mic_x100_dma.h 8.34 KB
/*
 * Intel MIC Platform Software Stack (MPSS)
 *
 * Copyright(c) 2014 Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Intel MIC X100 DMA Driver.
 *
 * Adapted from IOAT dma driver.
 */
#ifndef _MIC_X100_DMA_H_
#define _MIC_X100_DMA_H_

#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/debugfs.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/mic_bus.h>

#include "dmaengine.h"

/*
 * MIC has a total of 8 dma channels.
 * Four channels are assigned for host SW use & the remaining for MIC SW.
 * MIC DMA transfer size & addresses need to be 64 byte aligned.
 */
#define MIC_DMA_MAX_NUM_CHAN	8
#define MIC_DMA_NUM_CHAN	4
#define MIC_DMA_ALIGN_SHIFT	DMAENGINE_ALIGN_64_BYTES
#define MIC_DMA_ALIGN_BYTES	(1 << MIC_DMA_ALIGN_SHIFT)
#define MIC_DMA_DESC_RX_SIZE	(128 * 1024 - 4)

/*
 * Register descriptions
 * All the registers are 32 bit registers.
 * DCR is a global register and all others are per-channel.
 * DCR - bits 0, 2, 4, 6, 8, 10, 12, 14 - enable bits for channels 0 to 7
 *	 bits 1, 3, 5, 7, 9, 11, 13, 15 - owner bits for channels 0 to 7
 * DCAR - bit 24 & 25 interrupt masks for mic owned & host owned channels
 * DHPR - head of the descriptor ring updated by s/w
 * DTPR - tail of the descriptor ring updated by h/w
 * DRAR_LO - lower 32 bits of descriptor ring's mic address
 * DRAR_HI - 3:0 - remaining 4 bits of descriptor ring's mic address
 *	     20:4 descriptor ring size
 *	     25:21 mic smpt entry number
 * DSTAT - 16:0 h/w completion count; 31:28 dma engine status
 * DCHERR - this register is non-zero on error
 * DCHERRMSK - interrupt mask register
 */
#define MIC_DMA_HW_CMP_CNT_MASK		0x1ffff
#define MIC_DMA_CHAN_QUIESCE		0x20000000
#define MIC_DMA_SBOX_BASE		0x00010000
#define MIC_DMA_SBOX_DCR		0x0000A280
#define MIC_DMA_SBOX_CH_BASE		0x0001A000
#define MIC_DMA_SBOX_CHAN_OFF		0x40
#define MIC_DMA_SBOX_DCAR_IM0		(0x1 << 24)
#define MIC_DMA_SBOX_DCAR_IM1		(0x1 << 25)
#define MIC_DMA_SBOX_DRARHI_SYS_MASK	(0x1 << 26)
#define MIC_DMA_REG_DCAR		0
#define MIC_DMA_REG_DHPR		4
#define MIC_DMA_REG_DTPR		8
#define MIC_DMA_REG_DRAR_LO		20
#define MIC_DMA_REG_DRAR_HI		24
#define MIC_DMA_REG_DSTAT		32
#define MIC_DMA_REG_DCHERR		44
#define MIC_DMA_REG_DCHERRMSK		48

/* HW dma desc */
struct mic_dma_desc {
	u64 qw0;
	u64 qw1;
};

enum mic_dma_chan_owner {
	MIC_DMA_CHAN_MIC = 0,
	MIC_DMA_CHAN_HOST
};

