hwlat_detector.c 36.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
/*
 * hwlat_detector.c - A simple Hardware Latency detector.
 *
 * Use this module to detect large system latencies induced by the behavior of
 * certain underlying system hardware or firmware, independent of Linux itself.
 * The code was developed originally to detect the presence of SMIs on Intel
 * and AMD systems, although there is no dependency upon x86 herein.
 *
 * The classical example usage of this module is in detecting the presence of
 * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a
 * somewhat special form of hardware interrupt spawned from earlier CPU debug
 * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge
 * LPC (or other device) to generate a special interrupt under certain
 * circumstances, for example, upon expiration of a special SMI timer device,
 * due to certain external thermal readings, on certain I/O address accesses,
 * and other situations. An SMI hits a special CPU pin, triggers a special
 * SMI mode (complete with special memory map), and the OS is unaware.
 *
 * Although certain hardware-inducing latencies are necessary (for example,
 * a modern system often requires an SMI handler for correct thermal control
 * and remote management) they can wreak havoc upon any OS-level performance
 * guarantees toward low-latency, especially when the OS is not even made
 * aware of the presence of these interrupts. For this reason, we need a
 * somewhat brute force mechanism to detect these interrupts. In this case,
 * we do it by hogging all of the CPU(s) for configurable timer intervals,
 * sampling the built-in CPU timer, looking for discontiguous readings.
 *
 * WARNING: This implementation necessarily introduces latencies. Therefore,
 *          you should NEVER use this module in a production environment
 *          requiring any kind of low-latency performance guarantee(s).
 *
 * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com>
 *
 * Includes useful feedback from Clark Williams <clark@redhat.com>
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/ring_buffer.h>
#include <linux/time.h>
#include <linux/hrtimer.h>
#include <linux/kthread.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <linux/version.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/trace_clock.h>

#define BUF_SIZE_DEFAULT	262144UL		/* 8K*(sizeof(entry)) */
#define BUF_FLAGS		(RB_FL_OVERWRITE)	/* no block on full */
#define U64STR_SIZE		22			/* 20 digits max */

#define VERSION			"1.0.0"
#define BANNER			"hwlat_detector: "
#define DRVNAME			"hwlat_detector"
#define DEFAULT_SAMPLE_WINDOW	1000000			/* 1s */
#define DEFAULT_SAMPLE_WIDTH	500000			/* 0.5s */
#define DEFAULT_LAT_THRESHOLD	10			/* 10us */

/* Module metadata */

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Jon Masters <jcm@redhat.com>");
MODULE_DESCRIPTION("A simple hardware latency detector");
MODULE_VERSION(VERSION);

/* Module parameters */

static int debug;
static int enabled;
static int threshold;

module_param(debug, int, 0);			/* enable debug */
module_param(enabled, int, 0);			/* enable detector */
module_param(threshold, int, 0);		/* latency threshold */

/* Buffering and sampling */

static struct ring_buffer *ring_buffer;		/* sample buffer */
static DEFINE_MUTEX(ring_buffer_mutex);		/* lock changes */
static unsigned long buf_size = BUF_SIZE_DEFAULT;
static struct task_struct *kthread;		/* sampling thread */

/* DebugFS filesystem entries */

static struct dentry *debug_dir;		/* debugfs directory */
static struct dentry *debug_max;		/* maximum TSC delta */
static struct dentry *debug_count;		/* total detect count */
static struct dentry *debug_sample_width;	/* sample width us */
static struct dentry *debug_sample_window;	/* sample window us */
static struct dentry *debug_sample;		/* raw samples us */
static struct dentry *debug_threshold;		/* threshold us */
static struct dentry *debug_enable;		/* enable/disable */

/* Individual samples and global state */

struct sample;					/* latency sample */
struct data;					/* Global state */

/* Sampling functions */
static int __buffer_add_sample(struct sample *sample);
static struct sample *buffer_get_sample(struct sample *sample);

/* Threading and state */
static int kthread_fn(void *unused);
static int start_kthread(void);
static int stop_kthread(void);
static void __reset_stats(void);
static int init_stats(void);

/* Debugfs interface */
static ssize_t simple_data_read(struct file *filp, char __user *ubuf,
				size_t cnt, loff_t *ppos, const u64 *entry);
static ssize_t simple_data_write(struct file *filp, const char __user *ubuf,
				 size_t cnt, loff_t *ppos, u64 *entry);
static int debug_sample_fopen(struct inode *inode, struct file *filp);
static ssize_t debug_sample_fread(struct file *filp, char __user *ubuf,
				  size_t cnt, loff_t *ppos);
static int debug_sample_release(struct inode *inode, struct file *filp);
static int debug_enable_fopen(struct inode *inode, struct file *filp);
static ssize_t debug_enable_fread(struct file *filp, char __user *ubuf,
				  size_t cnt, loff_t *ppos);
static ssize_t debug_enable_fwrite(struct file *file,
				   const char __user *user_buffer,
				   size_t user_size, loff_t *offset);

