xillybus_core.c 52.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
/*
 * linux/drivers/misc/xillybus_core.c
 *
 * Copyright 2011 Xillybus Ltd, http://xillybus.com
 *
 * Driver for the Xillybus FPGA/host framework.
 *
 * This driver interfaces with a special IP core in an FPGA, setting up
 * a pipe between a hardware FIFO in the programmable logic and a device
 * file in the host. The number of such pipes and their attributes are
 * set up on the logic. This driver detects these automatically and
 * creates the device files accordingly.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the smems of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 */

#include <linux/list.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/spinlock.h>
#include <linux/mutex.h>
#include <linux/crc32.h>
#include <linux/poll.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include "xillybus.h"

MODULE_DESCRIPTION("Xillybus core functions");
MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
MODULE_VERSION("1.07");
MODULE_ALIAS("xillybus_core");
MODULE_LICENSE("GPL v2");

/* General timeout is 100 ms, rx timeout is 10 ms */
#define XILLY_RX_TIMEOUT (10*HZ/1000)
#define XILLY_TIMEOUT (100*HZ/1000)

#define fpga_msg_ctrl_reg              0x0008
#define fpga_dma_control_reg           0x0020
#define fpga_dma_bufno_reg             0x0024
#define fpga_dma_bufaddr_lowaddr_reg   0x0028
#define fpga_dma_bufaddr_highaddr_reg  0x002c
#define fpga_buf_ctrl_reg              0x0030
#define fpga_buf_offset_reg            0x0034
#define fpga_endian_reg                0x0040

#define XILLYMSG_OPCODE_RELEASEBUF 1
#define XILLYMSG_OPCODE_QUIESCEACK 2
#define XILLYMSG_OPCODE_FIFOEOF 3
#define XILLYMSG_OPCODE_FATAL_ERROR 4
#define XILLYMSG_OPCODE_NONEMPTY 5

static const char xillyname[] = "xillybus";

static struct class *xillybus_class;

/*
 * ep_list_lock is the last lock to be taken; No other lock requests are
 * allowed while holding it. It merely protects list_of_endpoints, and not
 * the endpoints listed in it.
 */

static LIST_HEAD(list_of_endpoints);
static struct mutex ep_list_lock;
static struct workqueue_struct *xillybus_wq;

/*
 * Locking scheme: Mutexes protect invocations of character device methods.
 * If both locks are taken, wr_mutex is taken first, rd_mutex second.
 *
 * wr_spinlock protects wr_*_buf_idx, wr_empty, wr_sleepy, wr_ready and the
 * buffers' end_offset fields against changes made by IRQ handler (and in
 * theory, other file request handlers, but the mutex handles that). Nothing
 * else.
 * They are held for short direct memory manipulations. Needless to say,
 * no mutex locking is allowed when a spinlock is held.
 *
 * rd_spinlock does the same with rd_*_buf_idx, rd_empty and end_offset.
 *
 * register_mutex is endpoint-specific, and is held when non-atomic
 * register operations are performed. wr_mutex and rd_mutex may be
 * held when register_mutex is taken, but none of the spinlocks. Note that
 * register_mutex doesn't protect against sporadic buf_ctrl_reg writes
 * which are unrelated to buf_offset_reg, since they are harmless.
 *
 * Blocking on the wait queues is allowed with mutexes held, but not with
 * spinlocks.
 *
 * Only interruptible blocking is allowed on mutexes and wait queues.
 *
 * All in all, the locking order goes (with skips allowed, of course):
 * wr_mutex -> rd_mutex -> register_mutex -> wr_spinlock -> rd_spinlock
 */

static void malformed_message(struct xilly_endpoint *endpoint, u32 *buf)
{
	int opcode;
	int msg_channel, msg_bufno, msg_data, msg_dir;

	opcode = (buf[0] >> 24) & 0xff;
	msg_dir = buf[0] & 1;
	msg_channel = (buf[0] >> 1) & 0x7ff;
	msg_bufno = (buf[0] >> 12) & 0x3ff;
	msg_data = buf[1] & 0xfffffff;

	dev_warn(endpoint->dev,
		 "Malformed message (skipping): opcode=%d, channel=%03x, dir=%d, bufno=%03x, data=%07x\n",
		 opcode, msg_channel, msg_dir, msg_bufno, msg_data);
}

/*
 * xillybus_isr assumes the interrupt is allocated exclusively to it,
 * which is the natural case MSI and several other hardware-oriented
 * interrupts. Sharing is not allowed.
 */

irqreturn_t xillybus_isr(int irq, void *data)
{
	struct xilly_endpoint *ep = data;
	u32 *buf;
	unsigned int buf_size;
	int i;
	int opcode;
	unsigned int msg_channel, msg_bufno, msg_data, msg_dir;
	struct xilly_channel *channel;

	buf = ep->msgbuf_addr;
	buf_size = ep->msg_buf_size/sizeof(u32);

	ep->ephw->hw_sync_sgl_for_cpu(ep,
				      ep->msgbuf_dma_addr,
				      ep->msg_buf_size,
				      DMA_FROM_DEVICE);

	for (i = 0; i < buf_size; i += 2) {
		if (((buf[i+1] >> 28) & 0xf) != ep->msg_counter) {
			malformed_message(ep, &buf[i]);
			dev_warn(ep->dev,
				 "Sending a NACK on counter %x (instead of %x) on entry %d\n",
				 ((buf[i+1] >> 28) & 0xf),
				 ep->msg_counter,
				 i/2);

			if (++ep->failed_messages > 10) {
				dev_err(ep->dev,
					"Lost sync with interrupt messages. Stopping.\n");
			} else {
				ep->ephw->hw_sync_sgl_for_device(
					ep,
					ep->msgbuf_dma_addr,
					ep->msg_buf_size,
					DMA_FROM_DEVICE);

				iowrite32(0x01,  /* Message NACK */
					  ep->registers + fpga_msg_ctrl_reg);
			}
			return IRQ_HANDLED;
		} else if (buf[i] & (1 << 22)) /* Last message */
			break;
	}

	if (i >= buf_size) {
		dev_err(ep->dev, "Bad interrupt message. Stopping.\n");
		return IRQ_HANDLED;
	}

	buf_size = i + 2;

	for (i = 0; i < buf_size; i += 2) { /* Scan through messages */
		opcode = (buf[i] >> 24) & 0xff;

		msg_dir = buf[i] & 1;
		msg_channel = (buf[i] >> 1) & 0x7ff;
		msg_bufno = (buf[i] >> 12) & 0x3ff;
		msg_data = buf[i+1] & 0xfffffff;

		switch (opcode) {
		case XILLYMSG_OPCODE_RELEASEBUF:
			if ((msg_channel > ep->num_channels) ||
			    (msg_channel == 0)) {
				malformed_message(ep, &buf[i]);
				break;
			}

			channel = ep->channels[msg_channel];

			if (msg_dir) { /* Write channel */
				if (msg_bufno >= channel->num_wr_buffers) {
					malformed_message(ep, &buf[i]);
					break;
				}
				spin_lock(&channel->wr_spinlock);
				channel->wr_buffers[msg_bufno]->end_offset =
					msg_data;
				channel->wr_fpga_buf_idx = msg_bufno;
				channel->wr_empty = 0;
				channel->wr_sleepy = 0;
				spin_unlock(&channel->wr_spinlock);

				wake_up_interruptible(&channel->wr_wait);

