input.c 60.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
/*
 * The input core
 *
 * Copyright (c) 1999-2002 Vojtech Pavlik
 */

/*
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 */

#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt

#include <linux/init.h>
#include <linux/types.h>
#include <linux/idr.h>
#include <linux/input/mt.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/major.h>
#include <linux/proc_fs.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/poll.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/rcupdate.h>
#include "input-compat.h"

MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
MODULE_DESCRIPTION("Input core");
MODULE_LICENSE("GPL");

#define INPUT_MAX_CHAR_DEVICES		1024
#define INPUT_FIRST_DYNAMIC_DEV		256
static DEFINE_IDA(input_ida);

static LIST_HEAD(input_dev_list);
static LIST_HEAD(input_handler_list);

/*
 * input_mutex protects access to both input_dev_list and input_handler_list.
 * This also causes input_[un]register_device and input_[un]register_handler
 * be mutually exclusive which simplifies locking in drivers implementing
 * input handlers.
 */
static DEFINE_MUTEX(input_mutex);

static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };

static inline int is_event_supported(unsigned int code,
				     unsigned long *bm, unsigned int max)
{
	return code <= max && test_bit(code, bm);
}

static int input_defuzz_abs_event(int value, int old_val, int fuzz)
{
	if (fuzz) {
		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
			return old_val;

		if (value > old_val - fuzz && value < old_val + fuzz)
			return (old_val * 3 + value) / 4;

		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
			return (old_val + value) / 2;
	}

	return value;
}

static void input_start_autorepeat(struct input_dev *dev, int code)
{
	if (test_bit(EV_REP, dev->evbit) &&
	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
	    dev->timer.data) {
		dev->repeat_key = code;
		mod_timer(&dev->timer,
			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
	}
}

static void input_stop_autorepeat(struct input_dev *dev)
{
	del_timer(&dev->timer);
}

/*
 * Pass event first through all filters and then, if event has not been
 * filtered out, through all open handles. This function is called with
 * dev->event_lock held and interrupts disabled.
 */
static unsigned int input_to_handler(struct input_handle *handle,
			struct input_value *vals, unsigned int count)
{
	struct input_handler *handler = handle->handler;
	struct input_value *end = vals;
	struct input_value *v;

	if (handler->filter) {
		for (v = vals; v != vals + count; v++) {
			if (handler->filter(handle, v->type, v->code, v->value))
				continue;
			if (end != v)
				*end = *v;
			end++;
		}
		count = end - vals;
	}

	if (!count)
		return 0;

	if (handler->events)
		handler->events(handle, vals, count);
	else if (handler->event)
		for (v = vals; v != vals + count; v++)
			handler->event(handle, v->type, v->code, v->value);

	return count;
}

/*
 * Pass values first through all filters and then, if event has not been
 * filtered out, through all open handles. This function is called with
 * dev->event_lock held and interrupts disabled.
 */
static void input_pass_values(struct input_dev *dev,
			      struct input_value *vals, unsigned int count)
{
	struct input_handle *handle;
	struct input_value *v;

	if (!count)
		return;

	rcu_read_lock();

	handle = rcu_dereference(dev->grab);
	if (handle) {
		count = input_to_handler(handle, vals, count);
	} else {
		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
			if (handle->open) {
				count = input_to_handler(handle, vals, count);
				if (!count)
					break;
			}
	}

	rcu_read_unlock();

	add_input_randomness(vals->type, vals->code, vals->value);

	/* trigger auto repeat for key events */
	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
		for (v = vals; v != vals + count; v++) {
			if (v->type == EV_KEY && v->value != 2) {
				if (v->value)
					input_start_autorepeat(dev, v->code);
				else
					input_stop_autorepeat(dev);
			}
		}
	}
}

static void input_pass_event(struct input_dev *dev,
			     unsigned int type, unsigned int code, int value)
{
	struct input_value vals[] = { { type, code, value } };

	input_pass_values(dev, vals, ARRAY_SIZE(vals));
}

/*
 * Generate software autorepeat event. Note that we take
 * dev->event_lock here to avoid racing with input_event
 * which may cause keys get "stuck".
 */
static void input_repeat_key(unsigned long data)
{
	struct input_dev *dev = (void *) data;
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);

	if (test_bit(dev->repeat_key, dev->key) &&
	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
		struct input_value vals[] =  {
			{ EV_KEY, dev->repeat_key, 2 },
			input_value_sync
		};

		input_pass_values(dev, vals, ARRAY_SIZE(vals));

		if (dev->rep[REP_PERIOD])
			mod_timer(&dev->timer, jiffies +
					msecs_to_jiffies(dev->rep[REP_PERIOD]));
	}

	spin_unlock_irqrestore(&dev->event_lock, flags);
}

#define INPUT_IGNORE_EVENT	0
#define INPUT_PASS_TO_HANDLERS	1
#define INPUT_PASS_TO_DEVICE	2
#define INPUT_SLOT		4
#define INPUT_FLUSH		8
#define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)

static int input_handle_abs_event(struct input_dev *dev,
				  unsigned int code, int *pval)
{
	struct input_mt *mt = dev->mt;
	bool is_mt_event;
	int *pold;

	if (code == ABS_MT_SLOT) {
		/*
		 * "Stage" the event; we'll flush it later, when we
		 * get actual touch data.
		 */
		if (mt && *pval >= 0 && *pval < mt->num_slots)
			mt->slot = *pval;

		return INPUT_IGNORE_EVENT;
	}

	is_mt_event = input_is_mt_value(code);

	if (!is_mt_event) {
		pold = &dev->absinfo[code].value;
	} else if (mt) {
		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
	} else {
		/*
		 * Bypass filtering for multi-touch events when
		 * not employing slots.
		 */
		pold = NULL;
	}

	if (pold) {
		*pval = input_defuzz_abs_event(*pval, *pold,
						dev->absinfo[code].fuzz);
		if (*pold == *pval)
			return INPUT_IGNORE_EVENT;

		*pold = *pval;
	}

	/* Flush pending "slot" event */
	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
	}

	return INPUT_PASS_TO_HANDLERS;
}

static int input_get_disposition(struct input_dev *dev,
			  unsigned int type, unsigned int code, int *pval)
{
	int disposition = INPUT_IGNORE_EVENT;
	int value = *pval;

	switch (type) {

	case EV_SYN:
		switch (code) {
		case SYN_CONFIG:
			disposition = INPUT_PASS_TO_ALL;
			break;

		case SYN_REPORT:
			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
			break;
		case SYN_MT_REPORT:
			disposition = INPUT_PASS_TO_HANDLERS;
			break;
		}
		break;

	case EV_KEY:
		if (is_event_supported(code, dev->keybit, KEY_MAX)) {

			/* auto-repeat bypasses state updates */
			if (value == 2) {
				disposition = INPUT_PASS_TO_HANDLERS;
				break;
			}

			if (!!test_bit(code, dev->key) != !!value) {

				__change_bit(code, dev->key);
				disposition = INPUT_PASS_TO_HANDLERS;
			}
		}
		break;

	case EV_SW:
		if (is_event_supported(code, dev->swbit, SW_MAX) &&
		    !!test_bit(code, dev->sw) != !!value) {

			__change_bit(code, dev->sw);
			disposition = INPUT_PASS_TO_HANDLERS;
		}
		break;

	case EV_ABS:
		if (is_event_supported(code, dev->absbit, ABS_MAX))
			disposition = input_handle_abs_event(dev, code, &value);

		break;

	case EV_REL:
		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
			disposition = INPUT_PASS_TO_HANDLERS;

		break;

	case EV_MSC:
		if (is_event_supported(code, dev->mscbit, MSC_MAX))
			disposition = INPUT_PASS_TO_ALL;

		break;

	case EV_LED:
		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
		    !!test_bit(code, dev->led) != !!value) {

