: The current "file" position
*
* This function provides a read implementation for the "width" debugfs
* interface to the hardware latency detector. It can be used to determine
* for how many us of the total window us we will actively sample for any
* hardware-induced latecy periods. Obviously, it is not possible to
* sample constantly and have the system respond to a sample reader, or,
* worse, without having the system appear to have gone out to lunch.
*/
static ssize_t debug_width_fread(struct file *filp, char __user *ubuf,
size_t cnt, loff_t *ppos)
{
return simple_data_read(filp, ubuf, cnt, ppos, &data.sample_width);
}
/**
* debug_width_fwrite - Write function for "width" debugfs entry
* @filp: The active open file structure for the debugfs "file"
* @ubuf: The user buffer that contains the value to write
* @cnt: The maximum number of bytes to write to "file"
* @ppos: The current position in the debugfs "file"
*
* This function provides a write implementation for the "width" debugfs
* interface to the hardware latency detector. It can be used to configure
* for how many us of the total window us we will actively sample for any
* hardware-induced latency periods. Obviously, it is not possible to
* sample constantly and have the system respond to a sample reader, or,
* worse, without having the system appear to have gone out to lunch. It
* is enforced that width is less that the total window size.
*/
static ssize_t debug_width_fwrite(struct file *filp,
const char __user *ubuf,
size_t cnt,
loff_t *ppos)
{
char buf[U64STR_SIZE];
int csize = min(cnt, sizeof(buf));
u64 val = 0;
int err = 0;
memset(buf, '\0', sizeof(buf));
if (copy_from_user(buf, ubuf, csize))
return -EFAULT;
buf[U64STR_SIZE-1] = '\0'; /* just in case */
err = kstrtoull(buf, 10, &val);
if (err)
return -EINVAL;
mutex_lock(&data.lock);
if (val < data.sample_window)
data.sample_width = val;
else {
mutex_unlock(&data.lock);
return -EINVAL;
}
mutex_unlock(&data.lock);
if (enabled)
wake_up_process(kthread);
return csize;
}
/**
* debug_window_fopen - Open function for "window" debugfs entry
* @inode: The in-kernel inode representation of the debugfs "file"
* @filp: The active open file structure for the debugfs "file"
*
* This function provides an open implementation for the "window" debugfs
* interface to the hardware latency detector. The window is the total time
* in us that will be considered one sample period. Conceptually, windows
* occur back-to-back and contain a sample width period during which
* actual sampling occurs.
*/
static int debug_window_fopen(struct inode *inode, struct file *filp)
{
return 0;
}
/**
* debug_window_fread - Read function for "window" debugfs entry
* @filp: The active open file structure for the debugfs "file"
* @ubuf: The userspace provided buffer to read value into
* @cnt: The maximum number of bytes to read
* @ppos: The current "file" position
*
* This function provides a read implementation for the "window" debugfs
* interface to the hardware latency detector. The window is the total time
* in us that will be considered one sample period. Conceptually, windows
* occur back-to-back and contain a sample width period during which
* actual sampling occurs. Can be used to read the total window size.
*/
static ssize_t debug_window_fread(struct file *filp, char __user *ubuf,
size_t cnt, loff_t *ppos)
{
return simple_data_read(filp, ubuf, cnt, ppos, &data.sample_window);
}
/**
* debug_window_fwrite - Write function for "window" debugfs entry
* @filp: The active open file structure for the debugfs "file"
* @ubuf: The user buffer that contains the value to write
* @cnt: The maximum number of bytes to write to "file"
* @ppos: The current position in the debugfs "file"
*
* This function provides a write implementation for the "window" debufds
* interface to the hardware latency detetector. The window is the total time
* in us that will be considered one sample period. Conceptually, windows
* occur back-to-back and contain a sample width period during which
* actual sampling occurs. Can be used to write a new total window size. It
* is enfoced that any value written must be greater than the sample width
* size, or an error results.
