internal.h 17.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
/*
 * Copyright (C) 1994 Linus Torvalds
 *
 * Pentium III FXSR, SSE support
 * General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 * x86-64 work by Andi Kleen 2002
 */

#ifndef _ASM_X86_FPU_INTERNAL_H
#define _ASM_X86_FPU_INTERNAL_H

#include <linux/compat.h>
#include <linux/sched.h>
#include <linux/slab.h>

#include <asm/user.h>
#include <asm/fpu/api.h>
#include <asm/fpu/xstate.h>

/*
 * High level FPU state handling functions:
 */
extern void fpu__activate_curr(struct fpu *fpu);
extern void fpu__activate_fpstate_read(struct fpu *fpu);
extern void fpu__activate_fpstate_write(struct fpu *fpu);
extern void fpu__save(struct fpu *fpu);
extern void fpu__restore(struct fpu *fpu);
extern int  fpu__restore_sig(void __user *buf, int ia32_frame);
extern void fpu__drop(struct fpu *fpu);
extern int  fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
extern void fpu__clear(struct fpu *fpu);
extern int  fpu__exception_code(struct fpu *fpu, int trap_nr);
extern int  dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);

/*
 * Boot time FPU initialization functions:
 */
extern void fpu__init_cpu(void);
extern void fpu__init_system_xstate(void);
extern void fpu__init_cpu_xstate(void);
extern void fpu__init_system(struct cpuinfo_x86 *c);
extern void fpu__init_check_bugs(void);
extern void fpu__resume_cpu(void);

/*
 * Debugging facility:
 */
#ifdef CONFIG_X86_DEBUG_FPU
# define WARN_ON_FPU(x) WARN_ON_ONCE(x)
#else
# define WARN_ON_FPU(x) ({ (void)(x); 0; })
#endif

/*
 * FPU related CPU feature flag helper routines:
 */
static __always_inline __pure bool use_eager_fpu(void)
{
	return static_cpu_has_safe(X86_FEATURE_EAGER_FPU);
}

static __always_inline __pure bool use_xsaveopt(void)
{
	return static_cpu_has_safe(X86_FEATURE_XSAVEOPT);
}

static __always_inline __pure bool use_xsave(void)
{
	return static_cpu_has_safe(X86_FEATURE_XSAVE);
}

static __always_inline __pure bool use_fxsr(void)
{
	return static_cpu_has_safe(X86_FEATURE_FXSR);
}

/*
 * fpstate handling functions:
 */

extern union fpregs_state init_fpstate;

extern void fpstate_init(union fpregs_state *state);
#ifdef CONFIG_MATH_EMULATION
extern void fpstate_init_soft(struct swregs_state *soft);
#else
static inline void fpstate_init_soft(struct swregs_state *soft) {}
#endif
static inline void fpstate_init_fxstate(struct fxregs_state *fx)
{
	fx->cwd = 0x37f;
	fx->mxcsr = MXCSR_DEFAULT;
}
extern void fpstate_sanitize_xstate(struct fpu *fpu);

#define user_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile(ASM_STAC "\n"					\
		     "1:" #insn "\n\t"					\
		     "2: " ASM_CLAC "\n"				\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

#define check_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile("1:" #insn "\n\t"					\
		     "2:\n"						\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

static inline int copy_fregs_to_user(struct fregs_state __user *fx)
{
	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx));
}

static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
{
	if (config_enabled(CONFIG_X86_32))
		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));

	/* See comment in copy_fxregs_to_kernel() below. */
	return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
}

static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
{
	int err;

	if (config_enabled(CONFIG_X86_32)) {
		err = check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
	} else {
		if (config_enabled(CONFIG_AS_FXSAVEQ)) {
			err = check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
		} else {
			/* See comment in copy_fxregs_to_kernel() below. */
			err = check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
		}
	}
	/* Copying from a kernel buffer to FPU registers should never fail: */
	WARN_ON_FPU(err);
}

static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
{
	if (config_enabled(CONFIG_X86_32))
		return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
		return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));

	/* See comment in copy_fxregs_to_kernel() below. */
	return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
			  "m" (*fx));
}

static inline void copy_kernel_to_fregs(struct fregs_state *fx)
{
	int err = check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));