			__change_bit(code, dev->led);
			disposition = INPUT_PASS_TO_ALL;
		}
		break;

	case EV_SND:
		if (is_event_supported(code, dev->sndbit, SND_MAX)) {

			if (!!test_bit(code, dev->snd) != !!value)
				__change_bit(code, dev->snd);
			disposition = INPUT_PASS_TO_ALL;
		}
		break;

	case EV_REP:
		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
			dev->rep[code] = value;
			disposition = INPUT_PASS_TO_ALL;
		}
		break;

	case EV_FF:
		if (value >= 0)
			disposition = INPUT_PASS_TO_ALL;
		break;

	case EV_PWR:
		disposition = INPUT_PASS_TO_ALL;
		break;
	}

	*pval = value;
	return disposition;
}

static void input_handle_event(struct input_dev *dev,
			       unsigned int type, unsigned int code, int value)
{
	int disposition;

	disposition = input_get_disposition(dev, type, code, &value);

	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
		dev->event(dev, type, code, value);

	if (!dev->vals)
		return;

	if (disposition & INPUT_PASS_TO_HANDLERS) {
		struct input_value *v;

		if (disposition & INPUT_SLOT) {
			v = &dev->vals[dev->num_vals++];
			v->type = EV_ABS;
			v->code = ABS_MT_SLOT;
			v->value = dev->mt->slot;
		}

		v = &dev->vals[dev->num_vals++];
		v->type = type;
		v->code = code;
		v->value = value;
	}

	if (disposition & INPUT_FLUSH) {
		if (dev->num_vals >= 2)
			input_pass_values(dev, dev->vals, dev->num_vals);
		dev->num_vals = 0;
	} else if (dev->num_vals >= dev->max_vals - 2) {
		dev->vals[dev->num_vals++] = input_value_sync;
		input_pass_values(dev, dev->vals, dev->num_vals);
		dev->num_vals = 0;
	}

}

/**
 * input_event() - report new input event
 * @dev: device that generated the event
 * @type: type of the event
 * @code: event code
 * @value: value of the event
 *
 * This function should be used by drivers implementing various input
 * devices to report input events. See also input_inject_event().
 *
 * NOTE: input_event() may be safely used right after input device was
 * allocated with input_allocate_device(), even before it is registered
 * with input_register_device(), but the event will not reach any of the
 * input handlers. Such early invocation of input_event() may be used
 * to 'seed' initial state of a switch or initial position of absolute
 * axis, etc.
 */
void input_event(struct input_dev *dev,
		 unsigned int type, unsigned int code, int value)
{
	unsigned long flags;

	if (is_event_supported(type, dev->evbit, EV_MAX)) {

		spin_lock_irqsave(&dev->event_lock, flags);
		input_handle_event(dev, type, code, value);
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}
}
EXPORT_SYMBOL(input_event);

/**
 * input_inject_event() - send input event from input handler
 * @handle: input handle to send event through
 * @type: type of the event
 * @code: event code
 * @value: value of the event
 *
 * Similar to input_event() but will ignore event if device is
 * "grabbed" and handle injecting event is not the one that owns
 * the device.
 */
void input_inject_event(struct input_handle *handle,
			unsigned int type, unsigned int code, int value)
{
	struct input_dev *dev = handle->dev;
	struct input_handle *grab;
	unsigned long flags;

	if (is_event_supported(type, dev->evbit, EV_MAX)) {
		spin_lock_irqsave(&dev->event_lock, flags);

		rcu_read_lock();
		grab = rcu_dereference(dev->grab);
		if (!grab || grab == handle)
			input_handle_event(dev, type, code, value);
		rcu_read_unlock();

		spin_unlock_irqrestore(&dev->event_lock, flags);
	}
}
EXPORT_SYMBOL(input_inject_event);

/**
 * input_alloc_absinfo - allocates array of input_absinfo structs
 * @dev: the input device emitting absolute events
 *
 * If the absinfo struct the caller asked for is already allocated, this
 * functions will not do anything.
 */
void input_alloc_absinfo(struct input_dev *dev)
{
	if (!dev->absinfo)
		dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
					GFP_KERNEL);

	WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
}
EXPORT_SYMBOL(input_alloc_absinfo);

void input_set_abs_params(struct input_dev *dev, unsigned int axis,
			  int min, int max, int fuzz, int flat)
{
	struct input_absinfo *absinfo;

	input_alloc_absinfo(dev);
	if (!dev->absinfo)
		return;

	absinfo = &dev->absinfo[axis];
	absinfo->minimum = min;
	absinfo->maximum = max;
	absinfo->fuzz = fuzz;
	absinfo->flat = flat;

	__set_bit(EV_ABS, dev->evbit);
	__set_bit(axis, dev->absbit);
}
EXPORT_SYMBOL(input_set_abs_params);


/**
 * input_grab_device - grabs device for exclusive use
 * @handle: input handle that wants to own the device
 *
 * When a device is grabbed by an input handle all events generated by
 * the device are delivered only to this handle. Also events injected
 * by other input handles are ignored while device is grabbed.
 */
int input_grab_device(struct input_handle *handle)
{
	struct input_dev *dev = handle->dev;
	int retval;

	retval = mutex_lock_interruptible(&dev->mutex);
	if (retval)
		return retval;

	if (dev->grab) {
		retval = -EBUSY;
		goto out;
	}

	rcu_assign_pointer(dev->grab, handle);

 out:
	mutex_unlock(&dev->mutex);
	return retval;
}
EXPORT_SYMBOL(input_grab_device);

static void __input_release_device(struct input_handle *handle)
{
	struct input_dev *dev = handle->dev;
	struct input_handle *grabber;

	grabber = rcu_dereference_protected(dev->grab,
					    lockdep_is_held(&dev->mutex));
	if (grabber == handle) {
		rcu_assign_pointer(dev->grab, NULL);
		/* Make sure input_pass_event() notices that grab is gone */
		synchronize_rcu();

		list_for_each_entry(handle, &dev->h_list, d_node)
			if (handle->open && handle->handler->start)
				handle->handler->start(handle);
	}
}

/**
 * input_release_device - release previously grabbed device
 * @handle: input handle that owns the device
 *
 * Releases previously grabbed device so that other input handles can
 * start receiving input events. Upon release all handlers attached
 * to the device have their start() method called so they have a change
 * to synchronize device state with the rest of the system.
 */
void input_release_device(struct input_handle *handle)
{
	struct input_dev *dev = handle->dev;

	mutex_lock(&dev->mutex);
	__input_release_device(handle);
	mutex_unlock(&dev->mutex);
}
EXPORT_SYMBOL(input_release_device);

/**
 * input_open_device - open input device
 * @handle: handle through which device is being accessed
 *
 * This function should be called by input handlers when they
 * want to start receive events from given input device.
 */
int input_open_device(struct input_handle *handle)
{
	struct input_dev *dev = handle->dev;
	int retval;

	retval = mutex_lock_interruptible(&dev->mutex);
	if (retval)
		return retval;

	if (dev->going_away) {
		retval = -ENODEV;
		goto out;
	}

	handle->open++;

	if (!dev->users++ && dev->open)
		retval = dev->open(dev);

	if (retval) {
		dev->users--;
		if (!--handle->open) {
			/*
			 * Make sure we are not delivering any more events
			 * through this handle
			 */
			synchronize_rcu();
		}
	}

 out:
	mutex_unlock(&dev->mutex);
	return retval;
}
EXPORT_SYMBOL(input_open_device);

int input_flush_device(struct input_handle *handle, struct file *file)
{
	struct input_dev *dev = handle->dev;
	int retval;

	retval = mutex_lock_interruptible(&dev->mutex);
	if (retval)
		return retval;

	if (dev->flush)
		retval = dev->flush(dev, file);

	mutex_unlock(&dev->mutex);
	return retval;
}
EXPORT_SYMBOL(input_flush_device);

