arm-stub.c 11.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
/*
 * EFI stub implementation that is shared by arm and arm64 architectures.
 * This should be #included by the EFI stub implementation files.
 *
 * Copyright (C) 2013,2014 Linaro Limited
 *     Roy Franz <roy.franz@linaro.org
 * Copyright (C) 2013 Red Hat, Inc.
 *     Mark Salter <msalter@redhat.com>
 *
 * This file is part of the Linux kernel, and is made available under the
 * terms of the GNU General Public License version 2.
 *
 */

#include <linux/efi.h>
#include <linux/sort.h>
#include <asm/efi.h>

#include "efistub.h"

static int efi_secureboot_enabled(efi_system_table_t *sys_table_arg)
{
	static efi_guid_t const var_guid = EFI_GLOBAL_VARIABLE_GUID;
	static efi_char16_t const var_name[] = {
		'S', 'e', 'c', 'u', 'r', 'e', 'B', 'o', 'o', 't', 0 };

	efi_get_variable_t *f_getvar = sys_table_arg->runtime->get_variable;
	unsigned long size = sizeof(u8);
	efi_status_t status;
	u8 val;

	status = f_getvar((efi_char16_t *)var_name, (efi_guid_t *)&var_guid,
			  NULL, &size, &val);

	switch (status) {
	case EFI_SUCCESS:
		return val;
	case EFI_NOT_FOUND:
		return 0;
	default:
		return 1;
	}
}

efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg,
			     void *__image, void **__fh)
{
	efi_file_io_interface_t *io;
	efi_loaded_image_t *image = __image;
	efi_file_handle_t *fh;
	efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
	efi_status_t status;
	void *handle = (void *)(unsigned long)image->device_handle;

	status = sys_table_arg->boottime->handle_protocol(handle,
				 &fs_proto, (void **)&io);
	if (status != EFI_SUCCESS) {
		efi_printk(sys_table_arg, "Failed to handle fs_proto\n");
		return status;
	}

	status = io->open_volume(io, &fh);
	if (status != EFI_SUCCESS)
		efi_printk(sys_table_arg, "Failed to open volume\n");

	*__fh = fh;
	return status;
}

efi_status_t efi_file_close(void *handle)
{
	efi_file_handle_t *fh = handle;

	return fh->close(handle);
}

efi_status_t
efi_file_read(void *handle, unsigned long *size, void *addr)
{
	efi_file_handle_t *fh = handle;

	return fh->read(handle, size, addr);
}


efi_status_t
efi_file_size(efi_system_table_t *sys_table_arg, void *__fh,
	      efi_char16_t *filename_16, void **handle, u64 *file_sz)
{
	efi_file_handle_t *h, *fh = __fh;
	efi_file_info_t *info;
	efi_status_t status;
	efi_guid_t info_guid = EFI_FILE_INFO_ID;
	unsigned long info_sz;

	status = fh->open(fh, &h, filename_16, EFI_FILE_MODE_READ, (u64)0);
	if (status != EFI_SUCCESS) {
		efi_printk(sys_table_arg, "Failed to open file: ");
		efi_char16_printk(sys_table_arg, filename_16);
		efi_printk(sys_table_arg, "\n");
		return status;
	}

	*handle = h;

	info_sz = 0;
	status = h->get_info(h, &info_guid, &info_sz, NULL);
	if (status != EFI_BUFFER_TOO_SMALL) {
		efi_printk(sys_table_arg, "Failed to get file info size\n");
		return status;
	}

grow:
	status = sys_table_arg->boottime->allocate_pool(EFI_LOADER_DATA,
				 info_sz, (void **)&info);
	if (status != EFI_SUCCESS) {
		efi_printk(sys_table_arg, "Failed to alloc mem for file info\n");
		return status;
	}

	status = h->get_info(h, &info_guid, &info_sz,
						   info);
	if (status == EFI_BUFFER_TOO_SMALL) {
		sys_table_arg->boottime->free_pool(info);
		goto grow;
	}

	*file_sz = info->file_size;
	sys_table_arg->boottime->free_pool(info);

	if (status != EFI_SUCCESS)
		efi_printk(sys_table_arg, "Failed to get initrd info\n");

	return status;
}



void efi_char16_printk(efi_system_table_t *sys_table_arg,
			      efi_char16_t *str)
{
	struct efi_simple_text_output_protocol *out;

	out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
	out->output_string(out, str);
}


