cdv_intel_dp.c 56.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <drm/drmP.h>
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
#include "psb_drv.h"
#include "psb_intel_drv.h"
#include "psb_intel_reg.h"
#include "gma_display.h"
#include <drm/drm_dp_helper.h>

/**
 * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
 * 				 aux algorithm
 * @running: set by the algo indicating whether an i2c is ongoing or whether
 * 	     the i2c bus is quiescent
 * @address: i2c target address for the currently ongoing transfer
 * @aux_ch: driver callback to transfer a single byte of the i2c payload
 */
struct i2c_algo_dp_aux_data {
	bool running;
	u16 address;
	int (*aux_ch) (struct i2c_adapter *adapter,
		       int mode, uint8_t write_byte,
		       uint8_t *read_byte);
};

/* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
static int
i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
			    uint8_t write_byte, uint8_t *read_byte)
{
	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
	int ret;

	ret = (*algo_data->aux_ch)(adapter, mode,
				   write_byte, read_byte);
	return ret;
}

/*
 * I2C over AUX CH
 */

/*
 * Send the address. If the I2C link is running, this 'restarts'
 * the connection with the new address, this is used for doing
 * a write followed by a read (as needed for DDC)
 */
static int
i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
{
	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
	int mode = MODE_I2C_START;
	int ret;

	if (reading)
		mode |= MODE_I2C_READ;
	else
		mode |= MODE_I2C_WRITE;
	algo_data->address = address;
	algo_data->running = true;
	ret = i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
	return ret;
}

/*
 * Stop the I2C transaction. This closes out the link, sending
 * a bare address packet with the MOT bit turned off
 */
static void
i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
{
	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
	int mode = MODE_I2C_STOP;

	if (reading)
		mode |= MODE_I2C_READ;
	else
		mode |= MODE_I2C_WRITE;
	if (algo_data->running) {
		(void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
		algo_data->running = false;
	}
}

/*
 * Write a single byte to the current I2C address, the
 * the I2C link must be running or this returns -EIO
 */
static int
i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
{
	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
	int ret;

	if (!algo_data->running)
		return -EIO;

	ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
	return ret;
}

/*
 * Read a single byte from the current I2C address, the
 * I2C link must be running or this returns -EIO
 */
static int
i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
{
	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
	int ret;

	if (!algo_data->running)
		return -EIO;

	ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
	return ret;
}

static int
i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
		     struct i2c_msg *msgs,
		     int num)
{
	int ret = 0;
	bool reading = false;
	int m;
	int b;

	for (m = 0; m < num; m++) {
		u16 len = msgs[m].len;
		u8 *buf = msgs[m].buf;
		reading = (msgs[m].flags & I2C_M_RD) != 0;
		ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
		if (ret < 0)
			break;
		if (reading) {
			for (b = 0; b < len; b++) {
				ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
				if (ret < 0)
					break;
			}
		} else {
			for (b = 0; b < len; b++) {
				ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
				if (ret < 0)
					break;
			}
		}
		if (ret < 0)
			break;
	}
	if (ret >= 0)
		ret = num;
	i2c_algo_dp_aux_stop(adapter, reading);
	DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
	return ret;
}

static u32
i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
	       I2C_FUNC_10BIT_ADDR;
}

static const struct i2c_algorithm i2c_dp_aux_algo = {
	.master_xfer	= i2c_algo_dp_aux_xfer,
	.functionality	= i2c_algo_dp_aux_functionality,
};

static void
i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
{
	(void) i2c_algo_dp_aux_address(adapter, 0, false);
	(void) i2c_algo_dp_aux_stop(adapter, false);
}

static int
i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
{
	adapter->algo = &i2c_dp_aux_algo;
	adapter->retries = 3;
	i2c_dp_aux_reset_bus(adapter);
	return 0;
}

/*
 * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
 * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
 */
static int
i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
{
	int error;

	error = i2c_dp_aux_prepare_bus(adapter);
	if (error)
		return error;
	error = i2c_add_adapter(adapter);
	return error;
}

#define _wait_for(COND, MS, W) ({ \
        unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
        int ret__ = 0;                                                  \
        while (! (COND)) {                                              \
                if (time_after(jiffies, timeout__)) {                   \
                        ret__ = -ETIMEDOUT;                             \
                        break;                                          \
                }                                                       \
                if (W && !in_dbg_master()) msleep(W);                   \
        }                                                               \
        ret__;                                                          \
})      

#define wait_for(COND, MS) _wait_for(COND, MS, 1)

#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)

#define DP_LINK_CONFIGURATION_SIZE	9

#define CDV_FAST_LINK_TRAIN	1

struct cdv_intel_dp {
	uint32_t output_reg;
	uint32_t DP;
	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
	bool has_audio;
	int force_audio;
	uint32_t color_range;
	uint8_t link_bw;
	uint8_t lane_count;
	uint8_t dpcd[4];
	struct gma_encoder *encoder;
	struct i2c_adapter adapter;
	struct i2c_algo_dp_aux_data algo;
	uint8_t	train_set[4];
	uint8_t link_status[DP_LINK_STATUS_SIZE];
	int panel_power_up_delay;
	int panel_power_down_delay;
	int panel_power_cycle_delay;
	int backlight_on_delay;
	int backlight_off_delay;
	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
	bool panel_on;
};

struct ddi_regoff {
	uint32_t	PreEmph1;
	uint32_t	PreEmph2;
	uint32_t	VSwing1;
	uint32_t	VSwing2;
	uint32_t	VSwing3;
	uint32_t	VSwing4;
	uint32_t	VSwing5;
};

static struct ddi_regoff ddi_DP_train_table[] = {
	{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
	.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
	.VSwing5 = 0x8158,},
	{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
	.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
	.VSwing5 = 0x8258,},
};

static uint32_t dp_vswing_premph_table[] = {
        0x55338954,	0x4000,
        0x554d8954,	0x2000,
        0x55668954,	0,
        0x559ac0d4,	0x6000,
};
/**
 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
static bool is_edp(struct gma_encoder *encoder)
{
	return encoder->type == INTEL_OUTPUT_EDP;
}


static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
static void cdv_intel_dp_link_down(struct gma_encoder *encoder);

static int
cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
{
	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
	int max_lane_count = 4;