/**
 * input_close_device - close input device
 * @handle: handle through which device is being accessed
 *
 * This function should be called by input handlers when they
 * want to stop receive events from given input device.
 */
void input_close_device(struct input_handle *handle)
{
	struct input_dev *dev = handle->dev;

	mutex_lock(&dev->mutex);

	__input_release_device(handle);

	if (!--dev->users && dev->close)
		dev->close(dev);

	if (!--handle->open) {
		/*
		 * synchronize_rcu() makes sure that input_pass_event()
		 * completed and that no more input events are delivered
		 * through this handle
		 */
		synchronize_rcu();
	}

	mutex_unlock(&dev->mutex);
}
EXPORT_SYMBOL(input_close_device);

/*
 * Simulate keyup events for all keys that are marked as pressed.
 * The function must be called with dev->event_lock held.
 */
static void input_dev_release_keys(struct input_dev *dev)
{
	bool need_sync = false;
	int code;

	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
		for_each_set_bit(code, dev->key, KEY_CNT) {
			input_pass_event(dev, EV_KEY, code, 0);
			need_sync = true;
		}

		if (need_sync)
			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);

		memset(dev->key, 0, sizeof(dev->key));
	}
}

/*
 * Prepare device for unregistering
 */
static void input_disconnect_device(struct input_dev *dev)
{
	struct input_handle *handle;

	/*
	 * Mark device as going away. Note that we take dev->mutex here
	 * not to protect access to dev->going_away but rather to ensure
	 * that there are no threads in the middle of input_open_device()
	 */
	mutex_lock(&dev->mutex);
	dev->going_away = true;
	mutex_unlock(&dev->mutex);

	spin_lock_irq(&dev->event_lock);

	/*
	 * Simulate keyup events for all pressed keys so that handlers
	 * are not left with "stuck" keys. The driver may continue
	 * generate events even after we done here but they will not
	 * reach any handlers.
	 */
	input_dev_release_keys(dev);

	list_for_each_entry(handle, &dev->h_list, d_node)
		handle->open = 0;

	spin_unlock_irq(&dev->event_lock);
}

/**
 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
 * @ke: keymap entry containing scancode to be converted.
 * @scancode: pointer to the location where converted scancode should
 *	be stored.
 *
 * This function is used to convert scancode stored in &struct keymap_entry
 * into scalar form understood by legacy keymap handling methods. These
 * methods expect scancodes to be represented as 'unsigned int'.
 */
int input_scancode_to_scalar(const struct input_keymap_entry *ke,
			     unsigned int *scancode)
{
	switch (ke->len) {
	case 1:
		*scancode = *((u8 *)ke->scancode);
		break;

	case 2:
		*scancode = *((u16 *)ke->scancode);
		break;

	case 4:
		*scancode = *((u32 *)ke->scancode);
		break;

	default:
		return -EINVAL;
	}

	return 0;
}
EXPORT_SYMBOL(input_scancode_to_scalar);

/*
 * Those routines handle the default case where no [gs]etkeycode() is
 * defined. In this case, an array indexed by the scancode is used.
 */

static unsigned int input_fetch_keycode(struct input_dev *dev,
					unsigned int index)
{
	switch (dev->keycodesize) {
	case 1:
		return ((u8 *)dev->keycode)[index];

	case 2:
		return ((u16 *)dev->keycode)[index];

	default:
		return ((u32 *)dev->keycode)[index];
	}
}

static int input_default_getkeycode(struct input_dev *dev,
				    struct input_keymap_entry *ke)
{
	unsigned int index;
	int error;

	if (!dev->keycodesize)
		return -EINVAL;

	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
		index = ke->index;
	else {
		error = input_scancode_to_scalar(ke, &index);
		if (error)
			return error;
	}

	if (index >= dev->keycodemax)
		return -EINVAL;

	ke->keycode = input_fetch_keycode(dev, index);
	ke->index = index;
	ke->len = sizeof(index);
	memcpy(ke->scancode, &index, sizeof(index));

	return 0;
}

static int input_default_setkeycode(struct input_dev *dev,
				    const struct input_keymap_entry *ke,
				    unsigned int *old_keycode)
{
	unsigned int index;
	int error;
	int i;

	if (!dev->keycodesize)
		return -EINVAL;

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
	} else {
		error = input_scancode_to_scalar(ke, &index);
		if (error)
			return error;
	}

	if (index >= dev->keycodemax)
		return -EINVAL;

	if (dev->keycodesize < sizeof(ke->keycode) &&
			(ke->keycode >> (dev->keycodesize * 8)))
		return -EINVAL;

	switch (dev->keycodesize) {
		case 1: {
			u8 *k = (u8 *)dev->keycode;
			*old_keycode = k[index];
			k[index] = ke->keycode;
			break;
		}
		case 2: {
			u16 *k = (u16 *)dev->keycode;
			*old_keycode = k[index];
			k[index] = ke->keycode;
			break;
		}
		default: {
			u32 *k = (u32 *)dev->keycode;
			*old_keycode = k[index];
			k[index] = ke->keycode;
			break;
		}
	}

	__clear_bit(*old_keycode, dev->keybit);
	__set_bit(ke->keycode, dev->keybit);

	for (i = 0; i < dev->keycodemax; i++) {
		if (input_fetch_keycode(dev, i) == *old_keycode) {
			__set_bit(*old_keycode, dev->keybit);
			break; /* Setting the bit twice is useless, so break */
		}
	}

	return 0;
}

/**
 * input_get_keycode - retrieve keycode currently mapped to a given scancode
 * @dev: input device which keymap is being queried
 * @ke: keymap entry
 *
 * This function should be called by anyone interested in retrieving current
 * keymap. Presently evdev handlers use it.
 */
int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
{
	unsigned long flags;
	int retval;

	spin_lock_irqsave(&dev->event_lock, flags);
	retval = dev->getkeycode(dev, ke);
	spin_unlock_irqrestore(&dev->event_lock, flags);

	return retval;
}
EXPORT_SYMBOL(input_get_keycode);

/**
 * input_set_keycode - attribute a keycode to a given scancode
 * @dev: input device which keymap is being updated
 * @ke: new keymap entry
 *
 * This function should be called by anyone needing to update current
 * keymap. Presently keyboard and evdev handlers use it.
 */
int input_set_keycode(struct input_dev *dev,
		      const struct input_keymap_entry *ke)
{
	unsigned long flags;
	unsigned int old_keycode;
	int retval;

	if (ke->keycode > KEY_MAX)
		return -EINVAL;

	spin_lock_irqsave(&dev->event_lock, flags);

	retval = dev->setkeycode(dev, ke, &old_keycode);
	if (retval)
		goto out;

	/* Make sure KEY_RESERVED did not get enabled. */
	__clear_bit(KEY_RESERVED, dev->keybit);

	/*
	 * Simulate keyup event if keycode is not present
	 * in the keymap anymore
	 */
	if (test_bit(EV_KEY, dev->evbit) &&
	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
	    __test_and_clear_bit(old_keycode, dev->key)) {
		struct input_value vals[] =  {
			{ EV_KEY, old_keycode, 0 },
			input_value_sync
		};

		input_pass_values(dev, vals, ARRAY_SIZE(vals));
	}

 out:
	spin_unlock_irqrestore(&dev->event_lock, flags);

	return retval;
}
EXPORT_SYMBOL(input_set_keycode);

static const struct input_device_id *input_match_device(struct input_handler *handler,
							struct input_dev *dev)
{
	const struct input_device_id *id;

	for (id = handler->id_table; id->flags || id->driver_info; id++) {

		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
			if (id->bustype != dev->id.bustype)
				continue;

