nx-aes-gcm.c 13.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
/**
 * AES GCM routines supporting the Power 7+ Nest Accelerators driver
 *
 * Copyright (C) 2012 International Business Machines Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 only.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * Author: Kent Yoder <yoder1@us.ibm.com>
 */

#include <crypto/internal/aead.h>
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/scatterwalk.h>
#include <linux/module.h>
#include <linux/types.h>
#include <asm/vio.h>

#include "nx_csbcpb.h"
#include "nx.h"


static int gcm_aes_nx_set_key(struct crypto_aead *tfm,
			      const u8           *in_key,
			      unsigned int        key_len)
{
	struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm);
	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
	struct nx_csbcpb *csbcpb_aead = nx_ctx->csbcpb_aead;

	nx_ctx_init(nx_ctx, HCOP_FC_AES);

	switch (key_len) {
	case AES_KEYSIZE_128:
		NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
		NX_CPB_SET_KEY_SIZE(csbcpb_aead, NX_KS_AES_128);
		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
		break;
	case AES_KEYSIZE_192:
		NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_192);
		NX_CPB_SET_KEY_SIZE(csbcpb_aead, NX_KS_AES_192);
		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_192];
		break;
	case AES_KEYSIZE_256:
		NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_256);
		NX_CPB_SET_KEY_SIZE(csbcpb_aead, NX_KS_AES_256);
		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_256];
		break;
	default:
		return -EINVAL;
	}

	csbcpb->cpb.hdr.mode = NX_MODE_AES_GCM;
	memcpy(csbcpb->cpb.aes_gcm.key, in_key, key_len);

	csbcpb_aead->cpb.hdr.mode = NX_MODE_AES_GCA;
	memcpy(csbcpb_aead->cpb.aes_gca.key, in_key, key_len);

	return 0;
}

static int gcm4106_aes_nx_set_key(struct crypto_aead *tfm,
				  const u8           *in_key,
				  unsigned int        key_len)
{
	struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm);
	char *nonce = nx_ctx->priv.gcm.nonce;
	int rc;

	if (key_len < 4)
		return -EINVAL;

	key_len -= 4;

	rc = gcm_aes_nx_set_key(tfm, in_key, key_len);
	if (rc)
		goto out;

	memcpy(nonce, in_key + key_len, 4);
out:
	return rc;
}

static int gcm4106_aes_nx_setauthsize(struct crypto_aead *tfm,
				      unsigned int authsize)
{
	switch (authsize) {
	case 8:
	case 12:
	case 16:
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int nx_gca(struct nx_crypto_ctx  *nx_ctx,
		  struct aead_request   *req,
		  u8                    *out,
		  unsigned int assoclen)
{
	int rc;
	struct nx_csbcpb *csbcpb_aead = nx_ctx->csbcpb_aead;
	struct scatter_walk walk;
	struct nx_sg *nx_sg = nx_ctx->in_sg;
	unsigned int nbytes = assoclen;
	unsigned int processed = 0, to_process;
	unsigned int max_sg_len;

	if (nbytes <= AES_BLOCK_SIZE) {
		scatterwalk_start(&walk, req->src);
		scatterwalk_copychunks(out, &walk, nbytes, SCATTERWALK_FROM_SG);
		scatterwalk_done(&walk, SCATTERWALK_FROM_SG, 0);
		return 0;
	}

	NX_CPB_FDM(csbcpb_aead) &= ~NX_FDM_CONTINUATION;

	/* page_limit: number of sg entries that fit on one page */
	max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
			   nx_ctx->ap->sglen);
	max_sg_len = min_t(u64, max_sg_len,
			   nx_ctx->ap->databytelen/NX_PAGE_SIZE);

	do {
		/*
		 * to_process: the data chunk to process in this update.
		 * This value is bound by sg list limits.
		 */
		to_process = min_t(u64, nbytes - processed,
				   nx_ctx->ap->databytelen);
		to_process = min_t(u64, to_process,
				   NX_PAGE_SIZE * (max_sg_len - 1));

		nx_sg = nx_walk_and_build(nx_ctx->in_sg, max_sg_len,
					  req->src, processed, &to_process);

		if ((to_process + processed) < nbytes)
			NX_CPB_FDM(csbcpb_aead) |= NX_FDM_INTERMEDIATE;
		else
			NX_CPB_FDM(csbcpb_aead) &= ~NX_FDM_INTERMEDIATE;

		nx_ctx->op_aead.inlen = (nx_ctx->in_sg - nx_sg)
					* sizeof(struct nx_sg);