	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
		switch (max_lane_count) {
		case 1: case 2: case 4:
			break;
		default:
			max_lane_count = 4;
		}
	}
	return max_lane_count;
}

static int
cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
{
	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];

	switch (max_link_bw) {
	case DP_LINK_BW_1_62:
	case DP_LINK_BW_2_7:
		break;
	default:
		max_link_bw = DP_LINK_BW_1_62;
		break;
	}
	return max_link_bw;
}

static int
cdv_intel_dp_link_clock(uint8_t link_bw)
{
	if (link_bw == DP_LINK_BW_2_7)
		return 270000;
	else
		return 162000;
}

static int
cdv_intel_dp_link_required(int pixel_clock, int bpp)
{
	return (pixel_clock * bpp + 7) / 8;
}

static int
cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
	return (max_link_clock * max_lanes * 19) / 20;
}

static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
{
	struct drm_device *dev = intel_encoder->base.dev;
	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
	u32 pp;

	if (intel_dp->panel_on) {
		DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
		return;
	}	
	DRM_DEBUG_KMS("\n");

	pp = REG_READ(PP_CONTROL);

	pp |= EDP_FORCE_VDD;
	REG_WRITE(PP_CONTROL, pp);
	REG_READ(PP_CONTROL);
	msleep(intel_dp->panel_power_up_delay);
}

static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
{
	struct drm_device *dev = intel_encoder->base.dev;
	u32 pp;

	DRM_DEBUG_KMS("\n");
	pp = REG_READ(PP_CONTROL);

	pp &= ~EDP_FORCE_VDD;
	REG_WRITE(PP_CONTROL, pp);
	REG_READ(PP_CONTROL);

}

/* Returns true if the panel was already on when called */
static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
{
	struct drm_device *dev = intel_encoder->base.dev;
	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;

	if (intel_dp->panel_on)
		return true;

	DRM_DEBUG_KMS("\n");
	pp = REG_READ(PP_CONTROL);
	pp &= ~PANEL_UNLOCK_MASK;

	pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
	REG_WRITE(PP_CONTROL, pp);
	REG_READ(PP_CONTROL);

	if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
		DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
		intel_dp->panel_on = false;
	} else
		intel_dp->panel_on = true;	
	msleep(intel_dp->panel_power_up_delay);

	return false;
}

static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
{
	struct drm_device *dev = intel_encoder->base.dev;
	u32 pp, idle_off_mask = PP_ON ;
	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;

	DRM_DEBUG_KMS("\n");

	pp = REG_READ(PP_CONTROL);

	if ((pp & POWER_TARGET_ON) == 0) 
		return;

	intel_dp->panel_on = false;
	pp &= ~PANEL_UNLOCK_MASK;
	/* ILK workaround: disable reset around power sequence */

	pp &= ~POWER_TARGET_ON;
	pp &= ~EDP_FORCE_VDD;
	pp &= ~EDP_BLC_ENABLE;
	REG_WRITE(PP_CONTROL, pp);
	REG_READ(PP_CONTROL);
	DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));

	if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
		DRM_DEBUG_KMS("Error in turning off Panel\n");	
	}

	msleep(intel_dp->panel_power_cycle_delay);
	DRM_DEBUG_KMS("Over\n");
}

static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
{
	struct drm_device *dev = intel_encoder->base.dev;
	u32 pp;

	DRM_DEBUG_KMS("\n");
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
	msleep(300);
	pp = REG_READ(PP_CONTROL);

	pp |= EDP_BLC_ENABLE;
	REG_WRITE(PP_CONTROL, pp);
	gma_backlight_enable(dev);
}

static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
{
	struct drm_device *dev = intel_encoder->base.dev;
	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
	u32 pp;

	DRM_DEBUG_KMS("\n");
	gma_backlight_disable(dev);
	msleep(10);
	pp = REG_READ(PP_CONTROL);

	pp &= ~EDP_BLC_ENABLE;
	REG_WRITE(PP_CONTROL, pp);
	msleep(intel_dp->backlight_off_delay);
}

static int
cdv_intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
	struct gma_encoder *encoder = gma_attached_encoder(connector);
	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
	int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
	int max_lanes = cdv_intel_dp_max_lane_count(encoder);
	struct drm_psb_private *dev_priv = connector->dev->dev_private;

	if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
			return MODE_PANEL;
		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
			return MODE_PANEL;
	}

	/* only refuse the mode on non eDP since we have seen some weird eDP panels
	   which are outside spec tolerances but somehow work by magic */
	if (!is_edp(encoder) &&
	    (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
	     > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
		return MODE_CLOCK_HIGH;

	if (is_edp(encoder)) {
	    if (cdv_intel_dp_link_required(mode->clock, 24)
	     	> cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
		return MODE_CLOCK_HIGH;
		
	}
	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

	return MODE_OK;
}

static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

static void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

static int
cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
		uint8_t *send, int send_bytes,
		uint8_t *recv, int recv_size)
{
	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
	uint32_t output_reg = intel_dp->output_reg;
	struct drm_device *dev = encoder->base.dev;
	uint32_t ch_ctl = output_reg + 0x10;
	uint32_t ch_data = ch_ctl + 4;
	int i;
	int recv_bytes;
	uint32_t status;
	uint32_t aux_clock_divider;
	int try, precharge;

	/* The clock divider is based off the hrawclk,
	 * and would like to run at 2MHz. So, take the
	 * hrawclk value and divide by 2 and use that
	 * On CDV platform it uses 200MHz as hrawclk.
	 *
	 */
	aux_clock_divider = 200 / 2;

	precharge = 4;
	if (is_edp(encoder))
		precharge = 10;

	if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
			  REG_READ(ch_ctl));
		return -EBUSY;
	}

	/* Must try at least 3 times according to DP spec */
	for (try = 0; try < 5; try++) {
		/* Load the send data into the aux channel data registers */
		for (i = 0; i < send_bytes; i += 4)
			REG_WRITE(ch_data + i,
				   pack_aux(send + i, send_bytes - i));
	