		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
			if (id->vendor != dev->id.vendor)
				continue;

		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
			if (id->product != dev->id.product)
				continue;

		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
			if (id->version != dev->id.version)
				continue;

		if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
			continue;

		if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
			continue;

		if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
			continue;

		if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
			continue;

		if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
			continue;

		if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
			continue;

		if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
			continue;

		if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
			continue;

		if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
			continue;

		if (!handler->match || handler->match(handler, dev))
			return id;
	}

	return NULL;
}

static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
{
	const struct input_device_id *id;
	int error;

	id = input_match_device(handler, dev);
	if (!id)
		return -ENODEV;

	error = handler->connect(handler, dev, id);
	if (error && error != -ENODEV)
		pr_err("failed to attach handler %s to device %s, error: %d\n",
		       handler->name, kobject_name(&dev->dev.kobj), error);

	return error;
}

#ifdef CONFIG_COMPAT

static int input_bits_to_string(char *buf, int buf_size,
				unsigned long bits, bool skip_empty)
{
	int len = 0;

	if (INPUT_COMPAT_TEST) {
		u32 dword = bits >> 32;
		if (dword || !skip_empty)
			len += snprintf(buf, buf_size, "%x ", dword);

		dword = bits & 0xffffffffUL;
		if (dword || !skip_empty || len)
			len += snprintf(buf + len, max(buf_size - len, 0),
					"%x", dword);
	} else {
		if (bits || !skip_empty)
			len += snprintf(buf, buf_size, "%lx", bits);
	}

	return len;
}

#else /* !CONFIG_COMPAT */

static int input_bits_to_string(char *buf, int buf_size,
				unsigned long bits, bool skip_empty)
{
	return bits || !skip_empty ?
		snprintf(buf, buf_size, "%lx", bits) : 0;
}

#endif

#ifdef CONFIG_PROC_FS

static struct proc_dir_entry *proc_bus_input_dir;
static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
static int input_devices_state;

static inline void input_wakeup_procfs_readers(void)
{
	input_devices_state++;
	wake_up(&input_devices_poll_wait);
}

static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
{
	poll_wait(file, &input_devices_poll_wait, wait);
	if (file->f_version != input_devices_state) {
		file->f_version = input_devices_state;
		return POLLIN | POLLRDNORM;
	}

	return 0;
}

union input_seq_state {
	struct {
		unsigned short pos;
		bool mutex_acquired;
	};
	void *p;
};

static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
{
	union input_seq_state *state = (union input_seq_state *)&seq->private;
	int error;

	/* We need to fit into seq->private pointer */
	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));

	error = mutex_lock_interruptible(&input_mutex);
	if (error) {
		state->mutex_acquired = false;
		return ERR_PTR(error);
	}

	state->mutex_acquired = true;

	return seq_list_start(&input_dev_list, *pos);
}

static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	return seq_list_next(v, &input_dev_list, pos);
}

static void input_seq_stop(struct seq_file *seq, void *v)
{
	union input_seq_state *state = (union input_seq_state *)&seq->private;

	if (state->mutex_acquired)
		mutex_unlock(&input_mutex);
}

static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
				   unsigned long *bitmap, int max)
{
	int i;
	bool skip_empty = true;
	char buf[18];

	seq_printf(seq, "B: %s=", name);

	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
		if (input_bits_to_string(buf, sizeof(buf),
					 bitmap[i], skip_empty)) {
			skip_empty = false;
			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
		}
	}

	/*
	 * If no output was produced print a single 0.
	 */
	if (skip_empty)
		seq_puts(seq, "0");

	seq_putc(seq, '\n');
}

static int input_devices_seq_show(struct seq_file *seq, void *v)
{
	struct input_dev *dev = container_of(v, struct input_dev, node);
	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
	struct input_handle *handle;

	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);

	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
	seq_printf(seq, "H: Handlers=");

	list_for_each_entry(handle, &dev->h_list, d_node)
		seq_printf(seq, "%s ", handle->name);
	seq_putc(seq, '\n');

	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);

	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
	if (test_bit(EV_KEY, dev->evbit))
		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
	if (test_bit(EV_REL, dev->evbit))
		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
	if (test_bit(EV_ABS, dev->evbit))
		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
	if (test_bit(EV_MSC, dev->evbit))
		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
	if (test_bit(EV_LED, dev->evbit))
		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
	if (test_bit(EV_SND, dev->evbit))
		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
	if (test_bit(EV_FF, dev->evbit))
		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
	if (test_bit(EV_SW, dev->evbit))
		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);

	seq_putc(seq, '\n');

	kfree(path);
	return 0;
}

static const struct seq_operations input_devices_seq_ops = {
	.start	= input_devices_seq_start,
	.next	= input_devices_seq_next,
	.stop	= input_seq_stop,
	.show	= input_devices_seq_show,
};

static int input_proc_devices_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &input_devices_seq_ops);
}

static const struct file_operations input_devices_fileops = {
	.owner		= THIS_MODULE,
	.open		= input_proc_devices_open,
	.poll		= input_proc_devices_poll,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
{
	union input_seq_state *state = (union input_seq_state *)&seq->private;
	int error;

	/* We need to fit into seq->private pointer */
	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));

	error = mutex_lock_interruptible(&input_mutex);
	if (error) {
		state->mutex_acquired = false;
		return ERR_PTR(error);
	}

	state->mutex_acquired = true;
	state->pos = *pos;

	return seq_list_start(&input_handler_list, *pos);
}

static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	union input_seq_state *state = (union input_seq_state *)&seq->private;

	state->pos = *pos + 1;
	return seq_list_next(v, &input_handler_list, pos);
}

static int input_handlers_seq_show(struct seq_file *seq, void *v)
{
	struct input_handler *handler = container_of(v, struct input_handler, node);
	union input_seq_state *state = (union input_seq_state *)&seq->private;

	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
	if (handler->filter)
		seq_puts(seq, " (filter)");
	if (handler->legacy_minors)
		seq_printf(seq, " Minor=%d", handler->minor);
	seq_putc(seq, '\n');

	return 0;
}

static const struct seq_operations input_handlers_seq_ops = {
	.start	= input_handlers_seq_start,
	.next	= input_handlers_seq_next,
	.stop	= input_seq_stop,
	.show	= input_handlers_seq_show,
};

static int input_proc_handlers_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &input_handlers_seq_ops);
}

static const struct file_operations input_handlers_fileops = {
	.owner		= THIS_MODULE,
	.open		= input_proc_handlers_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init input_proc_init(void)
{
	struct proc_dir_entry *entry;

	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
	if (!proc_bus_input_dir)
		return -ENOMEM;

	entry = proc_create("devices", 0, proc_bus_input_dir,
			    &input_devices_fileops);
	if (!entry)
		goto fail1;

	entry = proc_create("handlers", 0, proc_bus_input_dir,
			    &input_handlers_fileops);
	if (!entry)
		goto fail2;

	return 0;

 fail2:	remove_proc_entry("devices", proc_bus_input_dir);
 fail1: remove_proc_entry("bus/input", NULL);
	return -ENOMEM;
}

static void input_proc_exit(void)
{
	remove_proc_entry("devices", proc_bus_input_dir);
	remove_proc_entry("handlers", proc_bus_input_dir);
	remove_proc_entry("bus/input", NULL);
}