		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op_aead,
				req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
		if (rc)
			return rc;

		memcpy(csbcpb_aead->cpb.aes_gca.in_pat,
				csbcpb_aead->cpb.aes_gca.out_pat,
				AES_BLOCK_SIZE);
		NX_CPB_FDM(csbcpb_aead) |= NX_FDM_CONTINUATION;

		atomic_inc(&(nx_ctx->stats->aes_ops));
		atomic64_add(assoclen, &(nx_ctx->stats->aes_bytes));

		processed += to_process;
	} while (processed < nbytes);

	memcpy(out, csbcpb_aead->cpb.aes_gca.out_pat, AES_BLOCK_SIZE);

	return rc;
}

static int gmac(struct aead_request *req, struct blkcipher_desc *desc,
		unsigned int assoclen)
{
	int rc;
	struct nx_crypto_ctx *nx_ctx =
		crypto_aead_ctx(crypto_aead_reqtfm(req));
	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
	struct nx_sg *nx_sg;
	unsigned int nbytes = assoclen;
	unsigned int processed = 0, to_process;
	unsigned int max_sg_len;

	/* Set GMAC mode */
	csbcpb->cpb.hdr.mode = NX_MODE_AES_GMAC;

	NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;

	/* page_limit: number of sg entries that fit on one page */
	max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
			   nx_ctx->ap->sglen);
	max_sg_len = min_t(u64, max_sg_len,
			   nx_ctx->ap->databytelen/NX_PAGE_SIZE);

	/* Copy IV */
	memcpy(csbcpb->cpb.aes_gcm.iv_or_cnt, desc->info, AES_BLOCK_SIZE);

	do {
		/*
		 * to_process: the data chunk to process in this update.
		 * This value is bound by sg list limits.
		 */
		to_process = min_t(u64, nbytes - processed,
				   nx_ctx->ap->databytelen);
		to_process = min_t(u64, to_process,
				   NX_PAGE_SIZE * (max_sg_len - 1));

		nx_sg = nx_walk_and_build(nx_ctx->in_sg, max_sg_len,
					  req->src, processed, &to_process);

		if ((to_process + processed) < nbytes)
			NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
		else
			NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;

		nx_ctx->op.inlen = (nx_ctx->in_sg - nx_sg)
					* sizeof(struct nx_sg);

		csbcpb->cpb.aes_gcm.bit_length_data = 0;
		csbcpb->cpb.aes_gcm.bit_length_aad = 8 * nbytes;

		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
				req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
		if (rc)
			goto out;

		memcpy(csbcpb->cpb.aes_gcm.in_pat_or_aad,
			csbcpb->cpb.aes_gcm.out_pat_or_mac, AES_BLOCK_SIZE);
		memcpy(csbcpb->cpb.aes_gcm.in_s0,
			csbcpb->cpb.aes_gcm.out_s0, AES_BLOCK_SIZE);

		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;

		atomic_inc(&(nx_ctx->stats->aes_ops));
		atomic64_add(assoclen, &(nx_ctx->stats->aes_bytes));

		processed += to_process;
	} while (processed < nbytes);

out:
	/* Restore GCM mode */
	csbcpb->cpb.hdr.mode = NX_MODE_AES_GCM;
	return rc;
}

static int gcm_empty(struct aead_request *req, struct blkcipher_desc *desc,
		     int enc)
{
	int rc;
	struct nx_crypto_ctx *nx_ctx =
		crypto_aead_ctx(crypto_aead_reqtfm(req));
	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
	char out[AES_BLOCK_SIZE];
	struct nx_sg *in_sg, *out_sg;
	int len;

	/* For scenarios where the input message is zero length, AES CTR mode
	 * may be used. Set the source data to be a single block (16B) of all
	 * zeros, and set the input IV value to be the same as the GMAC IV
	 * value. - nx_wb 4.8.1.3 */

	/* Change to ECB mode */
	csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
	memcpy(csbcpb->cpb.aes_ecb.key, csbcpb->cpb.aes_gcm.key,
			sizeof(csbcpb->cpb.aes_ecb.key));
	if (enc)
		NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
	else
		NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;

	len = AES_BLOCK_SIZE;