/*
 * This function handles the architcture specific differences between arm and
 * arm64 regarding where the kernel image must be loaded and any memory that
 * must be reserved. On failure it is required to free all
 * all allocations it has made.
 */
efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
				 unsigned long *image_addr,
				 unsigned long *image_size,
				 unsigned long *reserve_addr,
				 unsigned long *reserve_size,
				 unsigned long dram_base,
				 efi_loaded_image_t *image);
/*
 * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
 * that is described in the PE/COFF header.  Most of the code is the same
 * for both archictectures, with the arch-specific code provided in the
 * handle_kernel_image() function.
 */
unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
			       unsigned long *image_addr)
{
	efi_loaded_image_t *image;
	efi_status_t status;
	unsigned long image_size = 0;
	unsigned long dram_base;
	/* addr/point and size pairs for memory management*/
	unsigned long initrd_addr;
	u64 initrd_size = 0;
	unsigned long fdt_addr = 0;  /* Original DTB */
	unsigned long fdt_size = 0;
	char *cmdline_ptr = NULL;
	int cmdline_size = 0;
	unsigned long new_fdt_addr;
	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
	unsigned long reserve_addr = 0;
	unsigned long reserve_size = 0;

	/* Check if we were booted by the EFI firmware */
	if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
		goto fail;

	pr_efi(sys_table, "Booting Linux Kernel...\n");

	/*
	 * Get a handle to the loaded image protocol.  This is used to get
	 * information about the running image, such as size and the command
	 * line.
	 */
	status = sys_table->boottime->handle_protocol(handle,
					&loaded_image_proto, (void *)&image);
	if (status != EFI_SUCCESS) {
		pr_efi_err(sys_table, "Failed to get loaded image protocol\n");
		goto fail;
	}

	dram_base = get_dram_base(sys_table);
	if (dram_base == EFI_ERROR) {
		pr_efi_err(sys_table, "Failed to find DRAM base\n");
		goto fail;
	}
	status = handle_kernel_image(sys_table, image_addr, &image_size,
				     &reserve_addr,
				     &reserve_size,
				     dram_base, image);
	if (status != EFI_SUCCESS) {
		pr_efi_err(sys_table, "Failed to relocate kernel\n");
		goto fail;
	}

	/*
	 * Get the command line from EFI, using the LOADED_IMAGE
	 * protocol. We are going to copy the command line into the
	 * device tree, so this can be allocated anywhere.
	 */
	cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size);
	if (!cmdline_ptr) {
		pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n");
		goto fail_free_image;
	}

	status = efi_parse_options(cmdline_ptr);
	if (status != EFI_SUCCESS)
		pr_efi_err(sys_table, "Failed to parse EFI cmdline options\n");

	/*
	 * Unauthenticated device tree data is a security hazard, so
	 * ignore 'dtb=' unless UEFI Secure Boot is disabled.
	 */
	if (efi_secureboot_enabled(sys_table)) {
		pr_efi(sys_table, "UEFI Secure Boot is enabled.\n");
	} else {
		status = handle_cmdline_files(sys_table, image, cmdline_ptr,
					      "dtb=",
					      ~0UL, &fdt_addr, &fdt_size);

		if (status != EFI_SUCCESS) {
			pr_efi_err(sys_table, "Failed to load device tree!\n");
			goto fail_free_cmdline;
		}
	}

	if (fdt_addr) {
		pr_efi(sys_table, "Using DTB from command line\n");
	} else {
		/* Look for a device tree configuration table entry. */
		fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size);
		if (fdt_addr)
			pr_efi(sys_table, "Using DTB from configuration table\n");
	}

	if (!fdt_addr)
		pr_efi(sys_table, "Generating empty DTB\n");

	status = handle_cmdline_files(sys_table, image, cmdline_ptr,
				      "initrd=", dram_base + SZ_512M,
				      (unsigned long *)&initrd_addr,
				      (unsigned long *)&initrd_size);
	if (status != EFI_SUCCESS)
		pr_efi_err(sys_table, "Failed initrd from command line!\n");

	new_fdt_addr = fdt_addr;
	status = allocate_new_fdt_and_exit_boot(sys_table, handle,
				&new_fdt_addr, dram_base + MAX_FDT_OFFSET,
				initrd_addr, initrd_size, cmdline_ptr,
				fdt_addr, fdt_size);