#else /* !CONFIG_PROC_FS */
static inline void input_wakeup_procfs_readers(void) { }
static inline int input_proc_init(void) { return 0; }
static inline void input_proc_exit(void) { }
#endif

#define INPUT_DEV_STRING_ATTR_SHOW(name)				\
static ssize_t input_dev_show_##name(struct device *dev,		\
				     struct device_attribute *attr,	\
				     char *buf)				\
{									\
	struct input_dev *input_dev = to_input_dev(dev);		\
									\
	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
			 input_dev->name ? input_dev->name : "");	\
}									\
static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)

INPUT_DEV_STRING_ATTR_SHOW(name);
INPUT_DEV_STRING_ATTR_SHOW(phys);
INPUT_DEV_STRING_ATTR_SHOW(uniq);

static int input_print_modalias_bits(char *buf, int size,
				     char name, unsigned long *bm,
				     unsigned int min_bit, unsigned int max_bit)
{
	int len = 0, i;

	len += snprintf(buf, max(size, 0), "%c", name);
	for (i = min_bit; i < max_bit; i++)
		if (bm[BIT_WORD(i)] & BIT_MASK(i))
			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
	return len;
}

static int input_print_modalias(char *buf, int size, struct input_dev *id,
				int add_cr)
{
	int len;

	len = snprintf(buf, max(size, 0),
		       "input:b%04Xv%04Xp%04Xe%04X-",
		       id->id.bustype, id->id.vendor,
		       id->id.product, id->id.version);

	len += input_print_modalias_bits(buf + len, size - len,
				'e', id->evbit, 0, EV_MAX);
	len += input_print_modalias_bits(buf + len, size - len,
				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
	len += input_print_modalias_bits(buf + len, size - len,
				'r', id->relbit, 0, REL_MAX);
	len += input_print_modalias_bits(buf + len, size - len,
				'a', id->absbit, 0, ABS_MAX);
	len += input_print_modalias_bits(buf + len, size - len,
				'm', id->mscbit, 0, MSC_MAX);
	len += input_print_modalias_bits(buf + len, size - len,
				'l', id->ledbit, 0, LED_MAX);
	len += input_print_modalias_bits(buf + len, size - len,
				's', id->sndbit, 0, SND_MAX);
	len += input_print_modalias_bits(buf + len, size - len,
				'f', id->ffbit, 0, FF_MAX);
	len += input_print_modalias_bits(buf + len, size - len,
				'w', id->swbit, 0, SW_MAX);

	if (add_cr)
		len += snprintf(buf + len, max(size - len, 0), "\n");

	return len;
}

static ssize_t input_dev_show_modalias(struct device *dev,
				       struct device_attribute *attr,
				       char *buf)
{
	struct input_dev *id = to_input_dev(dev);
	ssize_t len;

	len = input_print_modalias(buf, PAGE_SIZE, id, 1);

	return min_t(int, len, PAGE_SIZE);
}
static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);

static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
			      int max, int add_cr);

static ssize_t input_dev_show_properties(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct input_dev *input_dev = to_input_dev(dev);
	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
				     INPUT_PROP_MAX, true);
	return min_t(int, len, PAGE_SIZE);
}
static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);

static struct attribute *input_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_phys.attr,
	&dev_attr_uniq.attr,
	&dev_attr_modalias.attr,
	&dev_attr_properties.attr,
	NULL
};

static struct attribute_group input_dev_attr_group = {
	.attrs	= input_dev_attrs,
};

#define INPUT_DEV_ID_ATTR(name)						\
static ssize_t input_dev_show_id_##name(struct device *dev,		\
					struct device_attribute *attr,	\
					char *buf)			\
{									\
	struct input_dev *input_dev = to_input_dev(dev);		\
	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
}									\
static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)

INPUT_DEV_ID_ATTR(bustype);
INPUT_DEV_ID_ATTR(vendor);
INPUT_DEV_ID_ATTR(product);
INPUT_DEV_ID_ATTR(version);

static struct attribute *input_dev_id_attrs[] = {
	&dev_attr_bustype.attr,
	&dev_attr_vendor.attr,
	&dev_attr_product.attr,
	&dev_attr_version.attr,
	NULL
};

static struct attribute_group input_dev_id_attr_group = {
	.name	= "id",
	.attrs	= input_dev_id_attrs,
};

static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
			      int max, int add_cr)
{
	int i;
	int len = 0;
	bool skip_empty = true;

	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
					    bitmap[i], skip_empty);
		if (len) {
			skip_empty = false;
			if (i > 0)
				len += snprintf(buf + len, max(buf_size - len, 0), " ");
		}
	}

	/*
	 * If no output was produced print a single 0.
	 */
	if (len == 0)
		len = snprintf(buf, buf_size, "%d", 0);

	if (add_cr)
		len += snprintf(buf + len, max(buf_size - len, 0), "\n");

	return len;
}

#define INPUT_DEV_CAP_ATTR(ev, bm)					\
static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
				       struct device_attribute *attr,	\
				       char *buf)			\
{									\
	struct input_dev *input_dev = to_input_dev(dev);		\
	int len = input_print_bitmap(buf, PAGE_SIZE,			\
				     input_dev->bm##bit, ev##_MAX,	\
				     true);				\
	return min_t(int, len, PAGE_SIZE);				\
}									\
static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)

INPUT_DEV_CAP_ATTR(EV, ev);
INPUT_DEV_CAP_ATTR(KEY, key);
INPUT_DEV_CAP_ATTR(REL, rel);
INPUT_DEV_CAP_ATTR(ABS, abs);
INPUT_DEV_CAP_ATTR(MSC, msc);
INPUT_DEV_CAP_ATTR(LED, led);
INPUT_DEV_CAP_ATTR(SND, snd);
INPUT_DEV_CAP_ATTR(FF, ff);
INPUT_DEV_CAP_ATTR(SW, sw);

static struct attribute *input_dev_caps_attrs[] = {
	&dev_attr_ev.attr,
	&dev_attr_key.attr,
	&dev_attr_rel.attr,
	&dev_attr_abs.attr,
	&dev_attr_msc.attr,
	&dev_attr_led.attr,
	&dev_attr_snd.attr,
	&dev_attr_ff.attr,
	&dev_attr_sw.attr,
	NULL
};

static struct attribute_group input_dev_caps_attr_group = {
	.name	= "capabilities",
	.attrs	= input_dev_caps_attrs,
};

static const struct attribute_group *input_dev_attr_groups[] = {
	&input_dev_attr_group,
	&input_dev_id_attr_group,
	&input_dev_caps_attr_group,
	NULL
};

static void input_dev_release(struct device *device)
{
	struct input_dev *dev = to_input_dev(device);

	input_ff_destroy(dev);
	input_mt_destroy_slots(dev);
	kfree(dev->absinfo);
	kfree(dev->vals);
	kfree(dev);

	module_put(THIS_MODULE);
}

/*
 * Input uevent interface - loading event handlers based on
 * device bitfields.
 */
static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
				   const char *name, unsigned long *bitmap, int max)
{
	int len;

	if (add_uevent_var(env, "%s", name))
		return -ENOMEM;

	len = input_print_bitmap(&env->buf[env->buflen - 1],
				 sizeof(env->buf) - env->buflen,
				 bitmap, max, false);
	if (len >= (sizeof(env->buf) - env->buflen))
		return -ENOMEM;

	env->buflen += len;
	return 0;
}

static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
					 struct input_dev *dev)
{
	int len;

	if (add_uevent_var(env, "MODALIAS="))
		return -ENOMEM;

	len = input_print_modalias(&env->buf[env->buflen - 1],
				   sizeof(env->buf) - env->buflen,
				   dev, 0);
	if (len >= (sizeof(env->buf) - env->buflen))
		return -ENOMEM;

	env->buflen += len;
	return 0;
}

#define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
	do {								\
		int err = add_uevent_var(env, fmt, val);		\
		if (err)						\
			return err;					\
	} while (0)