			} else {
				/* Read channel */

				if (msg_bufno >= channel->num_rd_buffers) {
					malformed_message(ep, &buf[i]);
					break;
				}

				spin_lock(&channel->rd_spinlock);
				channel->rd_fpga_buf_idx = msg_bufno;
				channel->rd_full = 0;
				spin_unlock(&channel->rd_spinlock);

				wake_up_interruptible(&channel->rd_wait);
				if (!channel->rd_synchronous)
					queue_delayed_work(
						xillybus_wq,
						&channel->rd_workitem,
						XILLY_RX_TIMEOUT);
			}

			break;
		case XILLYMSG_OPCODE_NONEMPTY:
			if ((msg_channel > ep->num_channels) ||
			    (msg_channel == 0) || (!msg_dir) ||
			    !ep->channels[msg_channel]->wr_supports_nonempty) {
				malformed_message(ep, &buf[i]);
				break;
			}

			channel = ep->channels[msg_channel];

			if (msg_bufno >= channel->num_wr_buffers) {
				malformed_message(ep, &buf[i]);
				break;
			}
			spin_lock(&channel->wr_spinlock);
			if (msg_bufno == channel->wr_host_buf_idx)
				channel->wr_ready = 1;
			spin_unlock(&channel->wr_spinlock);

			wake_up_interruptible(&channel->wr_ready_wait);

			break;
		case XILLYMSG_OPCODE_QUIESCEACK:
			ep->idtlen = msg_data;
			wake_up_interruptible(&ep->ep_wait);

			break;
		case XILLYMSG_OPCODE_FIFOEOF:
			if ((msg_channel > ep->num_channels) ||
			    (msg_channel == 0) || (!msg_dir) ||
			    !ep->channels[msg_channel]->num_wr_buffers) {
				malformed_message(ep, &buf[i]);
				break;
			}
			channel = ep->channels[msg_channel];
			spin_lock(&channel->wr_spinlock);
			channel->wr_eof = msg_bufno;
			channel->wr_sleepy = 0;

			channel->wr_hangup = channel->wr_empty &&
				(channel->wr_host_buf_idx == msg_bufno);

			spin_unlock(&channel->wr_spinlock);

			wake_up_interruptible(&channel->wr_wait);

			break;
		case XILLYMSG_OPCODE_FATAL_ERROR:
			ep->fatal_error = 1;
			wake_up_interruptible(&ep->ep_wait); /* For select() */
			dev_err(ep->dev,
				"FPGA reported a fatal error. This means that the low-level communication with the device has failed. This hardware problem is most likely unrelated to Xillybus (neither kernel module nor FPGA core), but reports are still welcome. All I/O is aborted.\n");
			break;
		default:
			malformed_message(ep, &buf[i]);
			break;
		}
	}

	ep->ephw->hw_sync_sgl_for_device(ep,
					 ep->msgbuf_dma_addr,
					 ep->msg_buf_size,
					 DMA_FROM_DEVICE);

	ep->msg_counter = (ep->msg_counter + 1) & 0xf;
	ep->failed_messages = 0;
	iowrite32(0x03, ep->registers + fpga_msg_ctrl_reg); /* Message ACK */

	return IRQ_HANDLED;
}
EXPORT_SYMBOL(xillybus_isr);

/*
 * A few trivial memory management functions.
 * NOTE: These functions are used only on probe and remove, and therefore
 * no locks are applied!
 */

static void xillybus_autoflush(struct work_struct *work);

struct xilly_alloc_state {
	void *salami;
	int left_of_salami;
	int nbuffer;
	enum dma_data_direction direction;
	u32 regdirection;
};

static int xilly_get_dma_buffers(struct xilly_endpoint *ep,
				 struct xilly_alloc_state *s,
				 struct xilly_buffer **buffers,
				 int bufnum, int bytebufsize)
{
	int i, rc;
	dma_addr_t dma_addr;
	struct device *dev = ep->dev;
	struct xilly_buffer *this_buffer = NULL; /* Init to silence warning */

	if (buffers) { /* Not the message buffer */
		this_buffer = devm_kcalloc(dev, bufnum,
					   sizeof(struct xilly_buffer),
					   GFP_KERNEL);
		if (!this_buffer)
			return -ENOMEM;
	}

	for (i = 0; i < bufnum; i++) {
		/*
		 * Buffers are expected in descending size order, so there
		 * is either enough space for this buffer or none at all.
		 */

		if ((s->left_of_salami < bytebufsize) &&
		    (s->left_of_salami > 0)) {
			dev_err(ep->dev,
				"Corrupt buffer allocation in IDT. Aborting.\n");
			return -ENODEV;
		}

		if (s->left_of_salami == 0) {
			int allocorder, allocsize;

			allocsize = PAGE_SIZE;
			allocorder = 0;
			while (bytebufsize > allocsize) {
				allocsize *= 2;
				allocorder++;
			}

			s->salami = (void *) devm_get_free_pages(
				dev,
				GFP_KERNEL | __GFP_DMA32 | __GFP_ZERO,
				allocorder);
			if (!s->salami)
				return -ENOMEM;

			s->left_of_salami = allocsize;
		}

		rc = ep->ephw->map_single(ep, s->salami,
					  bytebufsize, s->direction,
					  &dma_addr);
		if (rc)
			return rc;

		iowrite32((u32) (dma_addr & 0xffffffff),
			  ep->registers + fpga_dma_bufaddr_lowaddr_reg);
		iowrite32(((u32) ((((u64) dma_addr) >> 32) & 0xffffffff)),
			  ep->registers + fpga_dma_bufaddr_highaddr_reg);

		if (buffers) { /* Not the message buffer */
			this_buffer->addr = s->salami;
			this_buffer->dma_addr = dma_addr;
			buffers[i] = this_buffer++;

			iowrite32(s->regdirection | s->nbuffer++,
				  ep->registers + fpga_dma_bufno_reg);
		} else {
			ep->msgbuf_addr = s->salami;
			ep->msgbuf_dma_addr = dma_addr;
			ep->msg_buf_size = bytebufsize;

			iowrite32(s->regdirection,
				  ep->registers + fpga_dma_bufno_reg);
		}

		s->left_of_salami -= bytebufsize;
		s->salami += bytebufsize;
	}
	return 0;
}

static int xilly_setupchannels(struct xilly_endpoint *ep,
			       unsigned char *chandesc,
			       int entries)
{
	struct device *dev = ep->dev;
	int i, entry, rc;
	struct xilly_channel *channel;
	int channelnum, bufnum, bufsize, format, is_writebuf;
	int bytebufsize;
	int synchronous, allowpartial, exclusive_open, seekable;
	int supports_nonempty;
	int msg_buf_done = 0;

	struct xilly_alloc_state rd_alloc = {
		.salami = NULL,
		.left_of_salami = 0,
		.nbuffer = 1,
		.direction = DMA_TO_DEVICE,
		.regdirection = 0,
	};

	struct xilly_alloc_state wr_alloc = {
		.salami = NULL,
		.left_of_salami = 0,
		.nbuffer = 1,
		.direction = DMA_FROM_DEVICE,
		.regdirection = 0x80000000,
	};

	channel = devm_kcalloc(dev, ep->num_channels,
			       sizeof(struct xilly_channel), GFP_KERNEL);
	if (!channel)
		return -ENOMEM;

	ep->channels = devm_kcalloc(dev, ep->num_channels + 1,
				    sizeof(struct xilly_channel *),
				    GFP_KERNEL);
	if (!ep->channels)
		return -ENOMEM;

	ep->channels[0] = NULL; /* Channel 0 is message buf. */

	/* Initialize all channels with defaults */

	for (i = 1; i <= ep->num_channels; i++) {
		channel->wr_buffers = NULL;
		channel->rd_buffers = NULL;
		channel->num_wr_buffers = 0;
		channel->num_rd_buffers = 0;
		channel->wr_fpga_buf_idx = -1;
		channel->wr_host_buf_idx = 0;
		channel->wr_host_buf_pos = 0;
		channel->wr_empty = 1;
		channel->wr_ready = 0;
		channel->wr_sleepy = 1;
		channel->rd_fpga_buf_idx = 0;
		channel->rd_host_buf_idx = 0;
		channel->rd_host_buf_pos = 0;
		channel->rd_full = 0;
		channel->wr_ref_count = 0;
		channel->rd_ref_count = 0;

		spin_lock_init(&channel->wr_spinlock);
		spin_lock_init(&channel->rd_spinlock);
		mutex_init(&channel->wr_mutex);
		mutex_init(&channel->rd_mutex);
		init_waitqueue_head(&channel->rd_wait);
		init_waitqueue_head(&channel->wr_wait);
		init_waitqueue_head(&channel->wr_ready_wait);