/* Initialization functions */
static int init_debugfs(void);
static void free_debugfs(void);
static int detector_init(void);
static void detector_exit(void);

/* Individual latency samples are stored here when detected and packed into
 * the ring_buffer circular buffer, where they are overwritten when
 * more than buf_size/sizeof(sample) samples are received. */
struct sample {
	u64		seqnum;		/* unique sequence */
	u64		duration;	/* ktime delta */
	u64		outer_duration;	/* ktime delta (outer loop) */
	struct timespec	timestamp;	/* wall time */
	unsigned long   lost;
};

/* keep the global state somewhere. */
static struct data {

	struct mutex lock;		/* protect changes */

	u64	count;			/* total since reset */
	u64	max_sample;		/* max hardware latency */
	u64	threshold;		/* sample threshold level */

	u64	sample_window;		/* total sampling window (on+off) */
	u64	sample_width;		/* active sampling portion of window */

	atomic_t sample_open;		/* whether the sample file is open */

	wait_queue_head_t wq;		/* waitqeue for new sample values */

} data;

/**
 * __buffer_add_sample - add a new latency sample recording to the ring buffer
 * @sample: The new latency sample value
 *
 * This receives a new latency sample and records it in a global ring buffer.
 * No additional locking is used in this case.
 */
static int __buffer_add_sample(struct sample *sample)
{
	return ring_buffer_write(ring_buffer,
				 sizeof(struct sample), sample);
}

/**
 * buffer_get_sample - remove a hardware latency sample from the ring buffer
 * @sample: Pre-allocated storage for the sample
 *
 * This retrieves a hardware latency sample from the global circular buffer
 */
static struct sample *buffer_get_sample(struct sample *sample)
{
	struct ring_buffer_event *e = NULL;
	struct sample *s = NULL;
	unsigned int cpu = 0;

	if (!sample)
		return NULL;

	mutex_lock(&ring_buffer_mutex);
	for_each_online_cpu(cpu) {
		e = ring_buffer_consume(ring_buffer, cpu, NULL, &sample->lost);
		if (e)
			break;
	}

	if (e) {
		s = ring_buffer_event_data(e);
		memcpy(sample, s, sizeof(struct sample));
	} else
		sample = NULL;
	mutex_unlock(&ring_buffer_mutex);

	return sample;
}

#ifndef CONFIG_TRACING
#define time_type	ktime_t
#define time_get()	ktime_get()
#define time_to_us(x)	ktime_to_us(x)
#define time_sub(a, b)	ktime_sub(a, b)
#define init_time(a, b)	(a).tv64 = b
#define time_u64(a)	((a).tv64)
#else
#define time_type	u64
#define time_get()	trace_clock_local()
#define time_to_us(x)	div_u64(x, 1000)
#define time_sub(a, b)	((a) - (b))
#define init_time(a, b)	(a = b)
#define time_u64(a)	a
#endif
/**
 * get_sample - sample the CPU TSC and look for likely hardware latencies
 *
 * Used to repeatedly capture the CPU TSC (or similar), looking for potential
 * hardware-induced latency. Called with interrupts disabled and with
 * data.lock held.
 */
static int get_sample(void)
{
	time_type start, t1, t2, last_t2;
	s64 diff, total = 0;
	u64 sample = 0;
	u64 outer_sample = 0;
	int ret = -1;

	init_time(last_t2, 0);
	start = time_get(); /* start timestamp */

	do {

		t1 = time_get();	/* we'll look for a discontinuity */
		t2 = time_get();

		if (time_u64(last_t2)) {
			/* Check the delta from outer loop (t2 to next t1) */
			diff = time_to_us(time_sub(t1, last_t2));
			/* This shouldn't happen */
			if (diff < 0) {
				pr_err(BANNER "time running backwards\n");
				goto out;
			}
			if (diff > outer_sample)
				outer_sample = diff;
		}
		last_t2 = t2;

		total = time_to_us(time_sub(t2, start)); /* sample width */

		/* This checks the inner loop (t1 to t2) */
		diff = time_to_us(time_sub(t2, t1));     /* current diff */

		/* This shouldn't happen */
		if (diff < 0) {
			pr_err(BANNER "time running backwards\n");
			goto out;
		}

		if (diff > sample)
			sample = diff; /* only want highest value */

	} while (total <= data.sample_width);

	ret = 0;

	/* If we exceed the threshold value, we have found a hardware latency */
	if (sample > data.threshold || outer_sample > data.threshold) {
		struct sample s;

		ret = 1;

		data.count++;
		s.seqnum = data.count;
		s.duration = sample;
		s.outer_duration = outer_sample;
		s.timestamp = CURRENT_TIME;
		__buffer_add_sample(&s);