#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
	do {								\
		int err = input_add_uevent_bm_var(env, name, bm, max);	\
		if (err)						\
			return err;					\
	} while (0)

#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
	do {								\
		int err = input_add_uevent_modalias_var(env, dev);	\
		if (err)						\
			return err;					\
	} while (0)

static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct input_dev *dev = to_input_dev(device);

	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
				dev->id.bustype, dev->id.vendor,
				dev->id.product, dev->id.version);
	if (dev->name)
		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
	if (dev->phys)
		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
	if (dev->uniq)
		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);

	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);

	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
	if (test_bit(EV_KEY, dev->evbit))
		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
	if (test_bit(EV_REL, dev->evbit))
		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
	if (test_bit(EV_ABS, dev->evbit))
		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
	if (test_bit(EV_MSC, dev->evbit))
		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
	if (test_bit(EV_LED, dev->evbit))
		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
	if (test_bit(EV_SND, dev->evbit))
		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
	if (test_bit(EV_FF, dev->evbit))
		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
	if (test_bit(EV_SW, dev->evbit))
		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);

	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);

	return 0;
}

#define INPUT_DO_TOGGLE(dev, type, bits, on)				\
	do {								\
		int i;							\
		bool active;						\
									\
		if (!test_bit(EV_##type, dev->evbit))			\
			break;						\
									\
		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
			active = test_bit(i, dev->bits);		\
			if (!active && !on)				\
				continue;				\
									\
			dev->event(dev, EV_##type, i, on ? active : 0);	\
		}							\
	} while (0)

static void input_dev_toggle(struct input_dev *dev, bool activate)
{
	if (!dev->event)
		return;

	INPUT_DO_TOGGLE(dev, LED, led, activate);
	INPUT_DO_TOGGLE(dev, SND, snd, activate);

	if (activate && test_bit(EV_REP, dev->evbit)) {
		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
	}
}

/**
 * input_reset_device() - reset/restore the state of input device
 * @dev: input device whose state needs to be reset
 *
 * This function tries to reset the state of an opened input device and
 * bring internal state and state if the hardware in sync with each other.
 * We mark all keys as released, restore LED state, repeat rate, etc.
 */
void input_reset_device(struct input_dev *dev)
{
	unsigned long flags;

	mutex_lock(&dev->mutex);
	spin_lock_irqsave(&dev->event_lock, flags);

	input_dev_toggle(dev, true);
	input_dev_release_keys(dev);

	spin_unlock_irqrestore(&dev->event_lock, flags);
	mutex_unlock(&dev->mutex);
}
EXPORT_SYMBOL(input_reset_device);

#ifdef CONFIG_PM_SLEEP
static int input_dev_suspend(struct device *dev)
{
	struct input_dev *input_dev = to_input_dev(dev);

	spin_lock_irq(&input_dev->event_lock);

	/*
	 * Keys that are pressed now are unlikely to be
	 * still pressed when we resume.
	 */
	input_dev_release_keys(input_dev);

	/* Turn off LEDs and sounds, if any are active. */
	input_dev_toggle(input_dev, false);

	spin_unlock_irq(&input_dev->event_lock);

	return 0;
}

static int input_dev_resume(struct device *dev)
{
	struct input_dev *input_dev = to_input_dev(dev);

	spin_lock_irq(&input_dev->event_lock);

	/* Restore state of LEDs and sounds, if any were active. */
	input_dev_toggle(input_dev, true);

	spin_unlock_irq(&input_dev->event_lock);

	return 0;
}

static int input_dev_freeze(struct device *dev)
{
	struct input_dev *input_dev = to_input_dev(dev);

	spin_lock_irq(&input_dev->event_lock);

	/*
	 * Keys that are pressed now are unlikely to be
	 * still pressed when we resume.
	 */
	input_dev_release_keys(input_dev);

	spin_unlock_irq(&input_dev->event_lock);

	return 0;
}

static int input_dev_poweroff(struct device *dev)
{
	struct input_dev *input_dev = to_input_dev(dev);

	spin_lock_irq(&input_dev->event_lock);

	/* Turn off LEDs and sounds, if any are active. */
	input_dev_toggle(input_dev, false);

	spin_unlock_irq(&input_dev->event_lock);

	return 0;
}

static const struct dev_pm_ops input_dev_pm_ops = {
	.suspend	= input_dev_suspend,
	.resume		= input_dev_resume,
	.freeze		= input_dev_freeze,
	.poweroff	= input_dev_poweroff,
	.restore	= input_dev_resume,
};
#endif /* CONFIG_PM */

static struct device_type input_dev_type = {
	.groups		= input_dev_attr_groups,
	.release	= input_dev_release,
	.uevent		= input_dev_uevent,
#ifdef CONFIG_PM_SLEEP
	.pm		= &input_dev_pm_ops,
#endif
};

static char *input_devnode(struct device *dev, umode_t *mode)
{
	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
}

struct class input_class = {
	.name		= "input",
	.devnode	= input_devnode,
};
EXPORT_SYMBOL_GPL(input_class);

/**
 * input_allocate_device - allocate memory for new input device
 *
 * Returns prepared struct input_dev or %NULL.
 *
 * NOTE: Use input_free_device() to free devices that have not been
 * registered; input_unregister_device() should be used for already
 * registered devices.
 */
struct input_dev *input_allocate_device(void)
{
	static atomic_t input_no = ATOMIC_INIT(-1);
	struct input_dev *dev;

	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
	if (dev) {
		dev->dev.type = &input_dev_type;
		dev->dev.class = &input_class;
		device_initialize(&dev->dev);
		mutex_init(&dev->mutex);
		spin_lock_init(&dev->event_lock);
		init_timer(&dev->timer);
		INIT_LIST_HEAD(&dev->h_list);
		INIT_LIST_HEAD(&dev->node);

		dev_set_name(&dev->dev, "input%lu",
			     (unsigned long)atomic_inc_return(&input_no));

		__module_get(THIS_MODULE);
	}

	return dev;
}
EXPORT_SYMBOL(input_allocate_device);

struct input_devres {
	struct input_dev *input;
};

static int devm_input_device_match(struct device *dev, void *res, void *data)
{
	struct input_devres *devres = res;

	return devres->input == data;
}

static void devm_input_device_release(struct device *dev, void *res)
{
	struct input_devres *devres = res;
	struct input_dev *input = devres->input;

	dev_dbg(dev, "%s: dropping reference to %s\n",
		__func__, dev_name(&input->dev));
	input_put_device(input);
}

/**
 * devm_input_allocate_device - allocate managed input device
 * @dev: device owning the input device being created
 *
 * Returns prepared struct input_dev or %NULL.
 *
 * Managed input devices do not need to be explicitly unregistered or
 * freed as it will be done automatically when owner device unbinds from
 * its driver (or binding fails). Once managed input device is allocated,
 * it is ready to be set up and registered in the same fashion as regular
 * input device. There are no special devm_input_device_[un]register()
 * variants, regular ones work with both managed and unmanaged devices,
 * should you need them. In most cases however, managed input device need
 * not be explicitly unregistered or freed.
 *
 * NOTE: the owner device is set up as parent of input device and users
 * should not override it.
 */
struct input_dev *devm_input_allocate_device(struct device *dev)
{
	struct input_dev *input;
	struct input_devres *devres;

	devres = devres_alloc(devm_input_device_release,
			      sizeof(struct input_devres), GFP_KERNEL);
	if (!devres)
		return NULL;

	input = input_allocate_device();
	if (!input) {
		devres_free(devres);
		return NULL;
	}

	input->dev.parent = dev;
	input->devres_managed = true;

	devres->input = input;
	devres_add(dev, devres);

	return input;
}
EXPORT_SYMBOL(devm_input_allocate_device);