/*
 * mic_dma_chan - channel specific information
 * @ch_num: channel number
 * @owner: owner of this channel
 * @last_tail: cached value of descriptor ring tail
 * @head: index of next descriptor in desc_ring
 * @issued: hardware notification point
 * @submitted: index that will be used to submit descriptors to h/w
 * @api_ch: dma engine api channel
 * @desc_ring: dma descriptor ring
 * @desc_ring_micpa: mic physical address of desc_ring
 * @status_dest: destination for status (fence) descriptor
 * @status_dest_micpa: mic address for status_dest,
 *		       DMA controller uses this address
 * @tx_array: array of async_tx
 * @cleanup_lock: lock held when processing completed tx
 * @prep_lock: lock held in prep_memcpy & released in tx_submit
 * @issue_lock: lock used to synchronize writes to head
 * @cookie: mic_irq cookie used with mic irq request
 */
struct mic_dma_chan {
	int ch_num;
	enum mic_dma_chan_owner owner;
	u32 last_tail;
	u32 head;
	u32 issued;
	u32 submitted;
	struct dma_chan api_ch;
	struct mic_dma_desc *desc_ring;
	dma_addr_t desc_ring_micpa;
	u64 *status_dest;
	dma_addr_t status_dest_micpa;
	struct dma_async_tx_descriptor *tx_array;
	spinlock_t cleanup_lock;
	spinlock_t prep_lock;
	spinlock_t issue_lock;
	struct mic_irq *cookie;
};

/*
 * struct mic_dma_device - per mic device
 * @mic_ch: dma channels
 * @dma_dev: underlying dma device
 * @mbdev: mic bus dma device
 * @mmio: virtual address of the mmio space
 * @dbg_dir: debugfs directory
 * @start_ch: first channel number that can be used
 * @max_xfer_size: maximum transfer size per dma descriptor
 */
struct mic_dma_device {
	struct mic_dma_chan mic_ch[MIC_DMA_MAX_NUM_CHAN];
	struct dma_device dma_dev;
	struct mbus_device *mbdev;
	void __iomem *mmio;
	struct dentry *dbg_dir;
	int start_ch;
	size_t max_xfer_size;
};

static inline struct mic_dma_chan *to_mic_dma_chan(struct dma_chan *ch)
{
	return container_of(ch, struct mic_dma_chan, api_ch);
}

static inline struct mic_dma_device *to_mic_dma_dev(struct mic_dma_chan *ch)
{
	return
	container_of((const typeof(((struct mic_dma_device *)0)->mic_ch)*)
		     (ch - ch->ch_num), struct mic_dma_device, mic_ch);
}

static inline struct mbus_device *to_mbus_device(struct mic_dma_chan *ch)
{
	return to_mic_dma_dev(ch)->mbdev;
}

static inline struct mbus_hw_ops *to_mbus_hw_ops(struct mic_dma_chan *ch)
{
	return to_mbus_device(ch)->hw_ops;
}

static inline struct device *mic_dma_ch_to_device(struct mic_dma_chan *ch)
{
	return to_mic_dma_dev(ch)->dma_dev.dev;
}

static inline void __iomem *mic_dma_chan_to_mmio(struct mic_dma_chan *ch)
{
	return to_mic_dma_dev(ch)->mmio;
}

static inline u32 mic_dma_read_reg(struct mic_dma_chan *ch, u32 reg)
{
	return ioread32(mic_dma_chan_to_mmio(ch) + MIC_DMA_SBOX_CH_BASE +
			ch->ch_num * MIC_DMA_SBOX_CHAN_OFF + reg);
}

static inline void mic_dma_write_reg(struct mic_dma_chan *ch, u32 reg, u32 val)
{
	iowrite32(val, mic_dma_chan_to_mmio(ch) + MIC_DMA_SBOX_CH_BASE +
		  ch->ch_num * MIC_DMA_SBOX_CHAN_OFF + reg);
}

static inline u32 mic_dma_mmio_read(struct mic_dma_chan *ch, u32 offset)
{
	return ioread32(mic_dma_chan_to_mmio(ch) + offset);
}

static inline void mic_dma_mmio_write(struct mic_dma_chan *ch, u32 val,
				      u32 offset)
{
	iowrite32(val, mic_dma_chan_to_mmio(ch) + offset);
}