		/* Send the command and wait for it to complete */
		REG_WRITE(ch_ctl,
			   DP_AUX_CH_CTL_SEND_BUSY |
			   DP_AUX_CH_CTL_TIME_OUT_400us |
			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
			   DP_AUX_CH_CTL_DONE |
			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
			   DP_AUX_CH_CTL_RECEIVE_ERROR);
		for (;;) {
			status = REG_READ(ch_ctl);
			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
				break;
			udelay(100);
		}
	
		/* Clear done status and any errors */
		REG_WRITE(ch_ctl,
			   status |
			   DP_AUX_CH_CTL_DONE |
			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
			   DP_AUX_CH_CTL_RECEIVE_ERROR);
		if (status & DP_AUX_CH_CTL_DONE)
			break;
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
		return -EBUSY;
	}

	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
		return -EIO;
	}

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
		return -ETIMEDOUT;
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
	
	for (i = 0; i < recv_bytes; i += 4)
		unpack_aux(REG_READ(ch_data + i),
			   recv + i, recv_bytes - i);

	return recv_bytes;
}

/* Write data to the aux channel in native mode */
static int
cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
			  uint16_t address, uint8_t *send, int send_bytes)
{
	int ret;
	uint8_t	msg[20];
	int msg_bytes;
	uint8_t	ack;

	if (send_bytes > 16)
		return -1;
	msg[0] = DP_AUX_NATIVE_WRITE << 4;
	msg[1] = address >> 8;
	msg[2] = address & 0xff;
	msg[3] = send_bytes - 1;
	memcpy(&msg[4], send, send_bytes);
	msg_bytes = send_bytes + 4;
	for (;;) {
		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
		if (ret < 0)
			return ret;
		ack >>= 4;
		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
			break;
		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
			return -EIO;
	}
	return send_bytes;
}

/* Write a single byte to the aux channel in native mode */
static int
cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
			    uint16_t address, uint8_t byte)
{
	return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
}

/* read bytes from a native aux channel */
static int
cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
			 uint16_t address, uint8_t *recv, int recv_bytes)
{
	uint8_t msg[4];
	int msg_bytes;
	uint8_t reply[20];
	int reply_bytes;
	uint8_t ack;
	int ret;

	msg[0] = DP_AUX_NATIVE_READ << 4;
	msg[1] = address >> 8;
	msg[2] = address & 0xff;
	msg[3] = recv_bytes - 1;

	msg_bytes = 4;
	reply_bytes = recv_bytes + 1;

	for (;;) {
		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
				      reply, reply_bytes);
		if (ret == 0)
			return -EPROTO;
		if (ret < 0)
			return ret;
		ack = reply[0] >> 4;
		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
			memcpy(recv, reply + 1, ret - 1);
			return ret - 1;
		}
		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
			return -EIO;
	}
}

static int
cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
		    uint8_t write_byte, uint8_t *read_byte)
{
	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
	struct cdv_intel_dp *intel_dp = container_of(adapter,
						struct cdv_intel_dp,
						adapter);
	struct gma_encoder *encoder = intel_dp->encoder;
	uint16_t address = algo_data->address;
	uint8_t msg[5];
	uint8_t reply[2];
	unsigned retry;
	int msg_bytes;
	int reply_bytes;
	int ret;

	/* Set up the command byte */
	if (mode & MODE_I2C_READ)
		msg[0] = DP_AUX_I2C_READ << 4;
	else
		msg[0] = DP_AUX_I2C_WRITE << 4;

	if (!(mode & MODE_I2C_STOP))
		msg[0] |= DP_AUX_I2C_MOT << 4;

	msg[1] = address >> 8;
	msg[2] = address;

	switch (mode) {
	case MODE_I2C_WRITE:
		msg[3] = 0;
		msg[4] = write_byte;
		msg_bytes = 5;
		reply_bytes = 1;
		break;
	case MODE_I2C_READ:
		msg[3] = 0;
		msg_bytes = 4;
		reply_bytes = 2;
		break;
	default:
		msg_bytes = 3;
		reply_bytes = 1;
		break;
	}

	for (retry = 0; retry < 5; retry++) {
		ret = cdv_intel_dp_aux_ch(encoder,
				      msg, msg_bytes,
				      reply, reply_bytes);
		if (ret < 0) {
			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
			return ret;
		}

		switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
		case DP_AUX_NATIVE_REPLY_ACK:
			/* I2C-over-AUX Reply field is only valid
			 * when paired with AUX ACK.
			 */
			break;
		case DP_AUX_NATIVE_REPLY_NACK:
			DRM_DEBUG_KMS("aux_ch native nack\n");
			return -EREMOTEIO;
		case DP_AUX_NATIVE_REPLY_DEFER:
			udelay(100);
			continue;
		default:
			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
				  reply[0]);
			return -EREMOTEIO;
		}

		switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
		case DP_AUX_I2C_REPLY_ACK:
			if (mode == MODE_I2C_READ) {
				*read_byte = reply[1];
			}
			return reply_bytes - 1;
		case DP_AUX_I2C_REPLY_NACK:
			DRM_DEBUG_KMS("aux_i2c nack\n");
			return -EREMOTEIO;
		case DP_AUX_I2C_REPLY_DEFER:
			DRM_DEBUG_KMS("aux_i2c defer\n");
			udelay(100);
			break;
		default:
			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
			return -EREMOTEIO;
		}
	}

	DRM_ERROR("too many retries, giving up\n");
	return -EREMOTEIO;
}

static int
cdv_intel_dp_i2c_init(struct gma_connector *connector,
		      struct gma_encoder *encoder, const char *name)
{
	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
	int ret;

	DRM_DEBUG_KMS("i2c_init %s\n", name);

	intel_dp->algo.running = false;
	intel_dp->algo.address = 0;
	intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;