/**
 * input_free_device - free memory occupied by input_dev structure
 * @dev: input device to free
 *
 * This function should only be used if input_register_device()
 * was not called yet or if it failed. Once device was registered
 * use input_unregister_device() and memory will be freed once last
 * reference to the device is dropped.
 *
 * Device should be allocated by input_allocate_device().
 *
 * NOTE: If there are references to the input device then memory
 * will not be freed until last reference is dropped.
 */
void input_free_device(struct input_dev *dev)
{
	if (dev) {
		if (dev->devres_managed)
			WARN_ON(devres_destroy(dev->dev.parent,
						devm_input_device_release,
						devm_input_device_match,
						dev));
		input_put_device(dev);
	}
}
EXPORT_SYMBOL(input_free_device);

/**
 * input_set_capability - mark device as capable of a certain event
 * @dev: device that is capable of emitting or accepting event
 * @type: type of the event (EV_KEY, EV_REL, etc...)
 * @code: event code
 *
 * In addition to setting up corresponding bit in appropriate capability
 * bitmap the function also adjusts dev->evbit.
 */
void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
{
	switch (type) {
	case EV_KEY:
		__set_bit(code, dev->keybit);
		break;

	case EV_REL:
		__set_bit(code, dev->relbit);
		break;

	case EV_ABS:
		input_alloc_absinfo(dev);
		if (!dev->absinfo)
			return;

		__set_bit(code, dev->absbit);
		break;

	case EV_MSC:
		__set_bit(code, dev->mscbit);
		break;

	case EV_SW:
		__set_bit(code, dev->swbit);
		break;

	case EV_LED:
		__set_bit(code, dev->ledbit);
		break;

	case EV_SND:
		__set_bit(code, dev->sndbit);
		break;

	case EV_FF:
		__set_bit(code, dev->ffbit);
		break;

	case EV_PWR:
		/* do nothing */
		break;

	default:
		pr_err("input_set_capability: unknown type %u (code %u)\n",
		       type, code);
		dump_stack();
		return;
	}

	__set_bit(type, dev->evbit);
}
EXPORT_SYMBOL(input_set_capability);

static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
{
	int mt_slots;
	int i;
	unsigned int events;

	if (dev->mt) {
		mt_slots = dev->mt->num_slots;
	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
		mt_slots = clamp(mt_slots, 2, 32);
	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
		mt_slots = 2;
	} else {
		mt_slots = 0;
	}

	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */

	if (test_bit(EV_ABS, dev->evbit))
		for_each_set_bit(i, dev->absbit, ABS_CNT)
			events += input_is_mt_axis(i) ? mt_slots : 1;

	if (test_bit(EV_REL, dev->evbit))
		events += bitmap_weight(dev->relbit, REL_CNT);

	/* Make room for KEY and MSC events */
	events += 7;

	return events;
}

#define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
	do {								\
		if (!test_bit(EV_##type, dev->evbit))			\
			memset(dev->bits##bit, 0,			\
				sizeof(dev->bits##bit));		\
	} while (0)

static void input_cleanse_bitmasks(struct input_dev *dev)
{
	INPUT_CLEANSE_BITMASK(dev, KEY, key);
	INPUT_CLEANSE_BITMASK(dev, REL, rel);
	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
	INPUT_CLEANSE_BITMASK(dev, LED, led);
	INPUT_CLEANSE_BITMASK(dev, SND, snd);
	INPUT_CLEANSE_BITMASK(dev, FF, ff);
	INPUT_CLEANSE_BITMASK(dev, SW, sw);
}

static void __input_unregister_device(struct input_dev *dev)
{
	struct input_handle *handle, *next;

	input_disconnect_device(dev);

	mutex_lock(&input_mutex);

	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
		handle->handler->disconnect(handle);
	WARN_ON(!list_empty(&dev->h_list));

	del_timer_sync(&dev->timer);
	list_del_init(&dev->node);

	input_wakeup_procfs_readers();

	mutex_unlock(&input_mutex);

	device_del(&dev->dev);
}

static void devm_input_device_unregister(struct device *dev, void *res)
{
	struct input_devres *devres = res;
	struct input_dev *input = devres->input;

	dev_dbg(dev, "%s: unregistering device %s\n",
		__func__, dev_name(&input->dev));
	__input_unregister_device(input);
}

/**
 * input_enable_softrepeat - enable software autorepeat
 * @dev: input device
 * @delay: repeat delay
 * @period: repeat period
 *
 * Enable software autorepeat on the input device.
 */
void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
{
	dev->timer.data = (unsigned long) dev;
	dev->timer.function = input_repeat_key;
	dev->rep[REP_DELAY] = delay;
	dev->rep[REP_PERIOD] = period;
}
EXPORT_SYMBOL(input_enable_softrepeat);

/**
 * input_register_device - register device with input core
 * @dev: device to be registered
 *
 * This function registers device with input core. The device must be
 * allocated with input_allocate_device() and all it's capabilities
 * set up before registering.
 * If function fails the device must be freed with input_free_device().
 * Once device has been successfully registered it can be unregistered
 * with input_unregister_device(); input_free_device() should not be
 * called in this case.
 *
 * Note that this function is also used to register managed input devices
 * (ones allocated with devm_input_allocate_device()). Such managed input
 * devices need not be explicitly unregistered or freed, their tear down
 * is controlled by the devres infrastructure. It is also worth noting
 * that tear down of managed input devices is internally a 2-step process:
 * registered managed input device is first unregistered, but stays in
 * memory and can still handle input_event() calls (although events will
 * not be delivered anywhere). The freeing of managed input device will
 * happen later, when devres stack is unwound to the point where device
 * allocation was made.
 */
int input_register_device(struct input_dev *dev)
{
	struct input_devres *devres = NULL;
	struct input_handler *handler;
	unsigned int packet_size;
	const char *path;
	int error;

	if (dev->devres_managed) {
		devres = devres_alloc(devm_input_device_unregister,
				      sizeof(struct input_devres), GFP_KERNEL);
		if (!devres)
			return -ENOMEM;

		devres->input = dev;
	}

	/* Every input device generates EV_SYN/SYN_REPORT events. */
	__set_bit(EV_SYN, dev->evbit);

	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
	__clear_bit(KEY_RESERVED, dev->keybit);

	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
	input_cleanse_bitmasks(dev);

	packet_size = input_estimate_events_per_packet(dev);
	if (dev->hint_events_per_packet < packet_size)
		dev->hint_events_per_packet = packet_size;

	dev->max_vals = dev->hint_events_per_packet + 2;
	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
	if (!dev->vals) {
		error = -ENOMEM;
		goto err_devres_free;
	}

	/*
	 * If delay and period are pre-set by the driver, then autorepeating
	 * is handled by the driver itself and we don't do it in input.c.
	 */
	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
		input_enable_softrepeat(dev, 250, 33);

	if (!dev->getkeycode)
		dev->getkeycode = input_default_getkeycode;

	if (!dev->setkeycode)
		dev->setkeycode = input_default_setkeycode;

	error = device_add(&dev->dev);
	if (error)
		goto err_free_vals;