*/
static ssize_t debug_window_fwrite(struct file *filp,
const char __user *ubuf,
size_t cnt,
loff_t *ppos)
{
char buf[U64STR_SIZE];
int csize = min(cnt, sizeof(buf));
u64 val = 0;
int err = 0;
memset(buf, '\0', sizeof(buf));
if (copy_from_user(buf, ubuf, csize))
return -EFAULT;
buf[U64STR_SIZE-1] = '\0'; /* just in case */
err = kstrtoull(buf, 10, &val);
if (err)
return -EINVAL;
mutex_lock(&data.lock);
if (data.sample_width < val)
data.sample_window = val;
else {
mutex_unlock(&data.lock);
return -EINVAL;
}
mutex_unlock(&data.lock);
return csize;
}
/*
* Function pointers for the "count" debugfs file operations
*/
static const struct file_operations count_fops = {
.open = debug_count_fopen,
.read = debug_count_fread,
.write = debug_count_fwrite,
.owner = THIS_MODULE,
};
/*
* Function pointers for the "enable" debugfs file operations
*/
static const struct file_operations enable_fops = {
.open = debug_enable_fopen,
.read = debug_enable_fread,
.write = debug_enable_fwrite,
.owner = THIS_MODULE,
};
/*
* Function pointers for the "max" debugfs file operations
*/
static const struct file_operations max_fops = {
.open = debug_max_fopen,
.read = debug_max_fread,
.write = debug_max_fwrite,
.owner = THIS_MODULE,
};
/*
* Function pointers for the "sample" debugfs file operations
*/
static const struct file_operations sample_fops = {
.open = debug_sample_fopen,
.read = debug_sample_fread,
.release = debug_sample_release,
.owner = THIS_MODULE,
};
/*
* Function pointers for the "threshold" debugfs file operations
*/
static const struct file_operations threshold_fops = {
.open = debug_threshold_fopen,
.read = debug_threshold_fread,
.write = debug_threshold_fwrite,
.owner = THIS_MODULE,
};
/*
* Function pointers for the "width" debugfs file operations
*/
static const struct file_operations width_fops = {
.open = debug_width_fopen,
.read = debug_width_fread,
.write = debug_width_fwrite,
.owner = THIS_MODULE,
};
/*
* Function pointers for the "window" debugfs file operations
*/
static const struct file_operations window_fops = {
.open = debug_window_fopen,
.read = debug_window_fread,
.write = debug_window_fwrite,
.owner = THIS_MODULE,
};
/**
* init_debugfs - A function to initialize the debugfs interface files
*
* This function creates entries in debugfs for "hwlat_detector", including
* files to read values from the detector, current samples, and the
* maximum sample that has been captured since the hardware latency
* dectector was started.
*/
static int init_debugfs(void)
{
int ret = -ENOMEM;
debug_dir = debugfs_create_dir(DRVNAME, NULL);
if (!debug_dir)
goto err_debug_dir;
debug_sample = debugfs_create_file("sample", 0444,
debug_dir, NULL,
&sample_fops);
if (!debug_sample)
goto err_sample;
debug_count = debugfs_create_file("count", 0444,
debug_dir, NULL,
&count_fops);
if (!debug_count)
goto err_count;
debug_max = debugfs_create_file("max", 0444,
debug_dir, NULL,
&max_fops);
if (!debug_max)
goto err_max;
debug_sample_window = debugfs_create_file("window", 0644,
debug_dir, NULL,
&window_fops);
if (!debug_sample_window)
goto err_window;
debug_sample_width = debugfs_create_file("width", 0644,
debug_dir, NULL,
&width_fops);
if (!debug_sample_width)
goto err_width;
debug_threshold = debugfs_create_file("threshold", 0644,
debug_dir, NULL,
&threshold_fops);
if (!debug_threshold)
goto err_threshold;
debug_enable = debugfs_create_file("enable", 0644,
debug_dir, &enabled,
&enable_fops);
if (!debug_enable)
goto err_enable;
else {
ret = 0;
goto out;
}
err_enable:
debugfs_remove(debug_threshold);
err_threshold:
debugfs_remove(debug_sample_width);
err_width:
debugfs_remove(debug_sample_window);
err_window:
debugfs_remove(debug_max);
err_max:
debugfs_remove(debug_count);
err_count:
debugfs_remove(debug_sample);
err_sample:
debugfs_remove(debug_dir);
err_debug_dir:
out:
return ret;
}
/**
* free_debugfs - A function to cleanup the debugfs file interface
*/
static void free_debugfs(void)
{
/* could also use a debugfs_remove_recursive */
debugfs_remove(debug_enable);
debugfs_remove(debug_threshold);
debugfs_remove(debug_sample_width);
debugfs_remove(debug_sample_window);
debugfs_remove(debug_max);
debugfs_remove(debug_count);
debugfs_remove(debug_sample);
debugfs_remove(debug_dir);
}
/**
* detector_init - Standard module initialization code
*/
static int detector_init(void)
{
int ret = -ENOMEM;
pr_info(BANNER "version %s\n", VERSION);
ret = init_stats();
if (ret)
goto out;
ret = init_debugfs();
if (ret)
goto err_stats;
if (enabled)
ret = start_kthread();
goto out;
err_stats:
ring_buffer_free(ring_buffer);
out:
return ret;
}
/**
* detector_exit - Standard module cleanup code
*/
static void detector_exit(void)
{
int err;
if (enabled) {
enabled = 0;
err = stop_kthread();
if (err)
pr_err(BANNER "cannot stop kthread\n");
}
free_debugfs();
ring_buffer_free(ring_buffer); /* free up the ring buffer */
}
module_init(detector_init);
module_exit(detector_exit);