intel-svm.c 18.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
/*
 * Copyright © 2015 Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * Authors: David Woodhouse <dwmw2@infradead.org>
 */

#include <linux/intel-iommu.h>
#include <linux/mmu_notifier.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/intel-svm.h>
#include <linux/rculist.h>
#include <linux/pci.h>
#include <linux/pci-ats.h>
#include <linux/dmar.h>
#include <linux/interrupt.h>

static irqreturn_t prq_event_thread(int irq, void *d);

struct pasid_entry {
	u64 val;
};

struct pasid_state_entry {
	u64 val;
};

int intel_svm_alloc_pasid_tables(struct intel_iommu *iommu)
{
	struct page *pages;
	int order;

	/* Start at 2 because it's defined as 2^(1+PSS) */
	iommu->pasid_max = 2 << ecap_pss(iommu->ecap);

	/* Eventually I'm promised we will get a multi-level PASID table
	 * and it won't have to be physically contiguous. Until then,
	 * limit the size because 8MiB contiguous allocations can be hard
	 * to come by. The limit of 0x20000, which is 1MiB for each of
	 * the PASID and PASID-state tables, is somewhat arbitrary. */
	if (iommu->pasid_max > 0x20000)
		iommu->pasid_max = 0x20000;

	order = get_order(sizeof(struct pasid_entry) * iommu->pasid_max);
	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
	if (!pages) {
		pr_warn("IOMMU: %s: Failed to allocate PASID table\n",
			iommu->name);
		return -ENOMEM;
	}
	iommu->pasid_table = page_address(pages);
	pr_info("%s: Allocated order %d PASID table.\n", iommu->name, order);

	if (ecap_dis(iommu->ecap)) {
		/* Just making it explicit... */
		BUILD_BUG_ON(sizeof(struct pasid_entry) != sizeof(struct pasid_state_entry));
		pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
		if (pages)
			iommu->pasid_state_table = page_address(pages);
		else
			pr_warn("IOMMU: %s: Failed to allocate PASID state table\n",
				iommu->name);
	}

	idr_init(&iommu->pasid_idr);

	return 0;
}

int intel_svm_free_pasid_tables(struct intel_iommu *iommu)
{
	int order = get_order(sizeof(struct pasid_entry) * iommu->pasid_max);

	if (iommu->pasid_table) {
		free_pages((unsigned long)iommu->pasid_table, order);
		iommu->pasid_table = NULL;
	}
	if (iommu->pasid_state_table) {
		free_pages((unsigned long)iommu->pasid_state_table, order);
		iommu->pasid_state_table = NULL;
	}
	idr_destroy(&iommu->pasid_idr);
	return 0;
}

#define PRQ_ORDER 0

int intel_svm_enable_prq(struct intel_iommu *iommu)
{
	struct page *pages;
	int irq, ret;

	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, PRQ_ORDER);
	if (!pages) {
		pr_warn("IOMMU: %s: Failed to allocate page request queue\n",
			iommu->name);
		return -ENOMEM;
	}
	iommu->prq = page_address(pages);

	irq = dmar_alloc_hwirq(DMAR_UNITS_SUPPORTED + iommu->seq_id, iommu->node, iommu);
	if (irq <= 0) {
		pr_err("IOMMU: %s: Failed to create IRQ vector for page request queue\n",
		       iommu->name);
		ret = -EINVAL;
	err:
		free_pages((unsigned long)iommu->prq, PRQ_ORDER);
		iommu->prq = NULL;
		return ret;
	}
	iommu->pr_irq = irq;

	snprintf(iommu->prq_name, sizeof(iommu->prq_name), "dmar%d-prq", iommu->seq_id);

	ret = request_threaded_irq(irq, NULL, prq_event_thread, IRQF_ONESHOT,
				   iommu->prq_name, iommu);
	if (ret) {
		pr_err("IOMMU: %s: Failed to request IRQ for page request queue\n",
		       iommu->name);
		dmar_free_hwirq(irq);
		goto err;
	}
	dmar_writeq(iommu->reg + DMAR_PQH_REG, 0ULL);
	dmar_writeq(iommu->reg + DMAR_PQT_REG, 0ULL);
	dmar_writeq(iommu->reg + DMAR_PQA_REG, virt_to_phys(iommu->prq) | PRQ_ORDER);