	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
	pr_info("%s as %s\n",
		dev->name ? dev->name : "Unspecified device",
		path ? path : "N/A");
	kfree(path);

	error = mutex_lock_interruptible(&input_mutex);
	if (error)
		goto err_device_del;

	list_add_tail(&dev->node, &input_dev_list);

	list_for_each_entry(handler, &input_handler_list, node)
		input_attach_handler(dev, handler);

	input_wakeup_procfs_readers();

	mutex_unlock(&input_mutex);

	if (dev->devres_managed) {
		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
			__func__, dev_name(&dev->dev));
		devres_add(dev->dev.parent, devres);
	}
	return 0;

err_device_del:
	device_del(&dev->dev);
err_free_vals:
	kfree(dev->vals);
	dev->vals = NULL;
err_devres_free:
	devres_free(devres);
	return error;
}
EXPORT_SYMBOL(input_register_device);

/**
 * input_unregister_device - unregister previously registered device
 * @dev: device to be unregistered
 *
 * This function unregisters an input device. Once device is unregistered
 * the caller should not try to access it as it may get freed at any moment.
 */
void input_unregister_device(struct input_dev *dev)
{
	if (dev->devres_managed) {
		WARN_ON(devres_destroy(dev->dev.parent,
					devm_input_device_unregister,
					devm_input_device_match,
					dev));
		__input_unregister_device(dev);
		/*
		 * We do not do input_put_device() here because it will be done
		 * when 2nd devres fires up.
		 */
	} else {
		__input_unregister_device(dev);
		input_put_device(dev);
	}
}
EXPORT_SYMBOL(input_unregister_device);

/**
 * input_register_handler - register a new input handler
 * @handler: handler to be registered
 *
 * This function registers a new input handler (interface) for input
 * devices in the system and attaches it to all input devices that
 * are compatible with the handler.
 */
int input_register_handler(struct input_handler *handler)
{
	struct input_dev *dev;
	int error;

	error = mutex_lock_interruptible(&input_mutex);
	if (error)
		return error;

	INIT_LIST_HEAD(&handler->h_list);

	list_add_tail(&handler->node, &input_handler_list);

	list_for_each_entry(dev, &input_dev_list, node)
		input_attach_handler(dev, handler);

	input_wakeup_procfs_readers();

	mutex_unlock(&input_mutex);
	return 0;
}
EXPORT_SYMBOL(input_register_handler);

/**
 * input_unregister_handler - unregisters an input handler
 * @handler: handler to be unregistered
 *
 * This function disconnects a handler from its input devices and
 * removes it from lists of known handlers.
 */
void input_unregister_handler(struct input_handler *handler)
{
	struct input_handle *handle, *next;

	mutex_lock(&input_mutex);

	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
		handler->disconnect(handle);
	WARN_ON(!list_empty(&handler->h_list));

	list_del_init(&handler->node);

	input_wakeup_procfs_readers();

	mutex_unlock(&input_mutex);
}
EXPORT_SYMBOL(input_unregister_handler);

/**
 * input_handler_for_each_handle - handle iterator
 * @handler: input handler to iterate
 * @data: data for the callback
 * @fn: function to be called for each handle
 *
 * Iterate over @bus's list of devices, and call @fn for each, passing
 * it @data and stop when @fn returns a non-zero value. The function is
 * using RCU to traverse the list and therefore may be using in atomic
 * contexts. The @fn callback is invoked from RCU critical section and
 * thus must not sleep.
 */
int input_handler_for_each_handle(struct input_handler *handler, void *data,
				  int (*fn)(struct input_handle *, void *))
{
	struct input_handle *handle;
	int retval = 0;

	rcu_read_lock();

	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
		retval = fn(handle, data);
		if (retval)
			break;
	}

	rcu_read_unlock();

	return retval;
}
EXPORT_SYMBOL(input_handler_for_each_handle);

/**
 * input_register_handle - register a new input handle
 * @handle: handle to register
 *
 * This function puts a new input handle onto device's
 * and handler's lists so that events can flow through
 * it once it is opened using input_open_device().
 *
 * This function is supposed to be called from handler's
 * connect() method.
 */
int input_register_handle(struct input_handle *handle)
{
	struct input_handler *handler = handle->handler;
	struct input_dev *dev = handle->dev;
	int error;

	/*
	 * We take dev->mutex here to prevent race with
	 * input_release_device().
	 */
	error = mutex_lock_interruptible(&dev->mutex);
	if (error)
		return error;

	/*
	 * Filters go to the head of the list, normal handlers
	 * to the tail.
	 */
	if (handler->filter)
		list_add_rcu(&handle->d_node, &dev->h_list);
	else
		list_add_tail_rcu(&handle->d_node, &dev->h_list);

	mutex_unlock(&dev->mutex);

	/*
	 * Since we are supposed to be called from ->connect()
	 * which is mutually exclusive with ->disconnect()
	 * we can't be racing with input_unregister_handle()
	 * and so separate lock is not needed here.
	 */
	list_add_tail_rcu(&handle->h_node, &handler->h_list);

	if (handler->start)
		handler->start(handle);

	return 0;
}
EXPORT_SYMBOL(input_register_handle);

/**
 * input_unregister_handle - unregister an input handle
 * @handle: handle to unregister
 *
 * This function removes input handle from device's
 * and handler's lists.
 *
 * This function is supposed to be called from handler's
 * disconnect() method.
 */
void input_unregister_handle(struct input_handle *handle)
{
	struct input_dev *dev = handle->dev;

	list_del_rcu(&handle->h_node);

	/*
	 * Take dev->mutex to prevent race with input_release_device().
	 */
	mutex_lock(&dev->mutex);
	list_del_rcu(&handle->d_node);
	mutex_unlock(&dev->mutex);

	synchronize_rcu();
}
EXPORT_SYMBOL(input_unregister_handle);

/**
 * input_get_new_minor - allocates a new input minor number
 * @legacy_base: beginning or the legacy range to be searched
 * @legacy_num: size of legacy range
 * @allow_dynamic: whether we can also take ID from the dynamic range
 *
 * This function allocates a new device minor for from input major namespace.
 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
 * parameters and whether ID can be allocated from dynamic range if there are
 * no free IDs in legacy range.
 */
int input_get_new_minor(int legacy_base, unsigned int legacy_num,
			bool allow_dynamic)
{
	/*
	 * This function should be called from input handler's ->connect()
	 * methods, which are serialized with input_mutex, so no additional
	 * locking is needed here.
	 */
	if (legacy_base >= 0) {
		int minor = ida_simple_get(&input_ida,
					   legacy_base,
					   legacy_base + legacy_num,
					   GFP_KERNEL);
		if (minor >= 0 || !allow_dynamic)
			return minor;
	}

	return ida_simple_get(&input_ida,
			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
			      GFP_KERNEL);
}
EXPORT_SYMBOL(input_get_new_minor);

/**
 * input_free_minor - release previously allocated minor
 * @minor: minor to be released
 *
 * This function releases previously allocated input minor so that it can be
 * reused later.
 */
void input_free_minor(unsigned int minor)
{
	ida_simple_remove(&input_ida, minor);
}
EXPORT_SYMBOL(input_free_minor);

static int __init input_init(void)
{
	int err;

	err = class_register(&input_class);
	if (err) {
		pr_err("unable to register input_dev class\n");
		return err;
	}

	err = input_proc_init();
	if (err)
		goto fail1;

	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
				     INPUT_MAX_CHAR_DEVICES, "input");
	if (err) {
		pr_err("unable to register char major %d", INPUT_MAJOR);
		goto fail2;
	}

	return 0;

 fail2:	input_proc_exit();
 fail1:	class_unregister(&input_class);
	return err;
}

static void __exit input_exit(void)
{
	input_proc_exit();
	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
				 INPUT_MAX_CHAR_DEVICES);
	class_unregister(&input_class);
}

subsys_initcall(input_init);
module_exit(input_exit);