adc128d818.c 14 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
/*
 * Driver for TI ADC128D818 System Monitor with Temperature Sensor
 *
 * Copyright (c) 2014 Guenter Roeck
 *
 * Derived from lm80.c
 * Copyright (C) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
 *			     and Philip Edelbrock <phil@netroedge.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/regulator/consumer.h>
#include <linux/mutex.h>
#include <linux/bitops.h>

/* Addresses to scan
 * The chip also supports addresses 0x35..0x37. Don't scan those addresses
 * since they are also used by some EEPROMs, which may result in false
 * positives.
 */
static const unsigned short normal_i2c[] = {
	0x1d, 0x1e, 0x1f, 0x2d, 0x2e, 0x2f, I2C_CLIENT_END };

/* registers */
#define ADC128_REG_IN_MAX(nr)		(0x2a + (nr) * 2)
#define ADC128_REG_IN_MIN(nr)		(0x2b + (nr) * 2)
#define ADC128_REG_IN(nr)		(0x20 + (nr))

#define ADC128_REG_TEMP			0x27
#define ADC128_REG_TEMP_MAX		0x38
#define ADC128_REG_TEMP_HYST		0x39

#define ADC128_REG_CONFIG		0x00
#define ADC128_REG_ALARM		0x01
#define ADC128_REG_MASK			0x03
#define ADC128_REG_CONV_RATE		0x07
#define ADC128_REG_ONESHOT		0x09
#define ADC128_REG_SHUTDOWN		0x0a
#define ADC128_REG_CONFIG_ADV		0x0b
#define ADC128_REG_BUSY_STATUS		0x0c

#define ADC128_REG_MAN_ID		0x3e
#define ADC128_REG_DEV_ID		0x3f

struct adc128_data {
	struct i2c_client *client;
	struct regulator *regulator;
	int vref;		/* Reference voltage in mV */
	struct mutex update_lock;
	bool valid;		/* true if following fields are valid */
	unsigned long last_updated;	/* In jiffies */

	u16 in[3][7];		/* Register value, normalized to 12 bit
				 * 0: input voltage
				 * 1: min limit
				 * 2: max limit
				 */
	s16 temp[3];		/* Register value, normalized to 9 bit
				 * 0: sensor 1: limit 2: hyst
				 */
	u8 alarms;		/* alarm register value */
};

static struct adc128_data *adc128_update_device(struct device *dev)
{
	struct adc128_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	struct adc128_data *ret = data;
	int i, rv;

	mutex_lock(&data->update_lock);

	if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
		for (i = 0; i < 7; i++) {
			rv = i2c_smbus_read_word_swapped(client,
							 ADC128_REG_IN(i));
			if (rv < 0)
				goto abort;
			data->in[0][i] = rv >> 4;

			rv = i2c_smbus_read_byte_data(client,
						      ADC128_REG_IN_MIN(i));
			if (rv < 0)
				goto abort;
			data->in[1][i] = rv << 4;

			rv = i2c_smbus_read_byte_data(client,
						      ADC128_REG_IN_MAX(i));
			if (rv < 0)
				goto abort;
			data->in[2][i] = rv << 4;
		}

		rv = i2c_smbus_read_word_swapped(client, ADC128_REG_TEMP);
		if (rv < 0)
			goto abort;
		data->temp[0] = rv >> 7;

		rv = i2c_smbus_read_byte_data(client, ADC128_REG_TEMP_MAX);
		if (rv < 0)
			goto abort;
		data->temp[1] = rv << 1;

		rv = i2c_smbus_read_byte_data(client, ADC128_REG_TEMP_HYST);
		if (rv < 0)
			goto abort;
		data->temp[2] = rv << 1;

		rv = i2c_smbus_read_byte_data(client, ADC128_REG_ALARM);
		if (rv < 0)
			goto abort;
		data->alarms |= rv;

		data->last_updated = jiffies;
		data->valid = true;
	}
	goto done;

abort:
	ret = ERR_PTR(rv);
	data->valid = false;
done:
	mutex_unlock(&data->update_lock);
	return ret;
}

static ssize_t adc128_show_in(struct device *dev, struct device_attribute *attr,
			      char *buf)
{
	struct adc128_data *data = adc128_update_device(dev);
	int index = to_sensor_dev_attr_2(attr)->index;
	int nr = to_sensor_dev_attr_2(attr)->nr;
	int val;

	if (IS_ERR(data))
		return PTR_ERR(data);