	return 0;
}

int intel_svm_finish_prq(struct intel_iommu *iommu)
{
	dmar_writeq(iommu->reg + DMAR_PQH_REG, 0ULL);
	dmar_writeq(iommu->reg + DMAR_PQT_REG, 0ULL);
	dmar_writeq(iommu->reg + DMAR_PQA_REG, 0ULL);

	free_irq(iommu->pr_irq, iommu);
	dmar_free_hwirq(iommu->pr_irq);
	iommu->pr_irq = 0;

	free_pages((unsigned long)iommu->prq, PRQ_ORDER);
	iommu->prq = NULL;

	return 0;
}

static void intel_flush_svm_range_dev (struct intel_svm *svm, struct intel_svm_dev *sdev,
				       unsigned long address, unsigned long pages, int ih, int gl)
{
	struct qi_desc desc;

	if (pages == -1) {
		/* For global kernel pages we have to flush them in *all* PASIDs
		 * because that's the only option the hardware gives us. Despite
		 * the fact that they are actually only accessible through one. */
		if (gl)
			desc.low = QI_EIOTLB_PASID(svm->pasid) | QI_EIOTLB_DID(sdev->did) |
				QI_EIOTLB_GRAN(QI_GRAN_ALL_ALL) | QI_EIOTLB_TYPE;
		else
			desc.low = QI_EIOTLB_PASID(svm->pasid) | QI_EIOTLB_DID(sdev->did) |
				QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) | QI_EIOTLB_TYPE;
		desc.high = 0;
	} else {
		int mask = ilog2(__roundup_pow_of_two(pages));

		desc.low = QI_EIOTLB_PASID(svm->pasid) | QI_EIOTLB_DID(sdev->did) |
			QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) | QI_EIOTLB_TYPE;
		desc.high = QI_EIOTLB_ADDR(address) | QI_EIOTLB_GL(gl) |
			QI_EIOTLB_IH(ih) | QI_EIOTLB_AM(mask);
	}
	qi_submit_sync(&desc, svm->iommu);

	if (sdev->dev_iotlb) {
		desc.low = QI_DEV_EIOTLB_PASID(svm->pasid) | QI_DEV_EIOTLB_SID(sdev->sid) |
			QI_DEV_EIOTLB_QDEP(sdev->qdep) | QI_DEIOTLB_TYPE;
		if (pages == -1) {
			desc.high = QI_DEV_EIOTLB_ADDR(-1ULL >> 1) | QI_DEV_EIOTLB_SIZE;
		} else if (pages > 1) {
			/* The least significant zero bit indicates the size. So,
			 * for example, an "address" value of 0x12345f000 will
			 * flush from 0x123440000 to 0x12347ffff (256KiB). */
			unsigned long last = address + ((unsigned long)(pages - 1) << VTD_PAGE_SHIFT);
			unsigned long mask = __rounddown_pow_of_two(address ^ last);;

			desc.high = QI_DEV_EIOTLB_ADDR((address & ~mask) | (mask - 1)) | QI_DEV_EIOTLB_SIZE;
		} else {
			desc.high = QI_DEV_EIOTLB_ADDR(address);
		}
		qi_submit_sync(&desc, svm->iommu);
	}
}

static void intel_flush_svm_range(struct intel_svm *svm, unsigned long address,
				  unsigned long pages, int ih, int gl)
{
	struct intel_svm_dev *sdev;