		/* Keep a running maximum ever recorded hardware latency */
		if (sample > data.max_sample)
			data.max_sample = sample;
	}

out:
	return ret;
}

/*
 * kthread_fn - The CPU time sampling/hardware latency detection kernel thread
 * @unused: A required part of the kthread API.
 *
 * Used to periodically sample the CPU TSC via a call to get_sample. We
 * disable interrupts, which does (intentionally) introduce latency since we
 * need to ensure nothing else might be running (and thus pre-empting).
 * Obviously this should never be used in production environments.
 *
 * Currently this runs on which ever CPU it was scheduled on, but most
 * real-worald hardware latency situations occur across several CPUs,
 * but we might later generalize this if we find there are any actualy
 * systems with alternate SMI delivery or other hardware latencies.
 */
static int kthread_fn(void *unused)
{
	int ret;
	u64 interval;

	while (!kthread_should_stop()) {

		mutex_lock(&data.lock);

		local_irq_disable();
		ret = get_sample();
		local_irq_enable();

		if (ret > 0)
			wake_up(&data.wq); /* wake up reader(s) */

		interval = data.sample_window - data.sample_width;
		do_div(interval, USEC_PER_MSEC); /* modifies interval value */

		mutex_unlock(&data.lock);

		if (msleep_interruptible(interval))
			break;
	}

	return 0;
}

/**
 * start_kthread - Kick off the hardware latency sampling/detector kthread
 *
 * This starts a kernel thread that will sit and sample the CPU timestamp
 * counter (TSC or similar) and look for potential hardware latencies.
 */
static int start_kthread(void)
{
	kthread = kthread_run(kthread_fn, NULL,
					DRVNAME);
	if (IS_ERR(kthread)) {
		pr_err(BANNER "could not start sampling thread\n");
		enabled = 0;
		return -ENOMEM;
	}

	return 0;
}

/**
 * stop_kthread - Inform the hardware latency samping/detector kthread to stop
 *
 * This kicks the running hardware latency sampling/detector kernel thread and
 * tells it to stop sampling now. Use this on unload and at system shutdown.
 */
static int stop_kthread(void)
{
	int ret;

	ret = kthread_stop(kthread);

	return ret;
}

/**
 * __reset_stats - Reset statistics for the hardware latency detector
 *
 * We use data to store various statistics and global state. We call this
 * function in order to reset those when "enable" is toggled on or off, and
 * also at initialization. Should be called with data.lock held.
 */
static void __reset_stats(void)
{
	data.count = 0;
	data.max_sample = 0;
	ring_buffer_reset(ring_buffer); /* flush out old sample entries */
}

/**
 * init_stats - Setup global state statistics for the hardware latency detector
 *
 * We use data to store various statistics and global state. We also use
 * a global ring buffer (ring_buffer) to keep raw samples of detected hardware
 * induced system latencies. This function initializes these structures and
 * allocates the global ring buffer also.
 */
static int init_stats(void)
{
	int ret = -ENOMEM;

	mutex_init(&data.lock);
	init_waitqueue_head(&data.wq);
	atomic_set(&data.sample_open, 0);

	ring_buffer = ring_buffer_alloc(buf_size, BUF_FLAGS);

	if (WARN(!ring_buffer, KERN_ERR BANNER
			       "failed to allocate ring buffer!\n"))
		goto out;

	__reset_stats();
	data.threshold = threshold ?: DEFAULT_LAT_THRESHOLD; /* threshold us */
	data.sample_window = DEFAULT_SAMPLE_WINDOW; /* window us */
	data.sample_width = DEFAULT_SAMPLE_WIDTH;   /* width us */

	ret = 0;

out:
	return ret;

}

/*
 * simple_data_read - Wrapper read function for global state debugfs entries
 * @filp: The active open file structure for the debugfs "file"
 * @ubuf: The userspace provided buffer to read value into
 * @cnt: The maximum number of bytes to read
 * @ppos: The current "file" position
 * @entry: The entry to read from
 *
 * This function provides a generic read implementation for the global state
 * "data" structure debugfs filesystem entries. It would be nice to use
 * simple_attr_read directly, but we need to make sure that the data.lock
 * is held during the actual read.
 */
static ssize_t simple_data_read(struct file *filp, char __user *ubuf,
				size_t cnt, loff_t *ppos, const u64 *entry)
{
	char buf[U64STR_SIZE];
	u64 val = 0;
	int len = 0;

	memset(buf, 0, sizeof(buf));

	if (!entry)
		return -EFAULT;

	mutex_lock(&data.lock);
	val = *entry;
	mutex_unlock(&data.lock);

	len = snprintf(buf, sizeof(buf), "%llu\n", (unsigned long long)val);

	return simple_read_from_buffer(ubuf, cnt, ppos, buf, len);