	val = DIV_ROUND_CLOSEST(data->in[index][nr] * data->vref, 4095);
	return sprintf(buf, "%d\n", val);
}

static ssize_t adc128_set_in(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct adc128_data *data = dev_get_drvdata(dev);
	int index = to_sensor_dev_attr_2(attr)->index;
	int nr = to_sensor_dev_attr_2(attr)->nr;
	u8 reg, regval;
	long val;
	int err;

	err = kstrtol(buf, 10, &val);
	if (err < 0)
		return err;

	mutex_lock(&data->update_lock);
	/* 10 mV LSB on limit registers */
	regval = clamp_val(DIV_ROUND_CLOSEST(val, 10), 0, 255);
	data->in[index][nr] = regval << 4;
	reg = index == 1 ? ADC128_REG_IN_MIN(nr) : ADC128_REG_IN_MAX(nr);
	i2c_smbus_write_byte_data(data->client, reg, regval);
	mutex_unlock(&data->update_lock);

	return count;
}

static ssize_t adc128_show_temp(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct adc128_data *data = adc128_update_device(dev);
	int index = to_sensor_dev_attr(attr)->index;
	int temp;

	if (IS_ERR(data))
		return PTR_ERR(data);

	temp = sign_extend32(data->temp[index], 8);
	return sprintf(buf, "%d\n", temp * 500);/* 0.5 degrees C resolution */
}

static ssize_t adc128_set_temp(struct device *dev,
			       struct device_attribute *attr,
			       const char *buf, size_t count)
{
	struct adc128_data *data = dev_get_drvdata(dev);
	int index = to_sensor_dev_attr(attr)->index;
	long val;
	int err;
	s8 regval;

	err = kstrtol(buf, 10, &val);
	if (err < 0)
		return err;

	mutex_lock(&data->update_lock);
	regval = clamp_val(DIV_ROUND_CLOSEST(val, 1000), -128, 127);
	data->temp[index] = regval << 1;
	i2c_smbus_write_byte_data(data->client,
				  index == 1 ? ADC128_REG_TEMP_MAX
					     : ADC128_REG_TEMP_HYST,
				  regval);
	mutex_unlock(&data->update_lock);

	return count;
}

static ssize_t adc128_show_alarm(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	struct adc128_data *data = adc128_update_device(dev);
	int mask = 1 << to_sensor_dev_attr(attr)->index;
	u8 alarms;

	if (IS_ERR(data))
		return PTR_ERR(data);

	/*
	 * Clear an alarm after reporting it to user space. If it is still
	 * active, the next update sequence will set the alarm bit again.
	 */
	alarms = data->alarms;
	data->alarms &= ~mask;

	return sprintf(buf, "%u\n", !!(alarms & mask));
}

static SENSOR_DEVICE_ATTR_2(in0_input, S_IRUGO,
			    adc128_show_in, NULL, 0, 0);
static SENSOR_DEVICE_ATTR_2(in0_min, S_IWUSR | S_IRUGO,
			    adc128_show_in, adc128_set_in, 0, 1);
static SENSOR_DEVICE_ATTR_2(in0_max, S_IWUSR | S_IRUGO,
			    adc128_show_in, adc128_set_in, 0, 2);

static SENSOR_DEVICE_ATTR_2(in1_input, S_IRUGO,
			    adc128_show_in, NULL, 1, 0);
static SENSOR_DEVICE_ATTR_2(in1_min, S_IWUSR | S_IRUGO,
			    adc128_show_in, adc128_set_in, 1, 1);
static SENSOR_DEVICE_ATTR_2(in1_max, S_IWUSR | S_IRUGO,
			    adc128_show_in, adc128_set_in, 1, 2);

static SENSOR_DEVICE_ATTR_2(in2_input, S_IRUGO,
			    adc128_show_in, NULL, 2, 0);
static SENSOR_DEVICE_ATTR_2(in2_min, S_IWUSR | S_IRUGO,
			    adc128_show_in, adc128_set_in, 2, 1);
static SENSOR_DEVICE_ATTR_2(in2_max, S_IWUSR | S_IRUGO,
			    adc128_show_in, adc128_set_in, 2, 2);

static SENSOR_DEVICE_ATTR_2(in3_input, S_IRUGO,
			    adc128_show_in, NULL, 3, 0);
static SENSOR_DEVICE_ATTR_2(in3_min, S_IWUSR | S_IRUGO,
			    adc128_show_in, adc128_set_in, 3, 1);
static SENSOR_DEVICE_ATTR_2(in3_max, S_IWUSR | S_IRUGO,
			    adc128_show_in, adc128_set_in, 3, 2);