		INIT_DELAYED_WORK(&channel->rd_workitem, xillybus_autoflush);

		channel->endpoint = ep;
		channel->chan_num = i;

		channel->log2_element_size = 0;

		ep->channels[i] = channel++;
	}

	for (entry = 0; entry < entries; entry++, chandesc += 4) {
		struct xilly_buffer **buffers = NULL;

		is_writebuf = chandesc[0] & 0x01;
		channelnum = (chandesc[0] >> 1) | ((chandesc[1] & 0x0f) << 7);
		format = (chandesc[1] >> 4) & 0x03;
		allowpartial = (chandesc[1] >> 6) & 0x01;
		synchronous = (chandesc[1] >> 7) & 0x01;
		bufsize = 1 << (chandesc[2] & 0x1f);
		bufnum = 1 << (chandesc[3] & 0x0f);
		exclusive_open = (chandesc[2] >> 7) & 0x01;
		seekable = (chandesc[2] >> 6) & 0x01;
		supports_nonempty = (chandesc[2] >> 5) & 0x01;

		if ((channelnum > ep->num_channels) ||
		    ((channelnum == 0) && !is_writebuf)) {
			dev_err(ep->dev,
				"IDT requests channel out of range. Aborting.\n");
			return -ENODEV;
		}

		channel = ep->channels[channelnum]; /* NULL for msg channel */

		if (!is_writebuf || channelnum > 0) {
			channel->log2_element_size = ((format > 2) ?
						      2 : format);

			bytebufsize = channel->rd_buf_size = bufsize *
				(1 << channel->log2_element_size);

			buffers = devm_kcalloc(dev, bufnum,
					       sizeof(struct xilly_buffer *),
					       GFP_KERNEL);
			if (!buffers)
				return -ENOMEM;
		} else {
			bytebufsize = bufsize << 2;
		}

		if (!is_writebuf) {
			channel->num_rd_buffers = bufnum;
			channel->rd_allow_partial = allowpartial;
			channel->rd_synchronous = synchronous;
			channel->rd_exclusive_open = exclusive_open;
			channel->seekable = seekable;

			channel->rd_buffers = buffers;
			rc = xilly_get_dma_buffers(ep, &rd_alloc, buffers,
						   bufnum, bytebufsize);
		} else if (channelnum > 0) {
			channel->num_wr_buffers = bufnum;

			channel->seekable = seekable;
			channel->wr_supports_nonempty = supports_nonempty;

			channel->wr_allow_partial = allowpartial;
			channel->wr_synchronous = synchronous;
			channel->wr_exclusive_open = exclusive_open;

			channel->wr_buffers = buffers;
			rc = xilly_get_dma_buffers(ep, &wr_alloc, buffers,
						   bufnum, bytebufsize);
		} else {
			rc = xilly_get_dma_buffers(ep, &wr_alloc, NULL,
						   bufnum, bytebufsize);
			msg_buf_done++;
		}

		if (rc)
			return -ENOMEM;
	}

	if (!msg_buf_done) {
		dev_err(ep->dev,
			"Corrupt IDT: No message buffer. Aborting.\n");
		return -ENODEV;
	}
	return 0;
}

static int xilly_scan_idt(struct xilly_endpoint *endpoint,
			  struct xilly_idt_handle *idt_handle)
{
	int count = 0;
	unsigned char *idt = endpoint->channels[1]->wr_buffers[0]->addr;
	unsigned char *end_of_idt = idt + endpoint->idtlen - 4;
	unsigned char *scan;
	int len;

	scan = idt;
	idt_handle->idt = idt;

	scan++; /* Skip version number */

	while ((scan <= end_of_idt) && *scan) {
		while ((scan <= end_of_idt) && *scan++)
			/* Do nothing, just scan thru string */;
		count++;
	}

	scan++;

	if (scan > end_of_idt) {
		dev_err(endpoint->dev,
			"IDT device name list overflow. Aborting.\n");
		return -ENODEV;
	}
	idt_handle->chandesc = scan;

	len = endpoint->idtlen - (3 + ((int) (scan - idt)));

	if (len & 0x03) {
		dev_err(endpoint->dev,
			"Corrupt IDT device name list. Aborting.\n");
		return -ENODEV;
	}

	idt_handle->entries = len >> 2;
	endpoint->num_channels = count;

	return 0;
}

static int xilly_obtain_idt(struct xilly_endpoint *endpoint)
{
	struct xilly_channel *channel;
	unsigned char *version;
	long t;

	channel = endpoint->channels[1]; /* This should be generated ad-hoc */

	channel->wr_sleepy = 1;

	iowrite32(1 |
		  (3 << 24), /* Opcode 3 for channel 0 = Send IDT */
		  endpoint->registers + fpga_buf_ctrl_reg);

	t = wait_event_interruptible_timeout(channel->wr_wait,
					     (!channel->wr_sleepy),
					     XILLY_TIMEOUT);

	if (t <= 0) {
		dev_err(endpoint->dev, "Failed to obtain IDT. Aborting.\n");

		if (endpoint->fatal_error)
			return -EIO;

		return -ENODEV;
	}

	endpoint->ephw->hw_sync_sgl_for_cpu(
		channel->endpoint,
		channel->wr_buffers[0]->dma_addr,
		channel->wr_buf_size,
		DMA_FROM_DEVICE);

	if (channel->wr_buffers[0]->end_offset != endpoint->idtlen) {
		dev_err(endpoint->dev,
			"IDT length mismatch (%d != %d). Aborting.\n",
			channel->wr_buffers[0]->end_offset, endpoint->idtlen);
		return -ENODEV;
	}

	if (crc32_le(~0, channel->wr_buffers[0]->addr,
		     endpoint->idtlen+1) != 0) {
		dev_err(endpoint->dev, "IDT failed CRC check. Aborting.\n");
		return -ENODEV;
	}

	version = channel->wr_buffers[0]->addr;

	/* Check version number. Accept anything below 0x82 for now. */
	if (*version > 0x82) {
		dev_err(endpoint->dev,
			"No support for IDT version 0x%02x. Maybe the xillybus driver needs an upgarde. Aborting.\n",
			*version);
		return -ENODEV;
	}

	return 0;
}

static ssize_t xillybus_read(struct file *filp, char __user *userbuf,
			     size_t count, loff_t *f_pos)
{
	ssize_t rc;
	unsigned long flags;
	int bytes_done = 0;
	int no_time_left = 0;
	long deadline, left_to_sleep;
	struct xilly_channel *channel = filp->private_data;

	int empty, reached_eof, exhausted, ready;
	/* Initializations are there only to silence warnings */

	int howmany = 0, bufpos = 0, bufidx = 0, bufferdone = 0;
	int waiting_bufidx;

	if (channel->endpoint->fatal_error)
		return -EIO;

	deadline = jiffies + 1 + XILLY_RX_TIMEOUT;

	rc = mutex_lock_interruptible(&channel->wr_mutex);
	if (rc)
		return rc;

	while (1) { /* Note that we may drop mutex within this loop */
		int bytes_to_do = count - bytes_done;

		spin_lock_irqsave(&channel->wr_spinlock, flags);

		empty = channel->wr_empty;
		ready = !empty || channel->wr_ready;

		if (!empty) {
			bufidx = channel->wr_host_buf_idx;
			bufpos = channel->wr_host_buf_pos;
			howmany = ((channel->wr_buffers[bufidx]->end_offset
				    + 1) << channel->log2_element_size)
				- bufpos;

			/* Update wr_host_* to its post-operation state */
			if (howmany > bytes_to_do) {
				bufferdone = 0;

				howmany = bytes_to_do;
				channel->wr_host_buf_pos += howmany;
			} else {
				bufferdone = 1;

				channel->wr_host_buf_pos = 0;

				if (bufidx == channel->wr_fpga_buf_idx) {
					channel->wr_empty = 1;
					channel->wr_sleepy = 1;
					channel->wr_ready = 0;
				}

				if (bufidx >= (channel->num_wr_buffers - 1))
					channel->wr_host_buf_idx = 0;
				else
					channel->wr_host_buf_idx++;
			}
		}