}

/*
 * simple_data_write - Wrapper write function for global state debugfs entries
 * @filp: The active open file structure for the debugfs "file"
 * @ubuf: The userspace provided buffer to write value from
 * @cnt: The maximum number of bytes to write
 * @ppos: The current "file" position
 * @entry: The entry to write to
 *
 * This function provides a generic write implementation for the global state
 * "data" structure debugfs filesystem entries. It would be nice to use
 * simple_attr_write directly, but we need to make sure that the data.lock
 * is held during the actual write.
 */
static ssize_t simple_data_write(struct file *filp, const char __user *ubuf,
				 size_t cnt, loff_t *ppos, u64 *entry)
{
	char buf[U64STR_SIZE];
	int csize = min(cnt, sizeof(buf));
	u64 val = 0;
	int err = 0;

	memset(buf, '\0', sizeof(buf));
	if (copy_from_user(buf, ubuf, csize))
		return -EFAULT;

	buf[U64STR_SIZE-1] = '\0';			/* just in case */
	err = kstrtoull(buf, 10, &val);
	if (err)
		return -EINVAL;

	mutex_lock(&data.lock);
	*entry = val;
	mutex_unlock(&data.lock);

	return csize;
}

/**
 * debug_count_fopen - Open function for "count" debugfs entry
 * @inode: The in-kernel inode representation of the debugfs "file"
 * @filp: The active open file structure for the debugfs "file"
 *
 * This function provides an open implementation for the "count" debugfs
 * interface to the hardware latency detector.
 */
static int debug_count_fopen(struct inode *inode, struct file *filp)
{
	return 0;
}

/**
 * debug_count_fread - Read function for "count" debugfs entry
 * @filp: The active open file structure for the debugfs "file"
 * @ubuf: The userspace provided buffer to read value into
 * @cnt: The maximum number of bytes to read
 * @ppos: The current "file" position
 *
 * This function provides a read implementation for the "count" debugfs
 * interface to the hardware latency detector. Can be used to read the
 * number of latency readings exceeding the configured threshold since
 * the detector was last reset (e.g. by writing a zero into "count").
 */
static ssize_t debug_count_fread(struct file *filp, char __user *ubuf,
				     size_t cnt, loff_t *ppos)
{
	return simple_data_read(filp, ubuf, cnt, ppos, &data.count);
}

/**
 * debug_count_fwrite - Write function for "count" debugfs entry
 * @filp: The active open file structure for the debugfs "file"
 * @ubuf: The user buffer that contains the value to write
 * @cnt: The maximum number of bytes to write to "file"
 * @ppos: The current position in the debugfs "file"
 *
 * This function provides a write implementation for the "count" debugfs
 * interface to the hardware latency detector. Can be used to write a
 * desired value, especially to zero the total count.
 */
static ssize_t  debug_count_fwrite(struct file *filp,
				       const char __user *ubuf,
				       size_t cnt,
				       loff_t *ppos)
{
	return simple_data_write(filp, ubuf, cnt, ppos, &data.count);
}

/**
 * debug_enable_fopen - Dummy open function for "enable" debugfs interface
 * @inode: The in-kernel inode representation of the debugfs "file"
 * @filp: The active open file structure for the debugfs "file"
 *
 * This function provides an open implementation for the "enable" debugfs
 * interface to the hardware latency detector.
 */
static int debug_enable_fopen(struct inode *inode, struct file *filp)
{
	return 0;
}

/**
 * debug_enable_fread - Read function for "enable" debugfs interface
 * @filp: The active open file structure for the debugfs "file"
 * @ubuf: The userspace provided buffer to read value into
 * @cnt: The maximum number of bytes to read
 * @ppos: The current "file" position
 *
 * This function provides a read implementation for the "enable" debugfs
 * interface to the hardware latency detector. Can be used to determine
 * whether the detector is currently enabled ("0\n" or "1\n" returned).
 */
static ssize_t debug_enable_fread(struct file *filp, char __user *ubuf,
				      size_t cnt, loff_t *ppos)
{
	char buf[4];

	if ((cnt < sizeof(buf)) || (*ppos))
		return 0;

	buf[0] = enabled ? '1' : '0';
	buf[1] = '\n';
	buf[2] = '\0';
	if (copy_to_user(ubuf, buf, strlen(buf)))
		return -EFAULT;
	return *ppos = strlen(buf);
}