static SENSOR_DEVICE_ATTR_2(in4_input, S_IRUGO,
			    adc128_show_in, NULL, 4, 0);
static SENSOR_DEVICE_ATTR_2(in4_min, S_IWUSR | S_IRUGO,
			    adc128_show_in, adc128_set_in, 4, 1);
static SENSOR_DEVICE_ATTR_2(in4_max, S_IWUSR | S_IRUGO,
			    adc128_show_in, adc128_set_in, 4, 2);

static SENSOR_DEVICE_ATTR_2(in5_input, S_IRUGO,
			    adc128_show_in, NULL, 5, 0);
static SENSOR_DEVICE_ATTR_2(in5_min, S_IWUSR | S_IRUGO,
			    adc128_show_in, adc128_set_in, 5, 1);
static SENSOR_DEVICE_ATTR_2(in5_max, S_IWUSR | S_IRUGO,
			    adc128_show_in, adc128_set_in, 5, 2);

static SENSOR_DEVICE_ATTR_2(in6_input, S_IRUGO,
			    adc128_show_in, NULL, 6, 0);
static SENSOR_DEVICE_ATTR_2(in6_min, S_IWUSR | S_IRUGO,
			    adc128_show_in, adc128_set_in, 6, 1);
static SENSOR_DEVICE_ATTR_2(in6_max, S_IWUSR | S_IRUGO,
			    adc128_show_in, adc128_set_in, 6, 2);

static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, adc128_show_temp, NULL, 0);
static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO,
			  adc128_show_temp, adc128_set_temp, 1);
static SENSOR_DEVICE_ATTR(temp1_max_hyst, S_IWUSR | S_IRUGO,
			  adc128_show_temp, adc128_set_temp, 2);

static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, adc128_show_alarm, NULL, 0);
static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, adc128_show_alarm, NULL, 1);
static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, adc128_show_alarm, NULL, 2);
static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, adc128_show_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, adc128_show_alarm, NULL, 4);
static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, adc128_show_alarm, NULL, 5);
static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, adc128_show_alarm, NULL, 6);
static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, adc128_show_alarm, NULL, 7);

static struct attribute *adc128_attrs[] = {
	&sensor_dev_attr_in0_min.dev_attr.attr,
	&sensor_dev_attr_in1_min.dev_attr.attr,
	&sensor_dev_attr_in2_min.dev_attr.attr,
	&sensor_dev_attr_in3_min.dev_attr.attr,
	&sensor_dev_attr_in4_min.dev_attr.attr,
	&sensor_dev_attr_in5_min.dev_attr.attr,
	&sensor_dev_attr_in6_min.dev_attr.attr,
	&sensor_dev_attr_in0_max.dev_attr.attr,
	&sensor_dev_attr_in1_max.dev_attr.attr,
	&sensor_dev_attr_in2_max.dev_attr.attr,
	&sensor_dev_attr_in3_max.dev_attr.attr,
	&sensor_dev_attr_in4_max.dev_attr.attr,
	&sensor_dev_attr_in5_max.dev_attr.attr,
	&sensor_dev_attr_in6_max.dev_attr.attr,
	&sensor_dev_attr_in0_input.dev_attr.attr,
	&sensor_dev_attr_in1_input.dev_attr.attr,
	&sensor_dev_attr_in2_input.dev_attr.attr,
	&sensor_dev_attr_in3_input.dev_attr.attr,
	&sensor_dev_attr_in4_input.dev_attr.attr,
	&sensor_dev_attr_in5_input.dev_attr.attr,
	&sensor_dev_attr_in6_input.dev_attr.attr,
	&sensor_dev_attr_temp1_input.dev_attr.attr,
	&sensor_dev_attr_temp1_max.dev_attr.attr,
	&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
	&sensor_dev_attr_in0_alarm.dev_attr.attr,
	&sensor_dev_attr_in1_alarm.dev_attr.attr,
	&sensor_dev_attr_in2_alarm.dev_attr.attr,
	&sensor_dev_attr_in3_alarm.dev_attr.attr,
	&sensor_dev_attr_in4_alarm.dev_attr.attr,
	&sensor_dev_attr_in5_alarm.dev_attr.attr,
	&sensor_dev_attr_in6_alarm.dev_attr.attr,
	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
	NULL
};
ATTRIBUTE_GROUPS(adc128);

static int adc128_detect(struct i2c_client *client, struct i2c_board_info *info)
{
	int man_id, dev_id;

	if (!i2c_check_functionality(client->adapter,
				     I2C_FUNC_SMBUS_BYTE_DATA |
				     I2C_FUNC_SMBUS_WORD_DATA))
		return -ENODEV;

	man_id = i2c_smbus_read_byte_data(client, ADC128_REG_MAN_ID);
	dev_id = i2c_smbus_read_byte_data(client, ADC128_REG_DEV_ID);
	if (man_id != 0x01 || dev_id != 0x09)
		return -ENODEV;