	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
	intel_dp->adapter.owner = THIS_MODULE;
	intel_dp->adapter.class = I2C_CLASS_DDC;
	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
	intel_dp->adapter.algo_data = &intel_dp->algo;
	intel_dp->adapter.dev.parent = connector->base.kdev;

	if (is_edp(encoder))
		cdv_intel_edp_panel_vdd_on(encoder);
	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
	if (is_edp(encoder))
		cdv_intel_edp_panel_vdd_off(encoder);
	
	return ret;
}

static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
	struct drm_display_mode *adjusted_mode)
{
	adjusted_mode->hdisplay = fixed_mode->hdisplay;
	adjusted_mode->hsync_start = fixed_mode->hsync_start;
	adjusted_mode->hsync_end = fixed_mode->hsync_end;
	adjusted_mode->htotal = fixed_mode->htotal;

	adjusted_mode->vdisplay = fixed_mode->vdisplay;
	adjusted_mode->vsync_start = fixed_mode->vsync_start;
	adjusted_mode->vsync_end = fixed_mode->vsync_end;
	adjusted_mode->vtotal = fixed_mode->vtotal;

	adjusted_mode->clock = fixed_mode->clock;

	drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
}

static bool
cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
		    struct drm_display_mode *adjusted_mode)
{
	struct drm_psb_private *dev_priv = encoder->dev->dev_private;
	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
	int lane_count, clock;
	int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
	int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
	int refclock = mode->clock;
	int bpp = 24;

	if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
		cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
		refclock = intel_dp->panel_fixed_mode->clock;
		bpp = dev_priv->edp.bpp;
	}

	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
		for (clock = max_clock; clock >= 0; clock--) {
			int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);

			if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
				intel_dp->link_bw = bws[clock];
				intel_dp->lane_count = lane_count;
				adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
				DRM_DEBUG_KMS("Display port link bw %02x lane "
						"count %d clock %d\n",
				       intel_dp->link_bw, intel_dp->lane_count,
				       adjusted_mode->clock);
				return true;
			}
		}
	}
	if (is_edp(intel_encoder)) {
		/* okay we failed just pick the highest */
		intel_dp->lane_count = max_lane_count;
		intel_dp->link_bw = bws[max_clock];
		adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
			      "count %d clock %d\n",
			      intel_dp->link_bw, intel_dp->lane_count,
			      adjusted_mode->clock);

		return true;
	}
	return false;
}

struct cdv_intel_dp_m_n {
	uint32_t	tu;
	uint32_t	gmch_m;
	uint32_t	gmch_n;
	uint32_t	link_m;
	uint32_t	link_n;
};

static void
cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
{
	/*
	while (*num > 0xffffff || *den > 0xffffff) {
		*num >>= 1;
		*den >>= 1;
	}*/
	uint64_t value, m;
	m = *num;
	value = m * (0x800000);
	m = do_div(value, *den);
	*num = value;
	*den = 0x800000;
}

static void
cdv_intel_dp_compute_m_n(int bpp,
		     int nlanes,
		     int pixel_clock,
		     int link_clock,
		     struct cdv_intel_dp_m_n *m_n)
{
	m_n->tu = 64;
	m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
	m_n->gmch_n = link_clock * nlanes;
	cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
	m_n->link_m = pixel_clock;
	m_n->link_n = link_clock;
	cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
}

void
cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
		 struct drm_display_mode *adjusted_mode)
{
	struct drm_device *dev = crtc->dev;
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct drm_encoder *encoder;
	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
	int lane_count = 4, bpp = 24;
	struct cdv_intel_dp_m_n m_n;
	int pipe = gma_crtc->pipe;

	/*
	 * Find the lane count in the intel_encoder private
	 */
	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
		struct gma_encoder *intel_encoder;
		struct cdv_intel_dp *intel_dp;

		if (encoder->crtc != crtc)
			continue;

		intel_encoder = to_gma_encoder(encoder);
		intel_dp = intel_encoder->dev_priv;
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
			lane_count = intel_dp->lane_count;
			break;
		} else if (is_edp(intel_encoder)) {
			lane_count = intel_dp->lane_count;
			bpp = dev_priv->edp.bpp;
			break;
		}
	}

	/*
	 * Compute the GMCH and Link ratios. The '3' here is
	 * the number of bytes_per_pixel post-LUT, which we always
	 * set up for 8-bits of R/G/B, or 3 bytes total.
	 */
	cdv_intel_dp_compute_m_n(bpp, lane_count,
			     mode->clock, adjusted_mode->clock, &m_n);

	{
		REG_WRITE(PIPE_GMCH_DATA_M(pipe),
			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
			   m_n.gmch_m);
		REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
		REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
		REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
	}
}

static void
cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
		  struct drm_display_mode *adjusted_mode)
{
	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
	struct drm_crtc *crtc = encoder->crtc;
	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
	struct drm_device *dev = encoder->dev;

	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	intel_dp->DP |= intel_dp->color_range;

	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
		intel_dp->DP |= DP_SYNC_HS_HIGH;
	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
		intel_dp->DP |= DP_SYNC_VS_HIGH;

	intel_dp->DP |= DP_LINK_TRAIN_OFF;

	switch (intel_dp->lane_count) {
	case 1:
		intel_dp->DP |= DP_PORT_WIDTH_1;
		break;
	case 2:
		intel_dp->DP |= DP_PORT_WIDTH_2;
		break;
	case 4:
		intel_dp->DP |= DP_PORT_WIDTH_4;
		break;
	}
	if (intel_dp->has_audio)
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;

	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
	intel_dp->link_configuration[0] = intel_dp->link_bw;
	intel_dp->link_configuration[1] = intel_dp->lane_count;

	/*
	 * Check for DPCD version > 1.1 and enhanced framing support
	 */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
		intel_dp->DP |= DP_ENHANCED_FRAMING;
	}

	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
	if (gma_crtc->pipe == 1)
		intel_dp->DP |= DP_PIPEB_SELECT;

	REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
	DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
	if (is_edp(intel_encoder)) {
		uint32_t pfit_control;
		cdv_intel_edp_panel_on(intel_encoder);

		if (mode->hdisplay != adjusted_mode->hdisplay ||
			    mode->vdisplay != adjusted_mode->vdisplay)
			pfit_control = PFIT_ENABLE;
		else
			pfit_control = 0;

		pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;