/**
 * debug_enable_fwrite - Write function for "enable" debugfs interface
 * @filp: The active open file structure for the debugfs "file"
 * @ubuf: The user buffer that contains the value to write
 * @cnt: The maximum number of bytes to write to "file"
 * @ppos: The current position in the debugfs "file"
 *
 * This function provides a write implementation for the "enable" debugfs
 * interface to the hardware latency detector. Can be used to enable or
 * disable the detector, which will have the side-effect of possibly
 * also resetting the global stats and kicking off the measuring
 * kthread (on an enable) or the converse (upon a disable).
 */
static ssize_t  debug_enable_fwrite(struct file *filp,
					const char __user *ubuf,
					size_t cnt,
					loff_t *ppos)
{
	char buf[4];
	int csize = min(cnt, sizeof(buf));
	long val = 0;
	int err = 0;

	memset(buf, '\0', sizeof(buf));
	if (copy_from_user(buf, ubuf, csize))
		return -EFAULT;

	buf[sizeof(buf)-1] = '\0';			/* just in case */
	err = kstrtoul(buf, 10, &val);
	if (err)
		return -EINVAL;

	if (val) {
		if (enabled)
			goto unlock;
		enabled = 1;
		__reset_stats();
		if (start_kthread())
			return -EFAULT;
	} else {
		if (!enabled)
			goto unlock;
		enabled = 0;
		err = stop_kthread();
		if (err) {
			pr_err(BANNER "cannot stop kthread\n");
			return -EFAULT;
		}
		wake_up(&data.wq);		/* reader(s) should return */
	}
unlock:
	return csize;
}

/**
 * debug_max_fopen - Open function for "max" debugfs entry
 * @inode: The in-kernel inode representation of the debugfs "file"
 * @filp: The active open file structure for the debugfs "file"
 *
 * This function provides an open implementation for the "max" debugfs
 * interface to the hardware latency detector.
 */
static int debug_max_fopen(struct inode *inode, struct file *filp)
{
	return 0;
}

/**
 * debug_max_fread - Read function for "max" debugfs entry
 * @filp: The active open file structure for the debugfs "file"
 * @ubuf: The userspace provided buffer to read value into
 * @cnt: The maximum number of bytes to read
 * @ppos: The current "file" position
 *
 * This function provides a read implementation for the "max" debugfs
 * interface to the hardware latency detector. Can be used to determine
 * the maximum latency value observed since it was last reset.
 */
static ssize_t debug_max_fread(struct file *filp, char __user *ubuf,
				   size_t cnt, loff_t *ppos)
{
	return simple_data_read(filp, ubuf, cnt, ppos, &data.max_sample);
}

/**
 * debug_max_fwrite - Write function for "max" debugfs entry
 * @filp: The active open file structure for the debugfs "file"
 * @ubuf: The user buffer that contains the value to write
 * @cnt: The maximum number of bytes to write to "file"
 * @ppos: The current position in the debugfs "file"
 *
 * This function provides a write implementation for the "max" debugfs
 * interface to the hardware latency detector. Can be used to reset the
 * maximum or set it to some other desired value - if, then, subsequent
 * measurements exceed this value, the maximum will be updated.
 */
static ssize_t  debug_max_fwrite(struct file *filp,
				     const char __user *ubuf,
				     size_t cnt,
				     loff_t *ppos)
{
	return simple_data_write(filp, ubuf, cnt, ppos, &data.max_sample);
}


/**
 * debug_sample_fopen - An open function for "sample" debugfs interface
 * @inode: The in-kernel inode representation of this debugfs "file"
 * @filp: The active open file structure for the debugfs "file"
 *
 * This function handles opening the "sample" file within the hardware
 * latency detector debugfs directory interface. This file is used to read
 * raw samples from the global ring_buffer and allows the user to see a
 * running latency history. Can be opened blocking or non-blocking,
 * affecting whether it behaves as a buffer read pipe, or does not.
 * Implements simple locking to prevent multiple simultaneous use.
 */
static int debug_sample_fopen(struct inode *inode, struct file *filp)
{
	if (!atomic_add_unless(&data.sample_open, 1, 1))
		return -EBUSY;
	else
		return 0;
}

/**
 * debug_sample_fread - A read function for "sample" debugfs interface
 * @filp: The active open file structure for the debugfs "file"
 * @ubuf: The user buffer that will contain the samples read
 * @cnt: The maximum bytes to read from the debugfs "file"
 * @ppos: The current position in the debugfs "file"
 *
 * This function handles reading from the "sample" file within the hardware
 * latency detector debugfs directory interface. This file is used to read
 * raw samples from the global ring_buffer and allows the user to see a
 * running latency history. By default this will block pending a new
 * value written into the sample buffer, unless there are already a
 * number of value(s) waiting in the buffer, or the sample file was
 * previously opened in a non-blocking mode of operation.
 */
static ssize_t debug_sample_fread(struct file *filp, char __user *ubuf,
					size_t cnt, loff_t *ppos)
{
	int len = 0;
	char buf[64];
	struct sample *sample = NULL;

	if (!enabled)
		return 0;

	sample = kzalloc(sizeof(struct sample), GFP_KERNEL);
	if (!sample)
		return -ENOMEM;