		/*
		 * Marking our situation after the possible changes above,
		 * for use after releasing the spinlock.
		 *
		 * empty = empty before change
		 * exhasted = empty after possible change
		 */

		reached_eof = channel->wr_empty &&
			(channel->wr_host_buf_idx == channel->wr_eof);
		channel->wr_hangup = reached_eof;
		exhausted = channel->wr_empty;
		waiting_bufidx = channel->wr_host_buf_idx;

		spin_unlock_irqrestore(&channel->wr_spinlock, flags);

		if (!empty) { /* Go on, now without the spinlock */

			if (bufpos == 0) /* Position zero means it's virgin */
				channel->endpoint->ephw->hw_sync_sgl_for_cpu(
					channel->endpoint,
					channel->wr_buffers[bufidx]->dma_addr,
					channel->wr_buf_size,
					DMA_FROM_DEVICE);

			if (copy_to_user(
				    userbuf,
				    channel->wr_buffers[bufidx]->addr
				    + bufpos, howmany))
				rc = -EFAULT;

			userbuf += howmany;
			bytes_done += howmany;

			if (bufferdone) {
				channel->endpoint->ephw->hw_sync_sgl_for_device(
					channel->endpoint,
					channel->wr_buffers[bufidx]->dma_addr,
					channel->wr_buf_size,
					DMA_FROM_DEVICE);

				/*
				 * Tell FPGA the buffer is done with. It's an
				 * atomic operation to the FPGA, so what
				 * happens with other channels doesn't matter,
				 * and the certain channel is protected with
				 * the channel-specific mutex.
				 */

				iowrite32(1 | (channel->chan_num << 1) |
					  (bufidx << 12),
					  channel->endpoint->registers +
					  fpga_buf_ctrl_reg);
			}

			if (rc) {
				mutex_unlock(&channel->wr_mutex);
				return rc;
			}
		}

		/* This includes a zero-count return = EOF */
		if ((bytes_done >= count) || reached_eof)
			break;

		if (!exhausted)
			continue; /* More in RAM buffer(s)? Just go on. */

		if ((bytes_done > 0) &&
		    (no_time_left ||
		     (channel->wr_synchronous && channel->wr_allow_partial)))
			break;

		/*
		 * Nonblocking read: The "ready" flag tells us that the FPGA
		 * has data to send. In non-blocking mode, if it isn't on,
		 * just return. But if there is, we jump directly to the point
		 * where we ask for the FPGA to send all it has, and wait
		 * until that data arrives. So in a sense, we *do* block in
		 * nonblocking mode, but only for a very short time.
		 */

		if (!no_time_left && (filp->f_flags & O_NONBLOCK)) {
			if (bytes_done > 0)
				break;

			if (ready)
				goto desperate;

			rc = -EAGAIN;
			break;
		}

		if (!no_time_left || (bytes_done > 0)) {
			/*
			 * Note that in case of an element-misaligned read
			 * request, offsetlimit will include the last element,
			 * which will be partially read from.
			 */
			int offsetlimit = ((count - bytes_done) - 1) >>
				channel->log2_element_size;
			int buf_elements = channel->wr_buf_size >>
				channel->log2_element_size;

			/*
			 * In synchronous mode, always send an offset limit.
			 * Just don't send a value too big.
			 */

			if (channel->wr_synchronous) {
				/* Don't request more than one buffer */
				if (channel->wr_allow_partial &&
				    (offsetlimit >= buf_elements))
					offsetlimit = buf_elements - 1;

				/* Don't request more than all buffers */
				if (!channel->wr_allow_partial &&
				    (offsetlimit >=
				     (buf_elements * channel->num_wr_buffers)))
					offsetlimit = buf_elements *
						channel->num_wr_buffers - 1;
			}

			/*
			 * In asynchronous mode, force early flush of a buffer
			 * only if that will allow returning a full count. The
			 * "offsetlimit < ( ... )" rather than "<=" excludes
			 * requesting a full buffer, which would obviously
			 * cause a buffer transmission anyhow
			 */

			if (channel->wr_synchronous ||
			    (offsetlimit < (buf_elements - 1))) {
				mutex_lock(&channel->endpoint->register_mutex);

				iowrite32(offsetlimit,
					  channel->endpoint->registers +
					  fpga_buf_offset_reg);

				iowrite32(1 | (channel->chan_num << 1) |
					  (2 << 24) |  /* 2 = offset limit */
					  (waiting_bufidx << 12),
					  channel->endpoint->registers +
					  fpga_buf_ctrl_reg);

				mutex_unlock(&channel->endpoint->
					     register_mutex);
			}
		}

		/*
		 * If partial completion is disallowed, there is no point in
		 * timeout sleeping. Neither if no_time_left is set and
		 * there's no data.
		 */

		if (!channel->wr_allow_partial ||
		    (no_time_left && (bytes_done == 0))) {
			/*
			 * This do-loop will run more than once if another
			 * thread reasserted wr_sleepy before we got the mutex
			 * back, so we try again.
			 */

			do {
				mutex_unlock(&channel->wr_mutex);

				if (wait_event_interruptible(
					    channel->wr_wait,
					    (!channel->wr_sleepy)))
					goto interrupted;

				if (mutex_lock_interruptible(
					    &channel->wr_mutex))
					goto interrupted;
			} while (channel->wr_sleepy);

			continue;

interrupted: /* Mutex is not held if got here */
			if (channel->endpoint->fatal_error)
				return -EIO;
			if (bytes_done)
				return bytes_done;
			if (filp->f_flags & O_NONBLOCK)
				return -EAGAIN; /* Don't admit snoozing */
			return -EINTR;
		}

		left_to_sleep = deadline - ((long) jiffies);

		/*
		 * If our time is out, skip the waiting. We may miss wr_sleepy
		 * being deasserted but hey, almost missing the train is like
		 * missing it.
		 */

		if (left_to_sleep > 0) {
			left_to_sleep =
				wait_event_interruptible_timeout(
					channel->wr_wait,
					(!channel->wr_sleepy),
					left_to_sleep);

			if (left_to_sleep > 0) /* wr_sleepy deasserted */
				continue;

			if (left_to_sleep < 0) { /* Interrupt */
				mutex_unlock(&channel->wr_mutex);
				if (channel->endpoint->fatal_error)
					return -EIO;
				if (bytes_done)
					return bytes_done;
				return -EINTR;
			}
		}

desperate:
		no_time_left = 1; /* We're out of sleeping time. Desperate! */

		if (bytes_done == 0) {
			/*
			 * Reaching here means that we allow partial return,
			 * that we've run out of time, and that we have
			 * nothing to return.
			 * So tell the FPGA to send anything it has or gets.
			 */

			iowrite32(1 | (channel->chan_num << 1) |
				  (3 << 24) |  /* Opcode 3, flush it all! */
				  (waiting_bufidx << 12),
				  channel->endpoint->registers +
				  fpga_buf_ctrl_reg);
		}

		/*
		 * Reaching here means that we *do* have data in the buffer,
		 * but the "partial" flag disallows returning less than
		 * required. And we don't have as much. So loop again,
		 * which is likely to end up blocking indefinitely until
		 * enough data has arrived.
		 */
	}

	mutex_unlock(&channel->wr_mutex);

	if (channel->endpoint->fatal_error)
		return -EIO;

	if (rc)
		return rc;

	return bytes_done;
}

/*
 * The timeout argument takes values as follows:
 *  >0 : Flush with timeout
 * ==0 : Flush, and wait idefinitely for the flush to complete
 *  <0 : Autoflush: Flush only if there's a single buffer occupied
 */

static int xillybus_myflush(struct xilly_channel *channel, long timeout)
{
	int rc;
	unsigned long flags;

	int end_offset_plus1;
	int bufidx, bufidx_minus1;
	int i;
	int empty;
	int new_rd_host_buf_pos;

	if (channel->endpoint->fatal_error)
		return -EIO;
	rc = mutex_lock_interruptible(&channel->rd_mutex);
	if (rc)
		return rc;

	/*
	 * Don't flush a closed channel. This can happen when the work queued
	 * autoflush thread fires off after the file has closed. This is not
	 * an error, just something to dismiss.
	 */

	if (!channel->rd_ref_count)
		goto done;

	bufidx = channel->rd_host_buf_idx;

	bufidx_minus1 = (bufidx == 0) ?
		channel->num_rd_buffers - 1 :
		bufidx - 1;

	end_offset_plus1 = channel->rd_host_buf_pos >>
		channel->log2_element_size;

	new_rd_host_buf_pos = channel->rd_host_buf_pos -
		(end_offset_plus1 << channel->log2_element_size);