	/* Encrypt the counter/IV */
	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) desc->info,
				 &len, nx_ctx->ap->sglen);

	if (len != AES_BLOCK_SIZE)
		return -EINVAL;

	len = sizeof(out);
	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) out, &len,
				  nx_ctx->ap->sglen);

	if (len != sizeof(out))
		return -EINVAL;

	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);

	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
	if (rc)
		goto out;
	atomic_inc(&(nx_ctx->stats->aes_ops));

	/* Copy out the auth tag */
	memcpy(csbcpb->cpb.aes_gcm.out_pat_or_mac, out,
			crypto_aead_authsize(crypto_aead_reqtfm(req)));
out:
	/* Restore XCBC mode */
	csbcpb->cpb.hdr.mode = NX_MODE_AES_GCM;

	/*
	 * ECB key uses the same region that GCM AAD and counter, so it's safe
	 * to just fill it with zeroes.
	 */
	memset(csbcpb->cpb.aes_ecb.key, 0, sizeof(csbcpb->cpb.aes_ecb.key));

	return rc;
}

static int gcm_aes_nx_crypt(struct aead_request *req, int enc,
			    unsigned int assoclen)
{
	struct nx_crypto_ctx *nx_ctx =
		crypto_aead_ctx(crypto_aead_reqtfm(req));
	struct nx_gcm_rctx *rctx = aead_request_ctx(req);
	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
	struct blkcipher_desc desc;
	unsigned int nbytes = req->cryptlen;
	unsigned int processed = 0, to_process;
	unsigned long irq_flags;
	int rc = -EINVAL;

	spin_lock_irqsave(&nx_ctx->lock, irq_flags);

	desc.info = rctx->iv;
	/* initialize the counter */
	*(u32 *)(desc.info + NX_GCM_CTR_OFFSET) = 1;

	if (nbytes == 0) {
		if (assoclen == 0)
			rc = gcm_empty(req, &desc, enc);
		else
			rc = gmac(req, &desc, assoclen);
		if (rc)
			goto out;
		else
			goto mac;
	}

	/* Process associated data */
	csbcpb->cpb.aes_gcm.bit_length_aad = assoclen * 8;
	if (assoclen) {
		rc = nx_gca(nx_ctx, req, csbcpb->cpb.aes_gcm.in_pat_or_aad,
			    assoclen);
		if (rc)
			goto out;
	}

	/* Set flags for encryption */
	NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
	if (enc) {
		NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
	} else {
		NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
		nbytes -= crypto_aead_authsize(crypto_aead_reqtfm(req));
	}

	do {
		to_process = nbytes - processed;

		csbcpb->cpb.aes_gcm.bit_length_data = nbytes * 8;
		rc = nx_build_sg_lists(nx_ctx, &desc, req->dst,
				       req->src, &to_process,
				       processed + req->assoclen,
				       csbcpb->cpb.aes_gcm.iv_or_cnt);

		if (rc)
			goto out;

		if ((to_process + processed) < nbytes)
			NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
		else
			NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;


		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
				   req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
		if (rc)
			goto out;

		memcpy(desc.info, csbcpb->cpb.aes_gcm.out_cnt, AES_BLOCK_SIZE);
		memcpy(csbcpb->cpb.aes_gcm.in_pat_or_aad,
			csbcpb->cpb.aes_gcm.out_pat_or_mac, AES_BLOCK_SIZE);
		memcpy(csbcpb->cpb.aes_gcm.in_s0,
			csbcpb->cpb.aes_gcm.out_s0, AES_BLOCK_SIZE);

		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;

		atomic_inc(&(nx_ctx->stats->aes_ops));
		atomic64_add(csbcpb->csb.processed_byte_count,
			     &(nx_ctx->stats->aes_bytes));

		processed += to_process;
	} while (processed < nbytes);

mac:
	if (enc) {
		/* copy out the auth tag */
		scatterwalk_map_and_copy(
			csbcpb->cpb.aes_gcm.out_pat_or_mac,
			req->dst, req->assoclen + nbytes,
			crypto_aead_authsize(crypto_aead_reqtfm(req)),
			SCATTERWALK_TO_SG);
	} else {
		u8 *itag = nx_ctx->priv.gcm.iauth_tag;
		u8 *otag = csbcpb->cpb.aes_gcm.out_pat_or_mac;