	/*
	 * If all went well, we need to return the FDT address to the
	 * calling function so it can be passed to kernel as part of
	 * the kernel boot protocol.
	 */
	if (status == EFI_SUCCESS)
		return new_fdt_addr;

	pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n");

	efi_free(sys_table, initrd_size, initrd_addr);
	efi_free(sys_table, fdt_size, fdt_addr);

fail_free_cmdline:
	efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr);

fail_free_image:
	efi_free(sys_table, image_size, *image_addr);
	efi_free(sys_table, reserve_size, reserve_addr);
fail:
	return EFI_ERROR;
}

/*
 * This is the base address at which to start allocating virtual memory ranges
 * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
 * any allocation we choose, and eliminate the risk of a conflict after kexec.
 * The value chosen is the largest non-zero power of 2 suitable for this purpose
 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
 * be mapped efficiently.
 */
#define EFI_RT_VIRTUAL_BASE	0x40000000

static int cmp_mem_desc(const void *l, const void *r)
{
	const efi_memory_desc_t *left = l, *right = r;

	return (left->phys_addr > right->phys_addr) ? 1 : -1;
}

/*
 * Returns whether region @left ends exactly where region @right starts,
 * or false if either argument is NULL.
 */
static bool regions_are_adjacent(efi_memory_desc_t *left,
				 efi_memory_desc_t *right)
{
	u64 left_end;

	if (left == NULL || right == NULL)
		return false;

	left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE;

	return left_end == right->phys_addr;
}

/*
 * Returns whether region @left and region @right have compatible memory type
 * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
 */
static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left,
						      efi_memory_desc_t *right)
{
	static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT |
					 EFI_MEMORY_WC | EFI_MEMORY_UC |
					 EFI_MEMORY_RUNTIME;

	return ((left->attribute ^ right->attribute) & mem_type_mask) == 0;
}

/*
 * efi_get_virtmap() - create a virtual mapping for the EFI memory map
 *
 * This function populates the virt_addr fields of all memory region descriptors
 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
 * are also copied to @runtime_map, and their total count is returned in @count.
 */
void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
		     int *count)
{
	u64 efi_virt_base = EFI_RT_VIRTUAL_BASE;
	efi_memory_desc_t *in, *prev = NULL, *out = runtime_map;
	int l;

	/*
	 * To work around potential issues with the Properties Table feature
	 * introduced in UEFI 2.5, which may split PE/COFF executable images
	 * in memory into several RuntimeServicesCode and RuntimeServicesData
	 * regions, we need to preserve the relative offsets between adjacent
	 * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
	 * The easiest way to find adjacent regions is to sort the memory map
	 * before traversing it.
	 */
	sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc, NULL);

	for (l = 0; l < map_size; l += desc_size, prev = in) {
		u64 paddr, size;

		in = (void *)memory_map + l;
		if (!(in->attribute & EFI_MEMORY_RUNTIME))
			continue;

		paddr = in->phys_addr;
		size = in->num_pages * EFI_PAGE_SIZE;

		/*
		 * Make the mapping compatible with 64k pages: this allows
		 * a 4k page size kernel to kexec a 64k page size kernel and
		 * vice versa.
		 */
		if (!regions_are_adjacent(prev, in) ||
		    !regions_have_compatible_memory_type_attrs(prev, in)) {

			paddr = round_down(in->phys_addr, SZ_64K);
			size += in->phys_addr - paddr;

			/*
			 * Avoid wasting memory on PTEs by choosing a virtual
			 * base that is compatible with section mappings if this
			 * region has the appropriate size and physical
			 * alignment. (Sections are 2 MB on 4k granule kernels)
			 */
			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
				efi_virt_base = round_up(efi_virt_base, SZ_2M);
			else
				efi_virt_base = round_up(efi_virt_base, SZ_64K);
		}

		in->virt_addr = efi_virt_base + in->phys_addr - paddr;
		efi_virt_base += size;

		memcpy(out, in, desc_size);
		out = (void *)out + desc_size;
		++*count;
	}
}