	WARN_ON_FPU(err);
}

static inline int copy_user_to_fregs(struct fregs_state __user *fx)
{
	return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
}

static inline void copy_fxregs_to_kernel(struct fpu *fpu)
{
	if (config_enabled(CONFIG_X86_32))
		asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
		asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
	else {
		/* Using "rex64; fxsave %0" is broken because, if the memory
		 * operand uses any extended registers for addressing, a second
		 * REX prefix will be generated (to the assembler, rex64
		 * followed by semicolon is a separate instruction), and hence
		 * the 64-bitness is lost.
		 *
		 * Using "fxsaveq %0" would be the ideal choice, but is only
		 * supported starting with gas 2.16.
		 *
		 * Using, as a workaround, the properly prefixed form below
		 * isn't accepted by any binutils version so far released,
		 * complaining that the same type of prefix is used twice if
		 * an extended register is needed for addressing (fix submitted
		 * to mainline 2005-11-21).
		 *
		 *  asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
		 *
		 * This, however, we can work around by forcing the compiler to
		 * select an addressing mode that doesn't require extended
		 * registers.
		 */
		asm volatile( "rex64/fxsave (%[fx])"
			     : "=m" (fpu->state.fxsave)
			     : [fx] "R" (&fpu->state.fxsave));
	}
}

/* These macros all use (%edi)/(%rdi) as the single memory argument. */
#define XSAVE		".byte " REX_PREFIX "0x0f,0xae,0x27"
#define XSAVEOPT	".byte " REX_PREFIX "0x0f,0xae,0x37"
#define XSAVES		".byte " REX_PREFIX "0x0f,0xc7,0x2f"
#define XRSTOR		".byte " REX_PREFIX "0x0f,0xae,0x2f"
#define XRSTORS		".byte " REX_PREFIX "0x0f,0xc7,0x1f"

/* xstate instruction fault handler: */
#define xstate_fault(__err)		\
					\
	".section .fixup,\"ax\"\n"	\
					\
	"3:  movl $-2,%[_err]\n"	\
	"    jmp  2b\n"			\
					\
	".previous\n"			\
					\
	_ASM_EXTABLE(1b, 3b)		\
	: [_err] "=r" (__err)

/*
 * This function is called only during boot time when x86 caps are not set
 * up and alternative can not be used yet.
 */
static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
{
	u64 mask = -1;
	u32 lmask = mask;
	u32 hmask = mask >> 32;
	int err = 0;

	WARN_ON(system_state != SYSTEM_BOOTING);

	if (boot_cpu_has(X86_FEATURE_XSAVES))
		asm volatile("1:"XSAVES"\n\t"
			"2:\n\t"
			     xstate_fault(err)
			: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
			: "memory");
	else
		asm volatile("1:"XSAVE"\n\t"
			"2:\n\t"
			     xstate_fault(err)
			: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
			: "memory");

	/* We should never fault when copying to a kernel buffer: */
	WARN_ON_FPU(err);
}

/*
 * This function is called only during boot time when x86 caps are not set
 * up and alternative can not be used yet.
 */
static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate)
{
	u64 mask = -1;
	u32 lmask = mask;
	u32 hmask = mask >> 32;
	int err = 0;

	WARN_ON(system_state != SYSTEM_BOOTING);

	if (boot_cpu_has(X86_FEATURE_XSAVES))
		asm volatile("1:"XRSTORS"\n\t"
			"2:\n\t"
			     xstate_fault(err)
			: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
			: "memory");
	else
		asm volatile("1:"XRSTOR"\n\t"
			"2:\n\t"
			     xstate_fault(err)
			: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
			: "memory");

	/* We should never fault when copying from a kernel buffer: */
	WARN_ON_FPU(err);
}

/*
 * Save processor xstate to xsave area.
 */
static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
{
	u64 mask = -1;
	u32 lmask = mask;
	u32 hmask = mask >> 32;
	int err = 0;

	WARN_ON(!alternatives_patched);

	/*
	 * If xsaves is enabled, xsaves replaces xsaveopt because
	 * it supports compact format and supervisor states in addition to
	 * modified optimization in xsaveopt.
	 *
	 * Otherwise, if xsaveopt is enabled, xsaveopt replaces xsave
	 * because xsaveopt supports modified optimization which is not
	 * supported by xsave.
	 *
	 * If none of xsaves and xsaveopt is enabled, use xsave.
	 */
	alternative_input_2(
		"1:"XSAVE,
		XSAVEOPT,
		X86_FEATURE_XSAVEOPT,
		XSAVES,
		X86_FEATURE_XSAVES,
		[xstate] "D" (xstate), "a" (lmask), "d" (hmask) :
		"memory");
	asm volatile("2:\n\t"
		     xstate_fault(err)
		     : "0" (err)
		     : "memory");