		REG_WRITE(PFIT_CONTROL, pfit_control);
	}
}


/* If the sink supports it, try to set the power state appropriately */
static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
{
	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
		ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
						  DP_SET_POWER_D3);
		if (ret != 1)
			DRM_DEBUG_DRIVER("failed to write sink power state\n");
	} else {
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
			ret = cdv_intel_dp_aux_native_write_1(encoder,
							  DP_SET_POWER,
							  DP_SET_POWER_D0);
			if (ret == 1)
				break;
			udelay(1000);
		}
	}
}

static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
{
	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
	int edp = is_edp(intel_encoder);

	if (edp) {
		cdv_intel_edp_backlight_off(intel_encoder);
		cdv_intel_edp_panel_off(intel_encoder);
		cdv_intel_edp_panel_vdd_on(intel_encoder);
        }
	/* Wake up the sink first */
	cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
	cdv_intel_dp_link_down(intel_encoder);
	if (edp)
		cdv_intel_edp_panel_vdd_off(intel_encoder);
}

static void cdv_intel_dp_commit(struct drm_encoder *encoder)
{
	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
	int edp = is_edp(intel_encoder);

	if (edp)
		cdv_intel_edp_panel_on(intel_encoder);
	cdv_intel_dp_start_link_train(intel_encoder);
	cdv_intel_dp_complete_link_train(intel_encoder);
	if (edp)
		cdv_intel_edp_backlight_on(intel_encoder);
}

static void
cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
{
	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
	struct drm_device *dev = encoder->dev;
	uint32_t dp_reg = REG_READ(intel_dp->output_reg);
	int edp = is_edp(intel_encoder);

	if (mode != DRM_MODE_DPMS_ON) {
		if (edp) {
			cdv_intel_edp_backlight_off(intel_encoder);
			cdv_intel_edp_panel_vdd_on(intel_encoder);
		}
		cdv_intel_dp_sink_dpms(intel_encoder, mode);
		cdv_intel_dp_link_down(intel_encoder);
		if (edp) {
			cdv_intel_edp_panel_vdd_off(intel_encoder);
			cdv_intel_edp_panel_off(intel_encoder);
		}
	} else {
        	if (edp)
			cdv_intel_edp_panel_on(intel_encoder);
		cdv_intel_dp_sink_dpms(intel_encoder, mode);
		if (!(dp_reg & DP_PORT_EN)) {
			cdv_intel_dp_start_link_train(intel_encoder);
			cdv_intel_dp_complete_link_train(intel_encoder);
		}
		if (edp)
        		cdv_intel_edp_backlight_on(intel_encoder);
	}
}

/*
 * Native read with retry for link status and receiver capability reads for
 * cases where the sink may still be asleep.
 */
static bool
cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
			       uint8_t *recv, int recv_bytes)
{
	int ret, i;

	/*
	 * Sinks are *supposed* to come up within 1ms from an off state,
	 * but we're also supposed to retry 3 times per the spec.
	 */
	for (i = 0; i < 3; i++) {
		ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
					       recv_bytes);
		if (ret == recv_bytes)
			return true;
		udelay(1000);
	}

	return false;
}

/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
static bool
cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
{
	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
	return cdv_intel_dp_aux_native_read_retry(encoder,
					      DP_LANE0_1_STATUS,
					      intel_dp->link_status,
					      DP_LINK_STATUS_SIZE);
}

static uint8_t
cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		     int r)
{
	return link_status[r - DP_LANE0_1_STATUS];
}

static uint8_t
cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
				 int lane)
{
	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
	int	    s = ((lane & 1) ?
			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
	uint8_t l = cdv_intel_dp_link_status(link_status, i);

	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}

static uint8_t
cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
				      int lane)
{
	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
	int	    s = ((lane & 1) ?
			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
	uint8_t l = cdv_intel_dp_link_status(link_status, i);

	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}


#if 0
static char	*voltage_names[] = {
	"0.4V", "0.6V", "0.8V", "1.2V"
};
static char	*pre_emph_names[] = {
	"0dB", "3.5dB", "6dB", "9.5dB"
};
static char	*link_train_names[] = {
	"pattern 1", "pattern 2", "idle", "off"
};
#endif

#define CDV_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_LEVEL_3
/*
static uint8_t
cdv_intel_dp_pre_emphasis_max(uint8_t voltage_swing)
{
	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_400:
		return DP_TRAIN_PRE_EMPHASIS_6;
	case DP_TRAIN_VOLTAGE_SWING_600:
		return DP_TRAIN_PRE_EMPHASIS_6;
	case DP_TRAIN_VOLTAGE_SWING_800:
		return DP_TRAIN_PRE_EMPHASIS_3_5;
	case DP_TRAIN_VOLTAGE_SWING_1200:
	default:
		return DP_TRAIN_PRE_EMPHASIS_0;
	}
}
*/
static void
cdv_intel_get_adjust_train(struct gma_encoder *encoder)
{
	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
	uint8_t v = 0;
	uint8_t p = 0;
	int lane;

	for (lane = 0; lane < intel_dp->lane_count; lane++) {
		uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
		uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);

		if (this_v > v)
			v = this_v;
		if (this_p > p)
			p = this_p;
	}
	
	if (v >= CDV_DP_VOLTAGE_MAX)
		v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;

	if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
		p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
		
	for (lane = 0; lane < 4; lane++)
		intel_dp->train_set[lane] = v | p;
}


static uint8_t
cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		      int lane)
{
	int i = DP_LANE0_1_STATUS + (lane >> 1);
	int s = (lane & 1) * 4;
	uint8_t l = cdv_intel_dp_link_status(link_status, i);

	return (l >> s) & 0xf;
}

/* Check for clock recovery is done on all channels */
static bool
cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
	int lane;
	uint8_t lane_status;

	for (lane = 0; lane < lane_count; lane++) {
		lane_status = cdv_intel_get_lane_status(link_status, lane);
		if ((lane_status & DP_LANE_CR_DONE) == 0)
			return false;
	}
	return true;
}

/* Check to see if channel eq is done on all channels */
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
			 DP_LANE_CHANNEL_EQ_DONE|\
			 DP_LANE_SYMBOL_LOCKED)
static bool
cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
{
	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
	uint8_t lane_align;
	uint8_t lane_status;
	int lane;

	lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
					  DP_LANE_ALIGN_STATUS_UPDATED);
	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
		return false;
	for (lane = 0; lane < intel_dp->lane_count; lane++) {
		lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
			return false;
	}
	return true;
}

static bool
cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
			uint32_t dp_reg_value,
			uint8_t dp_train_pat)
{
	
	struct drm_device *dev = encoder->base.dev;
	int ret;
	struct cdv_intel_dp *intel_dp = encoder->dev_priv;