	while (!buffer_get_sample(sample)) {

		DEFINE_WAIT(wait);

		if (filp->f_flags & O_NONBLOCK) {
			len = -EAGAIN;
			goto out;
		}

		prepare_to_wait(&data.wq, &wait, TASK_INTERRUPTIBLE);
		schedule();
		finish_wait(&data.wq, &wait);

		if (signal_pending(current)) {
			len = -EINTR;
			goto out;
		}

		if (!enabled) {			/* enable was toggled */
			len = 0;
			goto out;
		}
	}

	len = snprintf(buf, sizeof(buf), "%010lu.%010lu\t%llu\t%llu\n",
		       sample->timestamp.tv_sec,
		       sample->timestamp.tv_nsec,
		       sample->duration,
		       sample->outer_duration);


	/* handling partial reads is more trouble than it's worth */
	if (len > cnt)
		goto out;

	if (copy_to_user(ubuf, buf, len))
		len = -EFAULT;

out:
	kfree(sample);
	return len;
}

/**
 * debug_sample_release - Release function for "sample" debugfs interface
 * @inode: The in-kernel inode represenation of the debugfs "file"
 * @filp: The active open file structure for the debugfs "file"
 *
 * This function completes the close of the debugfs interface "sample" file.
 * Frees the sample_open "lock" so that other users may open the interface.
 */
static int debug_sample_release(struct inode *inode, struct file *filp)
{
	atomic_dec(&data.sample_open);

	return 0;
}

/**
 * debug_threshold_fopen - Open function for "threshold" debugfs entry
 * @inode: The in-kernel inode representation of the debugfs "file"
 * @filp: The active open file structure for the debugfs "file"
 *
 * This function provides an open implementation for the "threshold" debugfs
 * interface to the hardware latency detector.
 */
static int debug_threshold_fopen(struct inode *inode, struct file *filp)
{
	return 0;
}

/**
 * debug_threshold_fread - Read function for "threshold" debugfs entry
 * @filp: The active open file structure for the debugfs "file"
 * @ubuf: The userspace provided buffer to read value into
 * @cnt: The maximum number of bytes to read
 * @ppos: The current "file" position
 *
 * This function provides a read implementation for the "threshold" debugfs
 * interface to the hardware latency detector. It can be used to determine
 * the current threshold level at which a latency will be recorded in the
 * global ring buffer, typically on the order of 10us.
 */
static ssize_t debug_threshold_fread(struct file *filp, char __user *ubuf,
					 size_t cnt, loff_t *ppos)
{
	return simple_data_read(filp, ubuf, cnt, ppos, &data.threshold);
}

/**
 * debug_threshold_fwrite - Write function for "threshold" debugfs entry
 * @filp: The active open file structure for the debugfs "file"
 * @ubuf: The user buffer that contains the value to write
 * @cnt: The maximum number of bytes to write to "file"
 * @ppos: The current position in the debugfs "file"
 *
 * This function provides a write implementation for the "threshold" debugfs
 * interface to the hardware latency detector. It can be used to configure
 * the threshold level at which any subsequently detected latencies will
 * be recorded into the global ring buffer.
 */
static ssize_t  debug_threshold_fwrite(struct file *filp,
					const char __user *ubuf,
					size_t cnt,
					loff_t *ppos)
{
	int ret;

	ret = simple_data_write(filp, ubuf, cnt, ppos, &data.threshold);

	if (enabled)
		wake_up_process(kthread);

	return ret;
}

/**
 * debug_width_fopen - Open function for "width" debugfs entry
 * @inode: The in-kernel inode representation of the debugfs "file"
 * @filp: The active open file structure for the debugfs "file"
 *
 * This function provides an open implementation for the "width" debugfs
 * interface to the hardware latency detector.
 */
static int debug_width_fopen(struct inode *inode, struct file *filp)
{
	return 0;
}

/**
 * debug_width_fread - Read function for "width" debugfs entry
 * @filp: The active open file structure for the debugfs "file"
 * @ubuf: The userspace provided buffer to read value into
 * @cnt: The maximum number of bytes to read
 * @ppos: The current "file" position
 *
 * This function provides a read implementation for the "width" debugfs
 * interface to the hardware latency detector. It can be used to determine
 * for how many us of the total window us we will actively sample for any
 * hardware-induced latecy periods. Obviously, it is not possible to
 * sample constantly and have the system respond to a sample reader, or,
 * worse, without having the system appear to have gone out to lunch.
 */
static ssize_t debug_width_fread(struct file *filp, char __user *ubuf,
				     size_t cnt, loff_t *ppos)
{
	return simple_data_read(filp, ubuf, cnt, ppos, &data.sample_width);
}