	/* Check unused bits for confirmation */
	if (i2c_smbus_read_byte_data(client, ADC128_REG_CONFIG) & 0xf4)
		return -ENODEV;
	if (i2c_smbus_read_byte_data(client, ADC128_REG_CONV_RATE) & 0xfe)
		return -ENODEV;
	if (i2c_smbus_read_byte_data(client, ADC128_REG_ONESHOT) & 0xfe)
		return -ENODEV;
	if (i2c_smbus_read_byte_data(client, ADC128_REG_SHUTDOWN) & 0xfe)
		return -ENODEV;
	if (i2c_smbus_read_byte_data(client, ADC128_REG_CONFIG_ADV) & 0xf8)
		return -ENODEV;
	if (i2c_smbus_read_byte_data(client, ADC128_REG_BUSY_STATUS) & 0xfc)
		return -ENODEV;

	strlcpy(info->type, "adc128d818", I2C_NAME_SIZE);

	return 0;
}

static int adc128_init_client(struct adc128_data *data)
{
	struct i2c_client *client = data->client;
	int err;

	/*
	 * Reset chip to defaults.
	 * This makes most other initializations unnecessary.
	 */
	err = i2c_smbus_write_byte_data(client, ADC128_REG_CONFIG, 0x80);
	if (err)
		return err;

	/* Start monitoring */
	err = i2c_smbus_write_byte_data(client, ADC128_REG_CONFIG, 0x01);
	if (err)
		return err;

	/* If external vref is selected, configure the chip to use it */
	if (data->regulator) {
		err = i2c_smbus_write_byte_data(client,
						ADC128_REG_CONFIG_ADV, 0x01);
		if (err)
			return err;
	}

	return 0;
}

static int adc128_probe(struct i2c_client *client,
			const struct i2c_device_id *id)
{
	struct device *dev = &client->dev;
	struct regulator *regulator;
	struct device *hwmon_dev;
	struct adc128_data *data;
	int err, vref;

	data = devm_kzalloc(dev, sizeof(struct adc128_data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	/* vref is optional. If specified, is used as chip reference voltage */
	regulator = devm_regulator_get_optional(dev, "vref");
	if (!IS_ERR(regulator)) {
		data->regulator = regulator;
		err = regulator_enable(regulator);
		if (err < 0)
			return err;
		vref = regulator_get_voltage(regulator);
		if (vref < 0) {
			err = vref;
			goto error;
		}
		data->vref = DIV_ROUND_CLOSEST(vref, 1000);
	} else {
		data->vref = 2560;	/* 2.56V, in mV */
	}

	data->client = client;
	i2c_set_clientdata(client, data);
	mutex_init(&data->update_lock);

	/* Initialize the chip */
	err = adc128_init_client(data);
	if (err < 0)
		goto error;

	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
							   data, adc128_groups);
	if (IS_ERR(hwmon_dev)) {
		err = PTR_ERR(hwmon_dev);
		goto error;
	}

	return 0;

error:
	if (data->regulator)
		regulator_disable(data->regulator);
	return err;
}

static int adc128_remove(struct i2c_client *client)
{
	struct adc128_data *data = i2c_get_clientdata(client);

	if (data->regulator)
		regulator_disable(data->regulator);

	return 0;
}

static const struct i2c_device_id adc128_id[] = {
	{ "adc128d818", 0 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, adc128_id);

static struct i2c_driver adc128_driver = {
	.class		= I2C_CLASS_HWMON,
	.driver = {
		.name	= "adc128d818",
	},
	.probe		= adc128_probe,
	.remove		= adc128_remove,
	.id_table	= adc128_id,
	.detect		= adc128_detect,
	.address_list	= normal_i2c,
};

module_i2c_driver(adc128_driver);

MODULE_AUTHOR("Guenter Roeck");
MODULE_DESCRIPTION("Driver for ADC128D818");
MODULE_LICENSE("GPL");