	REG_WRITE(intel_dp->output_reg, dp_reg_value);
	REG_READ(intel_dp->output_reg);

	ret = cdv_intel_dp_aux_native_write_1(encoder,
				    DP_TRAINING_PATTERN_SET,
				    dp_train_pat);

	if (ret != 1) {
		DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
				dp_train_pat);
		return false;
	}

	return true;
}


static bool
cdv_intel_dplink_set_level(struct gma_encoder *encoder,
			uint8_t dp_train_pat)
{
	
	int ret;
	struct cdv_intel_dp *intel_dp = encoder->dev_priv;

	ret = cdv_intel_dp_aux_native_write(encoder,
					DP_TRAINING_LANE0_SET,
					intel_dp->train_set,
					intel_dp->lane_count);

	if (ret != intel_dp->lane_count) {
		DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
				intel_dp->train_set[0], intel_dp->lane_count);
		return false;
	}
	return true;
}

static void
cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
{
	struct drm_device *dev = encoder->base.dev;
	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
	struct ddi_regoff *ddi_reg;
	int vswing, premph, index;

	if (intel_dp->output_reg == DP_B)
		ddi_reg = &ddi_DP_train_table[0];
	else
		ddi_reg = &ddi_DP_train_table[1];

	vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
	premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
				DP_TRAIN_PRE_EMPHASIS_SHIFT;

	if (vswing + premph > 3)
		return;
#ifdef CDV_FAST_LINK_TRAIN
	return;
#endif
	DRM_DEBUG_KMS("Test2\n");
	//return ;
	cdv_sb_reset(dev);
	/* ;Swing voltage programming
        ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
	cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);

	/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
	cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);

	/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
	 * The VSwing_PreEmph table is also considered based on the vswing/premp
	 */
	index = (vswing + premph) * 2;
	if (premph == 1 && vswing == 1) {
		cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
	} else
		cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);

	/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
	if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
		cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
	else
		cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);

	/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
	/* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */

	/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
	cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);

	/* ;Pre emphasis programming
	 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
	 */
	cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);

	/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
	index = 2 * premph + 1;
	cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
	return;	
}


/* Enable corresponding port and start training pattern 1 */
static void
cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
{
	struct drm_device *dev = encoder->base.dev;
	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
	int i;
	uint8_t voltage;
	bool clock_recovery = false;
	int tries;
	u32 reg;
	uint32_t DP = intel_dp->DP;

	DP |= DP_PORT_EN;
	DP &= ~DP_LINK_TRAIN_MASK;
		
	reg = DP;	
	reg |= DP_LINK_TRAIN_PAT_1;
	/* Enable output, wait for it to become active */
	REG_WRITE(intel_dp->output_reg, reg);
	REG_READ(intel_dp->output_reg);
	gma_wait_for_vblank(dev);

	DRM_DEBUG_KMS("Link config\n");
	/* Write the link configuration data */
	cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
				  intel_dp->link_configuration,
				  2);

	memset(intel_dp->train_set, 0, 4);
	voltage = 0;
	tries = 0;
	clock_recovery = false;

	DRM_DEBUG_KMS("Start train\n");
		reg = DP | DP_LINK_TRAIN_PAT_1;


	for (;;) {
		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
				intel_dp->train_set[0],
				intel_dp->link_configuration[0],
				intel_dp->link_configuration[1]);

		if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
		}
		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
		/* Set training pattern 1 */

		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);

		udelay(200);
		if (!cdv_intel_dp_get_link_status(encoder))
			break;

		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);

		if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
			DRM_DEBUG_KMS("PT1 train is done\n");
			clock_recovery = true;
			break;
		}

		/* Check to see if we've tried the max voltage */
		for (i = 0; i < intel_dp->lane_count; i++)
			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
				break;
		if (i == intel_dp->lane_count)
			break;

		/* Check to see if we've tried the same voltage 5 times */
		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
			++tries;
			if (tries == 5)
				break;
		} else
			tries = 0;
		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;

		/* Compute new intel_dp->train_set as requested by target */
		cdv_intel_get_adjust_train(encoder);

	}

	if (!clock_recovery) {
		DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
	}
	
	intel_dp->DP = DP;
}

static void
cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
{
	struct drm_device *dev = encoder->base.dev;
	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
	bool channel_eq = false;
	int tries, cr_tries;
	u32 reg;
	uint32_t DP = intel_dp->DP;

	/* channel equalization */
	tries = 0;
	cr_tries = 0;
	channel_eq = false;

	DRM_DEBUG_KMS("\n");
		reg = DP | DP_LINK_TRAIN_PAT_2;

	for (;;) {

		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
				intel_dp->train_set[0],
				intel_dp->link_configuration[0],
				intel_dp->link_configuration[1]);
        	/* channel eq pattern */

		if (!cdv_intel_dp_set_link_train(encoder, reg,
					     DP_TRAINING_PATTERN_2)) {
			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
		}
		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */

		if (cr_tries > 5) {
			DRM_ERROR("failed to train DP, aborting\n");
			cdv_intel_dp_link_down(encoder);
			break;
		}

		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);

		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);

		udelay(1000);
		if (!cdv_intel_dp_get_link_status(encoder))
			break;

		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);

		/* Make sure clock is still ok */
		if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
			cdv_intel_dp_start_link_train(encoder);
			cr_tries++;
			continue;
		}

		if (cdv_intel_channel_eq_ok(encoder)) {
			DRM_DEBUG_KMS("PT2 train is done\n");
			channel_eq = true;
			break;
		}

		/* Try 5 times, then try clock recovery if that fails */
		if (tries > 5) {
			cdv_intel_dp_link_down(encoder);
			cdv_intel_dp_start_link_train(encoder);
			tries = 0;
			cr_tries++;
			continue;
		}

		/* Compute new intel_dp->train_set as requested by target */
		cdv_intel_get_adjust_train(encoder);
		++tries;

	}

	reg = DP | DP_LINK_TRAIN_OFF;

	REG_WRITE(intel_dp->output_reg, reg);
	REG_READ(intel_dp->output_reg);
	cdv_intel_dp_aux_native_write_1(encoder,
				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
}

static void
cdv_intel_dp_link_down(struct gma_encoder *encoder)
{
	struct drm_device *dev = encoder->base.dev;
	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
	uint32_t DP = intel_dp->DP;

	if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
		return;