/**
 * debug_width_fwrite - Write function for "width" debugfs entry
 * @filp: The active open file structure for the debugfs "file"
 * @ubuf: The user buffer that contains the value to write
 * @cnt: The maximum number of bytes to write to "file"
 * @ppos: The current position in the debugfs "file"
 *
 * This function provides a write implementation for the "width" debugfs
 * interface to the hardware latency detector. It can be used to configure
 * for how many us of the total window us we will actively sample for any
 * hardware-induced latency periods. Obviously, it is not possible to
 * sample constantly and have the system respond to a sample reader, or,
 * worse, without having the system appear to have gone out to lunch. It
 * is enforced that width is less that the total window size.
 */
static ssize_t  debug_width_fwrite(struct file *filp,
				       const char __user *ubuf,
				       size_t cnt,
				       loff_t *ppos)
{
	char buf[U64STR_SIZE];
	int csize = min(cnt, sizeof(buf));
	u64 val = 0;
	int err = 0;

	memset(buf, '\0', sizeof(buf));
	if (copy_from_user(buf, ubuf, csize))
		return -EFAULT;

	buf[U64STR_SIZE-1] = '\0';			/* just in case */
	err = kstrtoull(buf, 10, &val);
	if (err)
		return -EINVAL;

	mutex_lock(&data.lock);
	if (val < data.sample_window)
		data.sample_width = val;
	else {
		mutex_unlock(&data.lock);
		return -EINVAL;
	}
	mutex_unlock(&data.lock);

	if (enabled)
		wake_up_process(kthread);

	return csize;
}

/**
 * debug_window_fopen - Open function for "window" debugfs entry
 * @inode: The in-kernel inode representation of the debugfs "file"
 * @filp: The active open file structure for the debugfs "file"
 *
 * This function provides an open implementation for the "window" debugfs
 * interface to the hardware latency detector. The window is the total time
 * in us that will be considered one sample period. Conceptually, windows
 * occur back-to-back and contain a sample width period during which
 * actual sampling occurs.
 */
static int debug_window_fopen(struct inode *inode, struct file *filp)
{
	return 0;
}

/**
 * debug_window_fread - Read function for "window" debugfs entry
 * @filp: The active open file structure for the debugfs "file"
 * @ubuf: The userspace provided buffer to read value into
 * @cnt: The maximum number of bytes to read
 * @ppos: The current "file" position
 *
 * This function provides a read implementation for the "window" debugfs
 * interface to the hardware latency detector. The window is the total time
 * in us that will be considered one sample period. Conceptually, windows
 * occur back-to-back and contain a sample width period during which
 * actual sampling occurs. Can be used to read the total window size.
 */
static ssize_t debug_window_fread(struct file *filp, char __user *ubuf,
				      size_t cnt, loff_t *ppos)
{
	return simple_data_read(filp, ubuf, cnt, ppos, &data.sample_window);
}

/**
 * debug_window_fwrite - Write function for "window" debugfs entry
 * @filp: The active open file structure for the debugfs "file"
 * @ubuf: The user buffer that contains the value to write
 * @cnt: The maximum number of bytes to write to "file"
 * @ppos: The current position in the debugfs "file"
 *
 * This function provides a write implementation for the "window" debufds
 * interface to the hardware latency detetector. The window is the total time
 * in us that will be considered one sample period. Conceptually, windows
 * occur back-to-back and contain a sample width period during which
 * actual sampling occurs. Can be used to write a new total window size. It
 * is enfoced that any value written must be greater than the sample width
 * size, or an error results.
 */
static ssize_t  debug_window_fwrite(struct file *filp,
					const char __user *ubuf,
					size_t cnt,
					loff_t *ppos)
{
	char buf[U64STR_SIZE];
	int csize = min(cnt, sizeof(buf));
	u64 val = 0;
	int err = 0;

	memset(buf, '\0', sizeof(buf));
	if (copy_from_user(buf, ubuf, csize))
		return -EFAULT;

	buf[U64STR_SIZE-1] = '\0';			/* just in case */
	err = kstrtoull(buf, 10, &val);
	if (err)
		return -EINVAL;

	mutex_lock(&data.lock);
	if (data.sample_width < val)
		data.sample_window = val;
	else {
		mutex_unlock(&data.lock);
		return -EINVAL;
	}
	mutex_unlock(&data.lock);

	return csize;
}

/*
 * Function pointers for the "count" debugfs file operations
 */
static const struct file_operations count_fops = {
	.open		= debug_count_fopen,
	.read		= debug_count_fread,
	.write		= debug_count_fwrite,
	.owner		= THIS_MODULE,
};

/*
 * Function pointers for the "enable" debugfs file operations
 */
static const struct file_operations enable_fops = {
	.open		= debug_enable_fopen,
	.read		= debug_enable_fread,
	.write		= debug_enable_fwrite,
	.owner		= THIS_MODULE,
};