		scatterwalk_map_and_copy(
			itag, req->src, req->assoclen + nbytes,
			crypto_aead_authsize(crypto_aead_reqtfm(req)),
			SCATTERWALK_FROM_SG);
		rc = crypto_memneq(itag, otag,
			    crypto_aead_authsize(crypto_aead_reqtfm(req))) ?
		     -EBADMSG : 0;
	}
out:
	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
	return rc;
}

static int gcm_aes_nx_encrypt(struct aead_request *req)
{
	struct nx_gcm_rctx *rctx = aead_request_ctx(req);
	char *iv = rctx->iv;

	memcpy(iv, req->iv, 12);

	return gcm_aes_nx_crypt(req, 1, req->assoclen);
}

static int gcm_aes_nx_decrypt(struct aead_request *req)
{
	struct nx_gcm_rctx *rctx = aead_request_ctx(req);
	char *iv = rctx->iv;

	memcpy(iv, req->iv, 12);

	return gcm_aes_nx_crypt(req, 0, req->assoclen);
}

static int gcm4106_aes_nx_encrypt(struct aead_request *req)
{
	struct nx_crypto_ctx *nx_ctx =
		crypto_aead_ctx(crypto_aead_reqtfm(req));
	struct nx_gcm_rctx *rctx = aead_request_ctx(req);
	char *iv = rctx->iv;
	char *nonce = nx_ctx->priv.gcm.nonce;

	memcpy(iv, nonce, NX_GCM4106_NONCE_LEN);
	memcpy(iv + NX_GCM4106_NONCE_LEN, req->iv, 8);

	if (req->assoclen < 8)
		return -EINVAL;

	return gcm_aes_nx_crypt(req, 1, req->assoclen - 8);
}

static int gcm4106_aes_nx_decrypt(struct aead_request *req)
{
	struct nx_crypto_ctx *nx_ctx =
		crypto_aead_ctx(crypto_aead_reqtfm(req));
	struct nx_gcm_rctx *rctx = aead_request_ctx(req);
	char *iv = rctx->iv;
	char *nonce = nx_ctx->priv.gcm.nonce;

	memcpy(iv, nonce, NX_GCM4106_NONCE_LEN);
	memcpy(iv + NX_GCM4106_NONCE_LEN, req->iv, 8);

	if (req->assoclen < 8)
		return -EINVAL;

	return gcm_aes_nx_crypt(req, 0, req->assoclen - 8);
}

/* tell the block cipher walk routines that this is a stream cipher by
 * setting cra_blocksize to 1. Even using blkcipher_walk_virt_block
 * during encrypt/decrypt doesn't solve this problem, because it calls
 * blkcipher_walk_done under the covers, which doesn't use walk->blocksize,
 * but instead uses this tfm->blocksize. */
struct aead_alg nx_gcm_aes_alg = {
	.base = {
		.cra_name        = "gcm(aes)",
		.cra_driver_name = "gcm-aes-nx",
		.cra_priority    = 300,
		.cra_blocksize   = 1,
		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
		.cra_module      = THIS_MODULE,
	},
	.init        = nx_crypto_ctx_aes_gcm_init,
	.exit        = nx_crypto_ctx_aead_exit,
	.ivsize      = 12,
	.maxauthsize = AES_BLOCK_SIZE,
	.setkey      = gcm_aes_nx_set_key,
	.encrypt     = gcm_aes_nx_encrypt,
	.decrypt     = gcm_aes_nx_decrypt,
};

struct aead_alg nx_gcm4106_aes_alg = {
	.base = {
		.cra_name        = "rfc4106(gcm(aes))",
		.cra_driver_name = "rfc4106-gcm-aes-nx",
		.cra_priority    = 300,
		.cra_blocksize   = 1,
		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
		.cra_module      = THIS_MODULE,
	},
	.init        = nx_crypto_ctx_aes_gcm_init,
	.exit        = nx_crypto_ctx_aead_exit,
	.ivsize      = 8,
	.maxauthsize = AES_BLOCK_SIZE,
	.setkey      = gcm4106_aes_nx_set_key,
	.setauthsize = gcm4106_aes_nx_setauthsize,
	.encrypt     = gcm4106_aes_nx_encrypt,
	.decrypt     = gcm4106_aes_nx_decrypt,
};