	DRM_DEBUG_KMS("\n");


	{
		DP &= ~DP_LINK_TRAIN_MASK;
		REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
	}
	REG_READ(intel_dp->output_reg);

	msleep(17);

	REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	REG_READ(intel_dp->output_reg);
}

static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
{
	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
	enum drm_connector_status status;

	status = connector_status_disconnected;
	if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
	{
		if (intel_dp->dpcd[DP_DPCD_REV] != 0)
			status = connector_status_connected;
	}
	if (status == connector_status_connected)
		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
			intel_dp->dpcd[0], intel_dp->dpcd[1],
			intel_dp->dpcd[2], intel_dp->dpcd[3]);
	return status;
}

/**
 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
 *
 * \return true if DP port is connected.
 * \return false if DP port is disconnected.
 */
static enum drm_connector_status
cdv_intel_dp_detect(struct drm_connector *connector, bool force)
{
	struct gma_encoder *encoder = gma_attached_encoder(connector);
	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
	enum drm_connector_status status;
	struct edid *edid = NULL;
	int edp = is_edp(encoder);

	intel_dp->has_audio = false;

	if (edp)
		cdv_intel_edp_panel_vdd_on(encoder);
	status = cdv_dp_detect(encoder);
	if (status != connector_status_connected) {
		if (edp)
			cdv_intel_edp_panel_vdd_off(encoder);
		return status;
        }

	if (intel_dp->force_audio) {
		intel_dp->has_audio = intel_dp->force_audio > 0;
	} else {
		edid = drm_get_edid(connector, &intel_dp->adapter);
		if (edid) {
			intel_dp->has_audio = drm_detect_monitor_audio(edid);
			kfree(edid);
		}
	}
	if (edp)
		cdv_intel_edp_panel_vdd_off(encoder);

	return connector_status_connected;
}

static int cdv_intel_dp_get_modes(struct drm_connector *connector)
{
	struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
	struct edid *edid = NULL;
	int ret = 0;
	int edp = is_edp(intel_encoder);


	edid = drm_get_edid(connector, &intel_dp->adapter);
	if (edid) {
		drm_mode_connector_update_edid_property(connector, edid);
		ret = drm_add_edid_modes(connector, edid);
		kfree(edid);
	}

	if (is_edp(intel_encoder)) {
		struct drm_device *dev = connector->dev;
		struct drm_psb_private *dev_priv = dev->dev_private;
		
		cdv_intel_edp_panel_vdd_off(intel_encoder);
		if (ret) {
			if (edp && !intel_dp->panel_fixed_mode) {
				struct drm_display_mode *newmode;
				list_for_each_entry(newmode, &connector->probed_modes,
					    head) {
					if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
						intel_dp->panel_fixed_mode =
							drm_mode_duplicate(dev, newmode);
						break;
					}
				}
			}

			return ret;
		}
		if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
			intel_dp->panel_fixed_mode =
				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
			if (intel_dp->panel_fixed_mode) {
				intel_dp->panel_fixed_mode->type |=
					DRM_MODE_TYPE_PREFERRED;
			}
		}
		if (intel_dp->panel_fixed_mode != NULL) {
			struct drm_display_mode *mode;
			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}

	return ret;
}

static bool
cdv_intel_dp_detect_audio(struct drm_connector *connector)
{
	struct gma_encoder *encoder = gma_attached_encoder(connector);
	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
	struct edid *edid;
	bool has_audio = false;
	int edp = is_edp(encoder);

	if (edp)
		cdv_intel_edp_panel_vdd_on(encoder);

	edid = drm_get_edid(connector, &intel_dp->adapter);
	if (edid) {
		has_audio = drm_detect_monitor_audio(edid);
		kfree(edid);
	}
	if (edp)
		cdv_intel_edp_panel_vdd_off(encoder);

	return has_audio;
}

static int
cdv_intel_dp_set_property(struct drm_connector *connector,
		      struct drm_property *property,
		      uint64_t val)
{
	struct drm_psb_private *dev_priv = connector->dev->dev_private;
	struct gma_encoder *encoder = gma_attached_encoder(connector);
	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
	int ret;

	ret = drm_object_property_set_value(&connector->base, property, val);
	if (ret)
		return ret;

	if (property == dev_priv->force_audio_property) {
		int i = val;
		bool has_audio;

		if (i == intel_dp->force_audio)
			return 0;

		intel_dp->force_audio = i;

		if (i == 0)
			has_audio = cdv_intel_dp_detect_audio(connector);
		else
			has_audio = i > 0;

		if (has_audio == intel_dp->has_audio)
			return 0;

		intel_dp->has_audio = has_audio;
		goto done;
	}

	if (property == dev_priv->broadcast_rgb_property) {
		if (val == !!intel_dp->color_range)
			return 0;

		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
		goto done;
	}

	return -EINVAL;

done:
	if (encoder->base.crtc) {
		struct drm_crtc *crtc = encoder->base.crtc;
		drm_crtc_helper_set_mode(crtc, &crtc->mode,
					 crtc->x, crtc->y,
					 crtc->primary->fb);
	}

	return 0;
}

static void
cdv_intel_dp_destroy(struct drm_connector *connector)
{
	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
	struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;

	if (is_edp(gma_encoder)) {
	/*	cdv_intel_panel_destroy_backlight(connector->dev); */
		if (intel_dp->panel_fixed_mode) {
			kfree(intel_dp->panel_fixed_mode);
			intel_dp->panel_fixed_mode = NULL;
		}
	}
	i2c_del_adapter(&intel_dp->adapter);
	drm_connector_unregister(connector);
	drm_connector_cleanup(connector);
	kfree(connector);
}

static void cdv_intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
}

static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
	.dpms = cdv_intel_dp_dpms,
	.mode_fixup = cdv_intel_dp_mode_fixup,
	.prepare = cdv_intel_dp_prepare,
	.mode_set = cdv_intel_dp_mode_set,
	.commit = cdv_intel_dp_commit,
};

static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
	.dpms = drm_helper_connector_dpms,
	.detect = cdv_intel_dp_detect,
	.fill_modes = drm_helper_probe_single_connector_modes,
	.set_property = cdv_intel_dp_set_property,
	.destroy = cdv_intel_dp_destroy,
};

static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
	.get_modes = cdv_intel_dp_get_modes,
	.mode_valid = cdv_intel_dp_mode_valid,
	.best_encoder = gma_best_encoder,
};

static const struct drm_encoder_funcs cdv_intel_dp_enc_funcs = {
	.destroy = cdv_intel_dp_encoder_destroy,
};


static void cdv_intel_dp_add_properties(struct drm_connector *connector)
{
	cdv_intel_attach_force_audio_property(connector);
	cdv_intel_attach_broadcast_rgb_property(connector);
}