/*
 * Function pointers for the "max" debugfs file operations
 */
static const struct file_operations max_fops = {
	.open		= debug_max_fopen,
	.read		= debug_max_fread,
	.write		= debug_max_fwrite,
	.owner		= THIS_MODULE,
};

/*
 * Function pointers for the "sample" debugfs file operations
 */
static const struct file_operations sample_fops = {
	.open		= debug_sample_fopen,
	.read		= debug_sample_fread,
	.release	= debug_sample_release,
	.owner		= THIS_MODULE,
};

/*
 * Function pointers for the "threshold" debugfs file operations
 */
static const struct file_operations threshold_fops = {
	.open		= debug_threshold_fopen,
	.read		= debug_threshold_fread,
	.write		= debug_threshold_fwrite,
	.owner		= THIS_MODULE,
};

/*
 * Function pointers for the "width" debugfs file operations
 */
static const struct file_operations width_fops = {
	.open		= debug_width_fopen,
	.read		= debug_width_fread,
	.write		= debug_width_fwrite,
	.owner		= THIS_MODULE,
};

/*
 * Function pointers for the "window" debugfs file operations
 */
static const struct file_operations window_fops = {
	.open		= debug_window_fopen,
	.read		= debug_window_fread,
	.write		= debug_window_fwrite,
	.owner		= THIS_MODULE,
};

/**
 * init_debugfs - A function to initialize the debugfs interface files
 *
 * This function creates entries in debugfs for "hwlat_detector", including
 * files to read values from the detector, current samples, and the
 * maximum sample that has been captured since the hardware latency
 * dectector was started.
 */
static int init_debugfs(void)
{
	int ret = -ENOMEM;

	debug_dir = debugfs_create_dir(DRVNAME, NULL);
	if (!debug_dir)
		goto err_debug_dir;

	debug_sample = debugfs_create_file("sample", 0444,
					       debug_dir, NULL,
					       &sample_fops);
	if (!debug_sample)
		goto err_sample;

	debug_count = debugfs_create_file("count", 0444,
					      debug_dir, NULL,
					      &count_fops);
	if (!debug_count)
		goto err_count;

	debug_max = debugfs_create_file("max", 0444,
					    debug_dir, NULL,
					    &max_fops);
	if (!debug_max)
		goto err_max;

	debug_sample_window = debugfs_create_file("window", 0644,
						      debug_dir, NULL,
						      &window_fops);
	if (!debug_sample_window)
		goto err_window;

	debug_sample_width = debugfs_create_file("width", 0644,
						     debug_dir, NULL,
						     &width_fops);
	if (!debug_sample_width)
		goto err_width;

	debug_threshold = debugfs_create_file("threshold", 0644,
						  debug_dir, NULL,
						  &threshold_fops);
	if (!debug_threshold)
		goto err_threshold;

	debug_enable = debugfs_create_file("enable", 0644,
					       debug_dir, &enabled,
					       &enable_fops);
	if (!debug_enable)
		goto err_enable;

	else {
		ret = 0;
		goto out;
	}

err_enable:
	debugfs_remove(debug_threshold);
err_threshold:
	debugfs_remove(debug_sample_width);
err_width:
	debugfs_remove(debug_sample_window);
err_window:
	debugfs_remove(debug_max);
err_max:
	debugfs_remove(debug_count);
err_count:
	debugfs_remove(debug_sample);
err_sample:
	debugfs_remove(debug_dir);
err_debug_dir:
out:
	return ret;
}

/**
 * free_debugfs - A function to cleanup the debugfs file interface
 */
static void free_debugfs(void)
{
	/* could also use a debugfs_remove_recursive */
	debugfs_remove(debug_enable);
	debugfs_remove(debug_threshold);
	debugfs_remove(debug_sample_width);
	debugfs_remove(debug_sample_window);
	debugfs_remove(debug_max);
	debugfs_remove(debug_count);
	debugfs_remove(debug_sample);
	debugfs_remove(debug_dir);
}

/**
 * detector_init - Standard module initialization code
 */
static int detector_init(void)
{
	int ret = -ENOMEM;

	pr_info(BANNER "version %s\n", VERSION);

	ret = init_stats();
	if (ret)
		goto out;

	ret = init_debugfs();
	if (ret)
		goto err_stats;

	if (enabled)
		ret = start_kthread();

	goto out;

err_stats:
	ring_buffer_free(ring_buffer);
out:
	return ret;

}

/**
 * detector_exit - Standard module cleanup code
 */
static void detector_exit(void)
{
	int err;

	if (enabled) {
		enabled = 0;
		err = stop_kthread();
		if (err)
			pr_err(BANNER "cannot stop kthread\n");
	}

	free_debugfs();
	ring_buffer_free(ring_buffer);	/* free up the ring buffer */

}

module_init(detector_init);
module_exit(detector_exit);