	/* Submit the current buffer if it's nonempty */
	if (end_offset_plus1) {
		unsigned char *tail = channel->rd_buffers[bufidx]->addr +
			(end_offset_plus1 << channel->log2_element_size);

		/* Copy  unflushed data, so we can put it in next buffer */
		for (i = 0; i < new_rd_host_buf_pos; i++)
			channel->rd_leftovers[i] = *tail++;

		spin_lock_irqsave(&channel->rd_spinlock, flags);

		/* Autoflush only if a single buffer is occupied */

		if ((timeout < 0) &&
		    (channel->rd_full ||
		     (bufidx_minus1 != channel->rd_fpga_buf_idx))) {
			spin_unlock_irqrestore(&channel->rd_spinlock, flags);
			/*
			 * A new work item may be queued by the ISR exactly
			 * now, since the execution of a work item allows the
			 * queuing of a new one while it's running.
			 */
			goto done;
		}

		/* The 4th element is never needed for data, so it's a flag */
		channel->rd_leftovers[3] = (new_rd_host_buf_pos != 0);

		/* Set up rd_full to reflect a certain moment's state */

		if (bufidx == channel->rd_fpga_buf_idx)
			channel->rd_full = 1;
		spin_unlock_irqrestore(&channel->rd_spinlock, flags);

		if (bufidx >= (channel->num_rd_buffers - 1))
			channel->rd_host_buf_idx = 0;
		else
			channel->rd_host_buf_idx++;

		channel->endpoint->ephw->hw_sync_sgl_for_device(
			channel->endpoint,
			channel->rd_buffers[bufidx]->dma_addr,
			channel->rd_buf_size,
			DMA_TO_DEVICE);

		mutex_lock(&channel->endpoint->register_mutex);

		iowrite32(end_offset_plus1 - 1,
			  channel->endpoint->registers + fpga_buf_offset_reg);

		iowrite32((channel->chan_num << 1) | /* Channel ID */
			  (2 << 24) |  /* Opcode 2, submit buffer */
			  (bufidx << 12),
			  channel->endpoint->registers + fpga_buf_ctrl_reg);

		mutex_unlock(&channel->endpoint->register_mutex);
	} else if (bufidx == 0) {
		bufidx = channel->num_rd_buffers - 1;
	} else {
		bufidx--;
	}

	channel->rd_host_buf_pos = new_rd_host_buf_pos;

	if (timeout < 0)
		goto done; /* Autoflush */

	/*
	 * bufidx is now the last buffer written to (or equal to
	 * rd_fpga_buf_idx if buffer was never written to), and
	 * channel->rd_host_buf_idx the one after it.
	 *
	 * If bufidx == channel->rd_fpga_buf_idx we're either empty or full.
	 */

	while (1) { /* Loop waiting for draining of buffers */
		spin_lock_irqsave(&channel->rd_spinlock, flags);

		if (bufidx != channel->rd_fpga_buf_idx)
			channel->rd_full = 1; /*
					       * Not really full,
					       * but needs waiting.
					       */

		empty = !channel->rd_full;

		spin_unlock_irqrestore(&channel->rd_spinlock, flags);

		if (empty)
			break;

		/*
		 * Indefinite sleep with mutex taken. With data waiting for
		 * flushing user should not be surprised if open() for write
		 * sleeps.
		 */
		if (timeout == 0)
			wait_event_interruptible(channel->rd_wait,
						 (!channel->rd_full));

		else if (wait_event_interruptible_timeout(
				 channel->rd_wait,
				 (!channel->rd_full),
				 timeout) == 0) {
			dev_warn(channel->endpoint->dev,
				 "Timed out while flushing. Output data may be lost.\n");

			rc = -ETIMEDOUT;
			break;
		}

		if (channel->rd_full) {
			rc = -EINTR;
			break;
		}
	}

done:
	mutex_unlock(&channel->rd_mutex);

	if (channel->endpoint->fatal_error)
		return -EIO;

	return rc;
}

static int xillybus_flush(struct file *filp, fl_owner_t id)
{
	if (!(filp->f_mode & FMODE_WRITE))
		return 0;

	return xillybus_myflush(filp->private_data, HZ); /* 1 second timeout */
}

static void xillybus_autoflush(struct work_struct *work)
{
	struct delayed_work *workitem = container_of(
		work, struct delayed_work, work);
	struct xilly_channel *channel = container_of(
		workitem, struct xilly_channel, rd_workitem);
	int rc;

	rc = xillybus_myflush(channel, -1);
	if (rc == -EINTR)
		dev_warn(channel->endpoint->dev,
			 "Autoflush failed because work queue thread got a signal.\n");
	else if (rc)
		dev_err(channel->endpoint->dev,
			"Autoflush failed under weird circumstances.\n");
}

static ssize_t xillybus_write(struct file *filp, const char __user *userbuf,
			      size_t count, loff_t *f_pos)
{
	ssize_t rc;
	unsigned long flags;
	int bytes_done = 0;
	struct xilly_channel *channel = filp->private_data;

	int full, exhausted;
	/* Initializations are there only to silence warnings */

	int howmany = 0, bufpos = 0, bufidx = 0, bufferdone = 0;
	int end_offset_plus1 = 0;

	if (channel->endpoint->fatal_error)
		return -EIO;

	rc = mutex_lock_interruptible(&channel->rd_mutex);
	if (rc)
		return rc;

	while (1) {
		int bytes_to_do = count - bytes_done;

		spin_lock_irqsave(&channel->rd_spinlock, flags);

		full = channel->rd_full;

		if (!full) {
			bufidx = channel->rd_host_buf_idx;
			bufpos = channel->rd_host_buf_pos;
			howmany = channel->rd_buf_size - bufpos;

			/*
			 * Update rd_host_* to its state after this operation.
			 * count=0 means committing the buffer immediately,
			 * which is like flushing, but not necessarily block.
			 */

			if ((howmany > bytes_to_do) &&
			    (count ||
			     ((bufpos >> channel->log2_element_size) == 0))) {
				bufferdone = 0;

				howmany = bytes_to_do;
				channel->rd_host_buf_pos += howmany;
			} else {
				bufferdone = 1;

				if (count) {
					end_offset_plus1 =
						channel->rd_buf_size >>
						channel->log2_element_size;
					channel->rd_host_buf_pos = 0;
				} else {
					unsigned char *tail;
					int i;

					howmany = 0;

					end_offset_plus1 = bufpos >>
						channel->log2_element_size;

					channel->rd_host_buf_pos -=
						end_offset_plus1 <<
						channel->log2_element_size;

					tail = channel->
						rd_buffers[bufidx]->addr +
						(end_offset_plus1 <<
						 channel->log2_element_size);

					for (i = 0;
					     i < channel->rd_host_buf_pos;
					     i++)
						channel->rd_leftovers[i] =
							*tail++;
				}

				if (bufidx == channel->rd_fpga_buf_idx)
					channel->rd_full = 1;

				if (bufidx >= (channel->num_rd_buffers - 1))
					channel->rd_host_buf_idx = 0;
				else
					channel->rd_host_buf_idx++;
			}
		}

		/*
		 * Marking our situation after the possible changes above,
		 * for use  after releasing the spinlock.
		 *
		 * full = full before change
		 * exhasted = full after possible change
		 */

		exhausted = channel->rd_full;

		spin_unlock_irqrestore(&channel->rd_spinlock, flags);

		if (!full) { /* Go on, now without the spinlock */
			unsigned char *head =
				channel->rd_buffers[bufidx]->addr;
			int i;

			if ((bufpos == 0) || /* Zero means it's virgin */
			    (channel->rd_leftovers[3] != 0)) {
				channel->endpoint->ephw->hw_sync_sgl_for_cpu(
					channel->endpoint,
					channel->rd_buffers[bufidx]->dma_addr,
					channel->rd_buf_size,
					DMA_TO_DEVICE);