/* check the VBT to see whether the eDP is on DP-D port */
static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
{
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct child_device_config *p_child;
	int i;

	if (!dev_priv->child_dev_num)
		return false;

	for (i = 0; i < dev_priv->child_dev_num; i++) {
		p_child = dev_priv->child_dev + i;

		if (p_child->dvo_port == PORT_IDPC &&
		    p_child->device_type == DEVICE_TYPE_eDP)
			return true;
	}
	return false;
}

/* Cedarview display clock gating

   We need this disable dot get correct behaviour while enabling
   DP/eDP. TODO - investigate if we can turn it back to normality
   after enabling */
static void cdv_disable_intel_clock_gating(struct drm_device *dev)
{
	u32 reg_value;
	reg_value = REG_READ(DSPCLK_GATE_D);

	reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
			DPUNIT_PIPEA_GATE_DISABLE |
			DPCUNIT_CLOCK_GATE_DISABLE |
			DPLSUNIT_CLOCK_GATE_DISABLE |
			DPOUNIT_CLOCK_GATE_DISABLE |
		 	DPIOUNIT_CLOCK_GATE_DISABLE);	

	REG_WRITE(DSPCLK_GATE_D, reg_value);

	udelay(500);		
}

void
cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
{
	struct gma_encoder *gma_encoder;
	struct gma_connector *gma_connector;
	struct drm_connector *connector;
	struct drm_encoder *encoder;
	struct cdv_intel_dp *intel_dp;
	const char *name = NULL;
	int type = DRM_MODE_CONNECTOR_DisplayPort;

	gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
	if (!gma_encoder)
		return;
        gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
        if (!gma_connector)
                goto err_connector;
	intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
	if (!intel_dp)
	        goto err_priv;

	if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
		type = DRM_MODE_CONNECTOR_eDP;

	connector = &gma_connector->base;
	encoder = &gma_encoder->base;

	drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
	drm_encoder_init(dev, encoder, &cdv_intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS);

	gma_connector_attach_encoder(gma_connector, gma_encoder);

	if (type == DRM_MODE_CONNECTOR_DisplayPort)
		gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
        else
		gma_encoder->type = INTEL_OUTPUT_EDP;


	gma_encoder->dev_priv=intel_dp;
	intel_dp->encoder = gma_encoder;
	intel_dp->output_reg = output_reg;
	
	drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
	drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);

	connector->polled = DRM_CONNECTOR_POLL_HPD;
	connector->interlace_allowed = false;
	connector->doublescan_allowed = false;

	drm_connector_register(connector);

	/* Set up the DDC bus. */
	switch (output_reg) {
		case DP_B:
			name = "DPDDC-B";
			gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
			break;
		case DP_C:
			name = "DPDDC-C";
			gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
			break;
	}

	cdv_disable_intel_clock_gating(dev);

	cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
        /* FIXME:fail check */
	cdv_intel_dp_add_properties(connector);

	if (is_edp(gma_encoder)) {
		int ret;
		struct edp_power_seq cur;
                u32 pp_on, pp_off, pp_div;
		u32 pwm_ctrl;

		pp_on = REG_READ(PP_CONTROL);
		pp_on &= ~PANEL_UNLOCK_MASK;
	        pp_on |= PANEL_UNLOCK_REGS;
		
		REG_WRITE(PP_CONTROL, pp_on);

		pwm_ctrl = REG_READ(BLC_PWM_CTL2);
		pwm_ctrl |= PWM_PIPE_B;
		REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);

                pp_on = REG_READ(PP_ON_DELAYS);
                pp_off = REG_READ(PP_OFF_DELAYS);
                pp_div = REG_READ(PP_DIVISOR);
	
		/* Pull timing values out of registers */
                cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
                        PANEL_POWER_UP_DELAY_SHIFT;

                cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
                        PANEL_LIGHT_ON_DELAY_SHIFT;

                cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
                        PANEL_LIGHT_OFF_DELAY_SHIFT;

                cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
                        PANEL_POWER_DOWN_DELAY_SHIFT;

                cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
                               PANEL_POWER_CYCLE_DELAY_SHIFT);

                DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
                              cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);


		intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
                intel_dp->backlight_on_delay = cur.t8 / 10;
                intel_dp->backlight_off_delay = cur.t9 / 10;
                intel_dp->panel_power_down_delay = cur.t10 / 10;
                intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;

                DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
                              intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
                              intel_dp->panel_power_cycle_delay);

                DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
                              intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);


		cdv_intel_edp_panel_vdd_on(gma_encoder);
		ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
					       intel_dp->dpcd,
					       sizeof(intel_dp->dpcd));
		cdv_intel_edp_panel_vdd_off(gma_encoder);
		if (ret == 0) {
			/* if this fails, presume the device is a ghost */
			DRM_INFO("failed to retrieve link info, disabling eDP\n");
			cdv_intel_dp_encoder_destroy(encoder);
			cdv_intel_dp_destroy(connector);
			goto err_priv;
		} else {
        		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
				intel_dp->dpcd[0], intel_dp->dpcd[1], 
				intel_dp->dpcd[2], intel_dp->dpcd[3]);
			
		}
		/* The CDV reference driver moves pnale backlight setup into the displays that
		   have a backlight: this is a good idea and one we should probably adopt, however
		   we need to migrate all the drivers before we can do that */
                /*cdv_intel_panel_setup_backlight(dev); */
	}
	return;

err_priv:
	kfree(gma_connector);
err_connector:
	kfree(gma_encoder);
}