static inline u32 mic_dma_read_cmp_cnt(struct mic_dma_chan *ch)
{
	return mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT) &
	       MIC_DMA_HW_CMP_CNT_MASK;
}

static inline void mic_dma_chan_set_owner(struct mic_dma_chan *ch)
{
	u32 dcr = mic_dma_mmio_read(ch, MIC_DMA_SBOX_BASE + MIC_DMA_SBOX_DCR);
	u32 chan_num = ch->ch_num;

	dcr = (dcr & ~(0x1 << (chan_num * 2))) | (ch->owner << (chan_num * 2));
	mic_dma_mmio_write(ch, dcr, MIC_DMA_SBOX_BASE + MIC_DMA_SBOX_DCR);
}

static inline void mic_dma_enable_chan(struct mic_dma_chan *ch)
{
	u32 dcr = mic_dma_mmio_read(ch, MIC_DMA_SBOX_BASE + MIC_DMA_SBOX_DCR);

	dcr |= 2 << (ch->ch_num << 1);
	mic_dma_mmio_write(ch, dcr, MIC_DMA_SBOX_BASE + MIC_DMA_SBOX_DCR);
}

static inline void mic_dma_disable_chan(struct mic_dma_chan *ch)
{
	u32 dcr = mic_dma_mmio_read(ch, MIC_DMA_SBOX_BASE + MIC_DMA_SBOX_DCR);

	dcr &= ~(2 << (ch->ch_num << 1));
	mic_dma_mmio_write(ch, dcr, MIC_DMA_SBOX_BASE + MIC_DMA_SBOX_DCR);
}

static void mic_dma_chan_set_desc_ring(struct mic_dma_chan *ch)
{
	u32 drar_hi;
	dma_addr_t desc_ring_micpa = ch->desc_ring_micpa;

	drar_hi = (MIC_DMA_DESC_RX_SIZE & 0x1ffff) << 4;
	if (MIC_DMA_CHAN_MIC == ch->owner) {
		drar_hi |= (desc_ring_micpa >> 32) & 0xf;
	} else {
		drar_hi |= MIC_DMA_SBOX_DRARHI_SYS_MASK;
		drar_hi |= ((desc_ring_micpa >> 34)
			    & 0x1f) << 21;
		drar_hi |= (desc_ring_micpa >> 32) & 0x3;
	}
	mic_dma_write_reg(ch, MIC_DMA_REG_DRAR_LO, (u32) desc_ring_micpa);
	mic_dma_write_reg(ch, MIC_DMA_REG_DRAR_HI, drar_hi);
}

static inline void mic_dma_chan_mask_intr(struct mic_dma_chan *ch)
{
	u32 dcar = mic_dma_read_reg(ch, MIC_DMA_REG_DCAR);

	if (MIC_DMA_CHAN_MIC == ch->owner)
		dcar |= MIC_DMA_SBOX_DCAR_IM0;
	else
		dcar |= MIC_DMA_SBOX_DCAR_IM1;
	mic_dma_write_reg(ch, MIC_DMA_REG_DCAR, dcar);
}

static inline void mic_dma_chan_unmask_intr(struct mic_dma_chan *ch)
{
	u32 dcar = mic_dma_read_reg(ch, MIC_DMA_REG_DCAR);

	if (MIC_DMA_CHAN_MIC == ch->owner)
		dcar &= ~MIC_DMA_SBOX_DCAR_IM0;
	else
		dcar &= ~MIC_DMA_SBOX_DCAR_IM1;
	mic_dma_write_reg(ch, MIC_DMA_REG_DCAR, dcar);
}

static void mic_dma_ack_interrupt(struct mic_dma_chan *ch)
{
	if (MIC_DMA_CHAN_MIC == ch->owner) {
		/* HW errata */
		mic_dma_chan_mask_intr(ch);
		mic_dma_chan_unmask_intr(ch);
	}
	to_mbus_hw_ops(ch)->ack_interrupt(to_mbus_device(ch), ch->ch_num);
}
#endif