				/* Virgin, but leftovers are due */
				for (i = 0; i < bufpos; i++)
					*head++ = channel->rd_leftovers[i];

				channel->rd_leftovers[3] = 0; /* Clear flag */
			}

			if (copy_from_user(
				    channel->rd_buffers[bufidx]->addr + bufpos,
				    userbuf, howmany))
				rc = -EFAULT;

			userbuf += howmany;
			bytes_done += howmany;

			if (bufferdone) {
				channel->endpoint->ephw->hw_sync_sgl_for_device(
					channel->endpoint,
					channel->rd_buffers[bufidx]->dma_addr,
					channel->rd_buf_size,
					DMA_TO_DEVICE);

				mutex_lock(&channel->endpoint->register_mutex);

				iowrite32(end_offset_plus1 - 1,
					  channel->endpoint->registers +
					  fpga_buf_offset_reg);

				iowrite32((channel->chan_num << 1) |
					  (2 << 24) |  /* 2 = submit buffer */
					  (bufidx << 12),
					  channel->endpoint->registers +
					  fpga_buf_ctrl_reg);

				mutex_unlock(&channel->endpoint->
					     register_mutex);

				channel->rd_leftovers[3] =
					(channel->rd_host_buf_pos != 0);
			}

			if (rc) {
				mutex_unlock(&channel->rd_mutex);

				if (channel->endpoint->fatal_error)
					return -EIO;

				if (!channel->rd_synchronous)
					queue_delayed_work(
						xillybus_wq,
						&channel->rd_workitem,
						XILLY_RX_TIMEOUT);

				return rc;
			}
		}

		if (bytes_done >= count)
			break;

		if (!exhausted)
			continue; /* If there's more space, just go on */

		if ((bytes_done > 0) && channel->rd_allow_partial)
			break;

		/*
		 * Indefinite sleep with mutex taken. With data waiting for
		 * flushing, user should not be surprised if open() for write
		 * sleeps.
		 */

		if (filp->f_flags & O_NONBLOCK) {
			rc = -EAGAIN;
			break;
		}

		if (wait_event_interruptible(channel->rd_wait,
					     (!channel->rd_full))) {
			mutex_unlock(&channel->rd_mutex);

			if (channel->endpoint->fatal_error)
				return -EIO;

			if (bytes_done)
				return bytes_done;
			return -EINTR;
		}
	}

	mutex_unlock(&channel->rd_mutex);

	if (!channel->rd_synchronous)
		queue_delayed_work(xillybus_wq,
				   &channel->rd_workitem,
				   XILLY_RX_TIMEOUT);

	if (channel->endpoint->fatal_error)
		return -EIO;

	if (rc)
		return rc;

	if ((channel->rd_synchronous) && (bytes_done > 0)) {
		rc = xillybus_myflush(filp->private_data, 0); /* No timeout */

		if (rc && (rc != -EINTR))
			return rc;
	}

	return bytes_done;
}

static int xillybus_open(struct inode *inode, struct file *filp)
{
	int rc = 0;
	unsigned long flags;
	int minor = iminor(inode);
	int major = imajor(inode);
	struct xilly_endpoint *ep_iter, *endpoint = NULL;
	struct xilly_channel *channel;

	mutex_lock(&ep_list_lock);

	list_for_each_entry(ep_iter, &list_of_endpoints, ep_list) {
		if ((ep_iter->major == major) &&
		    (minor >= ep_iter->lowest_minor) &&
		    (minor < (ep_iter->lowest_minor +
			      ep_iter->num_channels))) {
			endpoint = ep_iter;
			break;
		}
	}
	mutex_unlock(&ep_list_lock);

	if (!endpoint) {
		pr_err("xillybus: open() failed to find a device for major=%d and minor=%d\n",
		       major, minor);
		return -ENODEV;
	}

	if (endpoint->fatal_error)
		return -EIO;

	channel = endpoint->channels[1 + minor - endpoint->lowest_minor];
	filp->private_data = channel;

	/*
	 * It gets complicated because:
	 * 1. We don't want to take a mutex we don't have to
	 * 2. We don't want to open one direction if the other will fail.
	 */

	if ((filp->f_mode & FMODE_READ) && (!channel->num_wr_buffers))
		return -ENODEV;

	if ((filp->f_mode & FMODE_WRITE) && (!channel->num_rd_buffers))
		return -ENODEV;

	if ((filp->f_mode & FMODE_READ) && (filp->f_flags & O_NONBLOCK) &&
	    (channel->wr_synchronous || !channel->wr_allow_partial ||
	     !channel->wr_supports_nonempty)) {
		dev_err(endpoint->dev,
			"open() failed: O_NONBLOCK not allowed for read on this device\n");
		return -ENODEV;
	}

	if ((filp->f_mode & FMODE_WRITE) && (filp->f_flags & O_NONBLOCK) &&
	    (channel->rd_synchronous || !channel->rd_allow_partial)) {
		dev_err(endpoint->dev,
			"open() failed: O_NONBLOCK not allowed for write on this device\n");
		return -ENODEV;
	}

	/*
	 * Note: open() may block on getting mutexes despite O_NONBLOCK.
	 * This shouldn't occur normally, since multiple open of the same
	 * file descriptor is almost always prohibited anyhow
	 * (*_exclusive_open is normally set in real-life systems).
	 */

	if (filp->f_mode & FMODE_READ) {
		rc = mutex_lock_interruptible(&channel->wr_mutex);
		if (rc)
			return rc;
	}

	if (filp->f_mode & FMODE_WRITE) {
		rc = mutex_lock_interruptible(&channel->rd_mutex);
		if (rc)
			goto unlock_wr;
	}

	if ((filp->f_mode & FMODE_READ) &&
	    (channel->wr_ref_count != 0) &&
	    (channel->wr_exclusive_open)) {
		rc = -EBUSY;
		goto unlock;
	}

	if ((filp->f_mode & FMODE_WRITE) &&
	    (channel->rd_ref_count != 0) &&
	    (channel->rd_exclusive_open)) {
		rc = -EBUSY;
		goto unlock;
	}

	if (filp->f_mode & FMODE_READ) {
		if (channel->wr_ref_count == 0) { /* First open of file */
			/* Move the host to first buffer */
			spin_lock_irqsave(&channel->wr_spinlock, flags);
			channel->wr_host_buf_idx = 0;
			channel->wr_host_buf_pos = 0;
			channel->wr_fpga_buf_idx = -1;
			channel->wr_empty = 1;
			channel->wr_ready = 0;
			channel->wr_sleepy = 1;
			channel->wr_eof = -1;
			channel->wr_hangup = 0;

			spin_unlock_irqrestore(&channel->wr_spinlock, flags);

			iowrite32(1 | (channel->chan_num << 1) |
				  (4 << 24) |  /* Opcode 4, open channel */
				  ((channel->wr_synchronous & 1) << 23),
				  channel->endpoint->registers +
				  fpga_buf_ctrl_reg);
		}

		channel->wr_ref_count++;
	}

	if (filp->f_mode & FMODE_WRITE) {
		if (channel->rd_ref_count == 0) { /* First open of file */
			/* Move the host to first buffer */
			spin_lock_irqsave(&channel->rd_spinlock, flags);
			channel->rd_host_buf_idx = 0;
			channel->rd_host_buf_pos = 0;
			channel->rd_leftovers[3] = 0; /* No leftovers. */
			channel->rd_fpga_buf_idx = channel->num_rd_buffers - 1;
			channel->rd_full = 0;

			spin_unlock_irqrestore(&channel->rd_spinlock, flags);

			iowrite32((channel->chan_num << 1) |
				  (4 << 24),   /* Opcode 4, open channel */
				  channel->endpoint->registers +
				  fpga_buf_ctrl_reg);
		}

		channel->rd_ref_count++;
	}

unlock:
	if (filp->f_mode & FMODE_WRITE)
		mutex_unlock(&channel->rd_mutex);
unlock_wr:
	if (filp->f_mode & FMODE_READ)
		mutex_unlock(&channel->wr_mutex);

	if (!rc && (!channel->seekable))
		return nonseekable_open(inode, filp);

	return rc;
}

static int xillybus_release(struct inode *inode, struct file *filp)
{
	unsigned long flags;
	struct xilly_channel *channel = filp->private_data;

	int buf_idx;
	int eof;

	if (channel->endpoint->fatal_error)
		return -EIO;

	if (filp->f_mode & FMODE_WRITE) {
		mutex_lock(&channel->rd_mutex);

		channel->rd_ref_count--;

		if (channel->rd_ref_count == 0) {
			/*
			 * We rely on the kernel calling flush()
			 * before we get here.
			 */

			iowrite32((channel->chan_num << 1) | /* Channel ID */
				  (5 << 24),  /* Opcode 5, close channel */
				  channel->endpoint->registers +
				  fpga_buf_ctrl_reg);
		}
		mutex_unlock(&channel->rd_mutex);
	}

	if (filp->f_mode & FMODE_READ) {
		mutex_lock(&channel->wr_mutex);

		channel->wr_ref_count--;

		if (channel->wr_ref_count == 0) {
			iowrite32(1 | (channel->chan_num << 1) |
				  (5 << 24),  /* Opcode 5, close channel */
				  channel->endpoint->registers +
				  fpga_buf_ctrl_reg);