	/* We should never fault when copying to a kernel buffer: */
	WARN_ON_FPU(err);
}

/*
 * Restore processor xstate from xsave area.
 */
static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
{
	u32 lmask = mask;
	u32 hmask = mask >> 32;
	int err = 0;

	/*
	 * Use xrstors to restore context if it is enabled. xrstors supports
	 * compacted format of xsave area which is not supported by xrstor.
	 */
	alternative_input(
		"1: " XRSTOR,
		XRSTORS,
		X86_FEATURE_XSAVES,
		"D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask)
		: "memory");

	asm volatile("2:\n"
		     xstate_fault(err)
		     : "0" (err)
		     : "memory");

	/* We should never fault when copying from a kernel buffer: */
	WARN_ON_FPU(err);
}

/*
 * Save xstate to user space xsave area.
 *
 * We don't use modified optimization because xrstor/xrstors might track
 * a different application.
 *
 * We don't use compacted format xsave area for
 * backward compatibility for old applications which don't understand
 * compacted format of xsave area.
 */
static inline int copy_xregs_to_user(struct xregs_state __user *buf)
{
	int err;

	/*
	 * Clear the xsave header first, so that reserved fields are
	 * initialized to zero.
	 */
	err = __clear_user(&buf->header, sizeof(buf->header));
	if (unlikely(err))
		return -EFAULT;

	__asm__ __volatile__(ASM_STAC "\n"
			     "1:"XSAVE"\n"
			     "2: " ASM_CLAC "\n"
			     xstate_fault(err)
			     : "D" (buf), "a" (-1), "d" (-1), "0" (err)
			     : "memory");
	return err;
}

/*
 * Restore xstate from user space xsave area.
 */
static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
{
	struct xregs_state *xstate = ((__force struct xregs_state *)buf);
	u32 lmask = mask;
	u32 hmask = mask >> 32;
	int err = 0;

	__asm__ __volatile__(ASM_STAC "\n"
			     "1:"XRSTOR"\n"
			     "2: " ASM_CLAC "\n"
			     xstate_fault(err)
			     : "D" (xstate), "a" (lmask), "d" (hmask), "0" (err)
			     : "memory");	/* memory required? */
	return err;
}

/*
 * These must be called with preempt disabled. Returns
 * 'true' if the FPU state is still intact and we can
 * keep registers active.
 *
 * The legacy FNSAVE instruction cleared all FPU state
 * unconditionally, so registers are essentially destroyed.
 * Modern FPU state can be kept in registers, if there are
 * no pending FP exceptions.
 */
static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
{
	if (likely(use_xsave())) {
		copy_xregs_to_kernel(&fpu->state.xsave);
		return 1;
	}

	if (likely(use_fxsr())) {
		copy_fxregs_to_kernel(fpu);
		return 1;
	}

	/*
	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
	 * so we have to mark them inactive:
	 */
	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));

	return 0;
}

static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate)
{
	if (use_xsave()) {
		copy_kernel_to_xregs(&fpstate->xsave, -1);
	} else {
		if (use_fxsr())
			copy_kernel_to_fxregs(&fpstate->fxsave);
		else
			copy_kernel_to_fregs(&fpstate->fsave);
	}
}

static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
{
	/*
	 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
	 * pending. Clear the x87 state here by setting it to fixed values.
	 * "m" is a random variable that should be in L1.
	 */
	if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) {
		asm volatile(
			"fnclex\n\t"
			"emms\n\t"
			"fildl %P[addr]"	/* set F?P to defined value */
			: : [addr] "m" (fpstate));
	}

	__copy_kernel_to_fpregs(fpstate);
}

extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);

/*
 * FPU context switch related helper methods:
 */

DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);

/*
 * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
 * on this CPU.
 *
 * This will disable any lazy FPU state restore of the current FPU state,
 * but if the current thread owns the FPU, it will still be saved by.
 */
static inline void __cpu_disable_lazy_restore(unsigned int cpu)
{
	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
}

static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu)
{
	return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
}


/*
 * Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation'
 * idiom, which is then paired with the sw-flag (fpregs_active) later on:
 */

static inline void __fpregs_activate_hw(void)
{
	if (!use_eager_fpu())
		clts();
}

static inline void __fpregs_deactivate_hw(void)
{
	if (!use_eager_fpu())
		stts();
}

/* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */
static inline void __fpregs_deactivate(struct fpu *fpu)
{
	WARN_ON_FPU(!fpu->fpregs_active);

	fpu->fpregs_active = 0;
	this_cpu_write(fpu_fpregs_owner_ctx, NULL);
}

/* Must be paired with a 'clts' (fpregs_activate_hw()) before! */
static inline void __fpregs_activate(struct fpu *fpu)
{
	WARN_ON_FPU(fpu->fpregs_active);

	fpu->fpregs_active = 1;
	this_cpu_write(fpu_fpregs_owner_ctx, fpu);
}

/*
 * The question "does this thread have fpu access?"
 * is slightly racy, since preemption could come in
 * and revoke it immediately after the test.
 *
 * However, even in that very unlikely scenario,
 * we can just assume we have FPU access - typically
 * to save the FP state - we'll just take a #NM
 * fault and get the FPU access back.
 */
static inline int fpregs_active(void)
{
	return current->thread.fpu.fpregs_active;
}

/*
 * Encapsulate the CR0.TS handling together with the
 * software flag.
 *
 * These generally need preemption protection to work,
 * do try to avoid using these on their own.
 */
static inline void fpregs_activate(struct fpu *fpu)
{
	__fpregs_activate_hw();
	__fpregs_activate(fpu);
}

static inline void fpregs_deactivate(struct fpu *fpu)
{
	__fpregs_deactivate(fpu);
	__fpregs_deactivate_hw();
}

/*
 * FPU state switching for scheduling.
 *
 * This is a two-stage process:
 *
 *  - switch_fpu_prepare() saves the old state and
 *    sets the new state of the CR0.TS bit. This is
 *    done within the context of the old process.
 *
 *  - switch_fpu_finish() restores the new state as
 *    necessary.
 */
typedef struct { int preload; } fpu_switch_t;

static inline fpu_switch_t
switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu)
{
	fpu_switch_t fpu;

	/*
	 * If the task has used the math, pre-load the FPU on xsave processors
	 * or if the past 5 consecutive context-switches used math.
	 */
	fpu.preload = new_fpu->fpstate_active &&
		      (use_eager_fpu() || new_fpu->counter > 5);

	if (old_fpu->fpregs_active) {
		if (!copy_fpregs_to_fpstate(old_fpu))
			old_fpu->last_cpu = -1;
		else
			old_fpu->last_cpu = cpu;

		/* But leave fpu_fpregs_owner_ctx! */
		old_fpu->fpregs_active = 0;

		/* Don't change CR0.TS if we just switch! */
		if (fpu.preload) {
			new_fpu->counter++;
			__fpregs_activate(new_fpu);
			prefetch(&new_fpu->state);
		} else {
			__fpregs_deactivate_hw();
		}
	} else {
		old_fpu->counter = 0;
		old_fpu->last_cpu = -1;
		if (fpu.preload) {
			new_fpu->counter++;
			if (fpu_want_lazy_restore(new_fpu, cpu))
				fpu.preload = 0;
			else
				prefetch(&new_fpu->state);
			fpregs_activate(new_fpu);
		}
	}
	return fpu;
}

/*
 * Misc helper functions:
 */

/*
 * By the time this gets called, we've already cleared CR0.TS and
 * given the process the FPU if we are going to preload the FPU
 * state - all we need to do is to conditionally restore the register
 * state itself.
 */
static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch)
{
	if (fpu_switch.preload)
		copy_kernel_to_fpregs(&new_fpu->state);
}

/*
 * Needs to be preemption-safe.
 *
 * NOTE! user_fpu_begin() must be used only immediately before restoring
 * the save state. It does not do any saving/restoring on its own. In
 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
 * the task can lose the FPU right after preempt_enable().
 */
static inline void user_fpu_begin(void)
{
	struct fpu *fpu = &current->thread.fpu;

	preempt_disable();
	if (!fpregs_active())
		fpregs_activate(fpu);
	preempt_enable();
}

/*
 * MXCSR and XCR definitions:
 */

extern unsigned int mxcsr_feature_mask;

#define XCR_XFEATURE_ENABLED_MASK	0x00000000

static inline u64 xgetbv(u32 index)
{
	u32 eax, edx;

	asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
		     : "=a" (eax), "=d" (edx)
		     : "c" (index));
	return eax + ((u64)edx << 32);
}

static inline void xsetbv(u32 index, u64 value)
{
	u32 eax = value;
	u32 edx = value >> 32;

	asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
		     : : "a" (eax), "d" (edx), "c" (index));
}

#endif /* _ASM_X86_FPU_INTERNAL_H */