			/*
			 * This is crazily cautious: We make sure that not
			 * only that we got an EOF (be it because we closed
			 * the channel or because of a user's EOF), but verify
			 * that it's one beyond the last buffer arrived, so
			 * we have no leftover buffers pending before wrapping
			 * up (which can only happen in asynchronous channels,
			 * BTW)
			 */

			while (1) {
				spin_lock_irqsave(&channel->wr_spinlock,
						  flags);
				buf_idx = channel->wr_fpga_buf_idx;
				eof = channel->wr_eof;
				channel->wr_sleepy = 1;
				spin_unlock_irqrestore(&channel->wr_spinlock,
						       flags);

				/*
				 * Check if eof points at the buffer after
				 * the last one the FPGA submitted. Note that
				 * no EOF is marked by negative eof.
				 */

				buf_idx++;
				if (buf_idx == channel->num_wr_buffers)
					buf_idx = 0;

				if (buf_idx == eof)
					break;

				/*
				 * Steal extra 100 ms if awaken by interrupt.
				 * This is a simple workaround for an
				 * interrupt pending when entering, which would
				 * otherwise result in declaring the hardware
				 * non-responsive.
				 */

				if (wait_event_interruptible(
					    channel->wr_wait,
					    (!channel->wr_sleepy)))
					msleep(100);

				if (channel->wr_sleepy) {
					mutex_unlock(&channel->wr_mutex);
					dev_warn(channel->endpoint->dev,
						 "Hardware failed to respond to close command, therefore left in messy state.\n");
					return -EINTR;
				}
			}
		}

		mutex_unlock(&channel->wr_mutex);
	}

	return 0;
}

static loff_t xillybus_llseek(struct file *filp, loff_t offset, int whence)
{
	struct xilly_channel *channel = filp->private_data;
	loff_t pos = filp->f_pos;
	int rc = 0;

	/*
	 * Take both mutexes not allowing interrupts, since it seems like
	 * common applications don't expect an -EINTR here. Besides, multiple
	 * access to a single file descriptor on seekable devices is a mess
	 * anyhow.
	 */

	if (channel->endpoint->fatal_error)
		return -EIO;

	mutex_lock(&channel->wr_mutex);
	mutex_lock(&channel->rd_mutex);

	switch (whence) {
	case SEEK_SET:
		pos = offset;
		break;
	case SEEK_CUR:
		pos += offset;
		break;
	case SEEK_END:
		pos = offset; /* Going to the end => to the beginning */
		break;
	default:
		rc = -EINVAL;
		goto end;
	}

	/* In any case, we must finish on an element boundary */
	if (pos & ((1 << channel->log2_element_size) - 1)) {
		rc = -EINVAL;
		goto end;
	}

	mutex_lock(&channel->endpoint->register_mutex);

	iowrite32(pos >> channel->log2_element_size,
		  channel->endpoint->registers + fpga_buf_offset_reg);

	iowrite32((channel->chan_num << 1) |
		  (6 << 24),  /* Opcode 6, set address */
		  channel->endpoint->registers + fpga_buf_ctrl_reg);

	mutex_unlock(&channel->endpoint->register_mutex);

end:
	mutex_unlock(&channel->rd_mutex);
	mutex_unlock(&channel->wr_mutex);

	if (rc) /* Return error after releasing mutexes */
		return rc;

	filp->f_pos = pos;

	/*
	 * Since seekable devices are allowed only when the channel is
	 * synchronous, we assume that there is no data pending in either
	 * direction (which holds true as long as no concurrent access on the
	 * file descriptor takes place).
	 * The only thing we may need to throw away is leftovers from partial
	 * write() flush.
	 */

	channel->rd_leftovers[3] = 0;

	return pos;
}

static unsigned int xillybus_poll(struct file *filp, poll_table *wait)
{
	struct xilly_channel *channel = filp->private_data;
	unsigned int mask = 0;
	unsigned long flags;

	poll_wait(filp, &channel->endpoint->ep_wait, wait);

	/*
	 * poll() won't play ball regarding read() channels which
	 * aren't asynchronous and support the nonempty message. Allowing
	 * that will create situations where data has been delivered at
	 * the FPGA, and users expecting select() to wake up, which it may
	 * not.
	 */

	if (!channel->wr_synchronous && channel->wr_supports_nonempty) {
		poll_wait(filp, &channel->wr_wait, wait);
		poll_wait(filp, &channel->wr_ready_wait, wait);

		spin_lock_irqsave(&channel->wr_spinlock, flags);
		if (!channel->wr_empty || channel->wr_ready)
			mask |= POLLIN | POLLRDNORM;

		if (channel->wr_hangup)
			/*
			 * Not POLLHUP, because its behavior is in the
			 * mist, and POLLIN does what we want: Wake up
			 * the read file descriptor so it sees EOF.
			 */
			mask |=  POLLIN | POLLRDNORM;
		spin_unlock_irqrestore(&channel->wr_spinlock, flags);
	}

	/*
	 * If partial data write is disallowed on a write() channel,
	 * it's pointless to ever signal OK to write, because is could
	 * block despite some space being available.
	 */

	if (channel->rd_allow_partial) {
		poll_wait(filp, &channel->rd_wait, wait);

		spin_lock_irqsave(&channel->rd_spinlock, flags);
		if (!channel->rd_full)
			mask |= POLLOUT | POLLWRNORM;
		spin_unlock_irqrestore(&channel->rd_spinlock, flags);
	}

	if (channel->endpoint->fatal_error)
		mask |= POLLERR;

	return mask;
}

static const struct file_operations xillybus_fops = {
	.owner      = THIS_MODULE,
	.read       = xillybus_read,
	.write      = xillybus_write,
	.open       = xillybus_open,
	.flush      = xillybus_flush,
	.release    = xillybus_release,
	.llseek     = xillybus_llseek,
	.poll       = xillybus_poll,
};

static int xillybus_init_chrdev(struct xilly_endpoint *endpoint,
				const unsigned char *idt)
{
	int rc;
	dev_t dev;
	int devnum, i, minor, major;
	char devname[48];
	struct device *device;

	rc = alloc_chrdev_region(&dev, 0, /* minor start */
				 endpoint->num_channels,
				 xillyname);
	if (rc) {
		dev_warn(endpoint->dev, "Failed to obtain major/minors");
		return rc;
	}

	endpoint->major = major = MAJOR(dev);
	endpoint->lowest_minor = minor = MINOR(dev);

	cdev_init(&endpoint->cdev, &xillybus_fops);
	endpoint->cdev.owner = endpoint->ephw->owner;
	rc = cdev_add(&endpoint->cdev, MKDEV(major, minor),
		      endpoint->num_channels);
	if (rc) {
		dev_warn(endpoint->dev, "Failed to add cdev. Aborting.\n");
		goto unregister_chrdev;
	}

	idt++;

	for (i = minor, devnum = 0;
	     devnum < endpoint->num_channels;
	     devnum++, i++) {
		snprintf(devname, sizeof(devname)-1, "xillybus_%s", idt);

		devname[sizeof(devname)-1] = 0; /* Should never matter */

		while (*idt++)
			/* Skip to next */;

		device = device_create(xillybus_class,
				       NULL,
				       MKDEV(major, i),
				       NULL,
				       "%s", devname);

		if (IS_ERR(device)) {
			dev_warn(endpoint->dev,
				 "Failed to create %s device. Aborting.\n",
				 devname);
			rc = -ENODEV;
			goto unroll_device_create;
		}
	}

	dev_info(endpoint->dev, "Created %d device files.\n",
		 endpoint->num_channels);
	return 0; /* succeed */

unroll_device_create:
	devnum--; i--;
	for (; devnum >= 0; devnum--, i--)
		device_destroy(xillybus_class, MKDEV(major, i));

	cdev_del(&endpoint->cdev);
unregister_chrdev:
	unregister_chrdev_region(MKDEV(major, minor), endpoint->num_channels);

	return rc;
}

static void xillybus_cleanup_chrdev(struct xilly_endpoint *endpoint)
{
	int minor;

	for (minor = endpoint->lowest_minor;
	     minor < (endpoint->lowest_minor + endpoint->num_channels);
	     minor++)
		device_destroy(xillybus_class, MKDEV(endpoint->major, minor));
	cdev_del(&endpoint->cdev);
	unregister_chrdev_region(MKDEV(endpoint->major,
				       endpoint->lowest_minor),
				 endpoint->num_channels);

	dev_info(endpoint->dev, "Removed %d device files.\n",
		 endpoint->num_channels);
}

struct xilly_endpoint *xillybus_init_endpoint(struct pci_dev *pdev,
					      struct device *dev,
					      struct xilly_endpoint_hardware
					      *ephw)
{
	struct xilly_endpoint *endpoint;

	endpoint = devm_kzalloc(dev, sizeof(*endpoint), GFP_KERNEL);
	if (!endpoint)
		return NULL;

	endpoint->pdev = pdev;
	endpoint->dev = dev;
	endpoint->ephw = ephw;
	endpoint->msg_counter = 0x0b;
	endpoint->failed_messages = 0;
	endpoint->fatal_error = 0;

	init_waitqueue_head(&endpoint->ep_wait);
	mutex_init(&endpoint->register_mutex);

	return endpoint;
}
EXPORT_SYMBOL(xillybus_init_endpoint);

static int xilly_quiesce(struct xilly_endpoint *endpoint)
{
	long t;

	endpoint->idtlen = -1;

	iowrite32((u32) (endpoint->dma_using_dac & 0x0001),
		  endpoint->registers + fpga_dma_control_reg);

	t = wait_event_interruptible_timeout(endpoint->ep_wait,
					     (endpoint->idtlen >= 0),
					     XILLY_TIMEOUT);
	if (t <= 0) {
		dev_err(endpoint->dev,
			"Failed to quiesce the device on exit.\n");
		return -ENODEV;
	}
	return 0;
}

int xillybus_endpoint_discovery(struct xilly_endpoint *endpoint)
{
	int rc;
	long t;

	void *bootstrap_resources;
	int idtbuffersize = (1 << PAGE_SHIFT);
	struct device *dev = endpoint->dev;

	/*
	 * The bogus IDT is used during bootstrap for allocating the initial
	 * message buffer, and then the message buffer and space for the IDT
	 * itself. The initial message buffer is of a single page's size, but
	 * it's soon replaced with a more modest one (and memory is freed).
	 */

	unsigned char bogus_idt[8] = { 1, 224, (PAGE_SHIFT)-2, 0,
				       3, 192, PAGE_SHIFT, 0 };
	struct xilly_idt_handle idt_handle;

	/*
	 * Writing the value 0x00000001 to Endianness register signals which
	 * endianness this processor is using, so the FPGA can swap words as
	 * necessary.
	 */

	iowrite32(1, endpoint->registers + fpga_endian_reg);

	/* Bootstrap phase I: Allocate temporary message buffer */

	bootstrap_resources = devres_open_group(dev, NULL, GFP_KERNEL);
	if (!bootstrap_resources)
		return -ENOMEM;

	endpoint->num_channels = 0;

	rc = xilly_setupchannels(endpoint, bogus_idt, 1);
	if (rc)
		return rc;

	/* Clear the message subsystem (and counter in particular) */
	iowrite32(0x04, endpoint->registers + fpga_msg_ctrl_reg);

	endpoint->idtlen = -1;

	/*
	 * Set DMA 32/64 bit mode, quiesce the device (?!) and get IDT
	 * buffer size.
	 */
	iowrite32((u32) (endpoint->dma_using_dac & 0x0001),
		  endpoint->registers + fpga_dma_control_reg);

	t = wait_event_interruptible_timeout(endpoint->ep_wait,
					     (endpoint->idtlen >= 0),
					     XILLY_TIMEOUT);
	if (t <= 0) {
		dev_err(endpoint->dev, "No response from FPGA. Aborting.\n");
		return -ENODEV;
	}

	/* Enable DMA */
	iowrite32((u32) (0x0002 | (endpoint->dma_using_dac & 0x0001)),
		  endpoint->registers + fpga_dma_control_reg);

	/* Bootstrap phase II: Allocate buffer for IDT and obtain it */
	while (endpoint->idtlen >= idtbuffersize) {
		idtbuffersize *= 2;
		bogus_idt[6]++;
	}

	endpoint->num_channels = 1;

	rc = xilly_setupchannels(endpoint, bogus_idt, 2);
	if (rc)
		goto failed_idt;

	rc = xilly_obtain_idt(endpoint);
	if (rc)
		goto failed_idt;

	rc = xilly_scan_idt(endpoint, &idt_handle);
	if (rc)
		goto failed_idt;

	devres_close_group(dev, bootstrap_resources);

	/* Bootstrap phase III: Allocate buffers according to IDT */

	rc = xilly_setupchannels(endpoint,
				 idt_handle.chandesc,
				 idt_handle.entries);
	if (rc)
		goto failed_idt;

	/*
	 * endpoint is now completely configured. We put it on the list
	 * available to open() before registering the char device(s)
	 */

	mutex_lock(&ep_list_lock);
	list_add_tail(&endpoint->ep_list, &list_of_endpoints);
	mutex_unlock(&ep_list_lock);

	rc = xillybus_init_chrdev(endpoint, idt_handle.idt);
	if (rc)
		goto failed_chrdevs;

	devres_release_group(dev, bootstrap_resources);

	return 0;

failed_chrdevs:
	mutex_lock(&ep_list_lock);
	list_del(&endpoint->ep_list);
	mutex_unlock(&ep_list_lock);

failed_idt:
	xilly_quiesce(endpoint);
	flush_workqueue(xillybus_wq);

	return rc;
}
EXPORT_SYMBOL(xillybus_endpoint_discovery);

void xillybus_endpoint_remove(struct xilly_endpoint *endpoint)
{
	xillybus_cleanup_chrdev(endpoint);

	mutex_lock(&ep_list_lock);
	list_del(&endpoint->ep_list);
	mutex_unlock(&ep_list_lock);

	xilly_quiesce(endpoint);

	/*
	 * Flushing is done upon endpoint release to prevent access to memory
	 * just about to be released. This makes the quiesce complete.
	 */
	flush_workqueue(xillybus_wq);
}
EXPORT_SYMBOL(xillybus_endpoint_remove);

static int __init xillybus_init(void)
{
	mutex_init(&ep_list_lock);

	xillybus_class = class_create(THIS_MODULE, xillyname);
	if (IS_ERR(xillybus_class))
		return PTR_ERR(xillybus_class);

	xillybus_wq = alloc_workqueue(xillyname, 0, 0);
	if (!xillybus_wq) {
		class_destroy(xillybus_class);
		return -ENOMEM;
	}

	return 0;
}

static void __exit xillybus_exit(void)
{
	/* flush_workqueue() was called for each endpoint released */
	destroy_workqueue(xillybus_wq);

	class_destroy(xillybus_class);
}

module_init(xillybus_init);
module_exit(xillybus_exit);