	/* Try deferred invalidate if available */
	if (svm->iommu->pasid_state_table &&
	    !cmpxchg64(&svm->iommu->pasid_state_table[svm->pasid].val, 0, 1ULL << 63))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(sdev, &svm->devs, list)
		intel_flush_svm_range_dev(svm, sdev, address, pages, ih, gl);
	rcu_read_unlock();
}

static void intel_change_pte(struct mmu_notifier *mn, struct mm_struct *mm,
			     unsigned long address, pte_t pte)
{
	struct intel_svm *svm = container_of(mn, struct intel_svm, notifier);

	intel_flush_svm_range(svm, address, 1, 1, 0);
}

static void intel_invalidate_page(struct mmu_notifier *mn, struct mm_struct *mm,
				  unsigned long address)
{
	struct intel_svm *svm = container_of(mn, struct intel_svm, notifier);

	intel_flush_svm_range(svm, address, 1, 1, 0);
}

/* Pages have been freed at this point */
static void intel_invalidate_range(struct mmu_notifier *mn,
				   struct mm_struct *mm,
				   unsigned long start, unsigned long end)
{
	struct intel_svm *svm = container_of(mn, struct intel_svm, notifier);

	intel_flush_svm_range(svm, start,
			      (end - start + PAGE_SIZE - 1) >> VTD_PAGE_SHIFT, 0, 0);
}


static void intel_flush_pasid_dev(struct intel_svm *svm, struct intel_svm_dev *sdev, int pasid)
{
	struct qi_desc desc;

	desc.high = 0;
	desc.low = QI_PC_TYPE | QI_PC_DID(sdev->did) | QI_PC_PASID_SEL | QI_PC_PASID(pasid);

	qi_submit_sync(&desc, svm->iommu);
}

static void intel_mm_release(struct mmu_notifier *mn, struct mm_struct *mm)
{
	struct intel_svm *svm = container_of(mn, struct intel_svm, notifier);
	struct intel_svm_dev *sdev;

	/* This might end up being called from exit_mmap(), *before* the page
	 * tables are cleared. And __mmu_notifier_release() will delete us from
	 * the list of notifiers so that our invalidate_range() callback doesn't
	 * get called when the page tables are cleared. So we need to protect
	 * against hardware accessing those page tables.
	 *
	 * We do it by clearing the entry in the PASID table and then flushing
	 * the IOTLB and the PASID table caches. This might upset hardware;
	 * perhaps we'll want to point the PASID to a dummy PGD (like the zero
	 * page) so that we end up taking a fault that the hardware really
	 * *has* to handle gracefully without affecting other processes.
	 */
	svm->iommu->pasid_table[svm->pasid].val = 0;
	wmb();

	rcu_read_lock();
	list_for_each_entry_rcu(sdev, &svm->devs, list) {
		intel_flush_pasid_dev(svm, sdev, svm->pasid);
		intel_flush_svm_range_dev(svm, sdev, 0, -1, 0, !svm->mm);
	}
	rcu_read_unlock();

}

static const struct mmu_notifier_ops intel_mmuops = {
	.release = intel_mm_release,
	.change_pte = intel_change_pte,
	.invalidate_page = intel_invalidate_page,
	.invalidate_range = intel_invalidate_range,
};

static DEFINE_MUTEX(pasid_mutex);

int intel_svm_bind_mm(struct device *dev, int *pasid, int flags, struct svm_dev_ops *ops)
{
	struct intel_iommu *iommu = intel_svm_device_to_iommu(dev);
	struct intel_svm_dev *sdev;
	struct intel_svm *svm = NULL;
	struct mm_struct *mm = NULL;
	int pasid_max;
	int ret;

	if (WARN_ON(!iommu))
		return -EINVAL;

	if (dev_is_pci(dev)) {
		pasid_max = pci_max_pasids(to_pci_dev(dev));
		if (pasid_max < 0)
			return -EINVAL;
	} else
		pasid_max = 1 << 20;

	if ((flags & SVM_FLAG_SUPERVISOR_MODE)) {
		if (!ecap_srs(iommu->ecap))
			return -EINVAL;
	} else if (pasid) {
		mm = get_task_mm(current);
		BUG_ON(!mm);
	}

	mutex_lock(&pasid_mutex);
	if (pasid && !(flags & SVM_FLAG_PRIVATE_PASID)) {
		int i;

		idr_for_each_entry(&iommu->pasid_idr, svm, i) {
			if (svm->mm != mm ||
			    (svm->flags & SVM_FLAG_PRIVATE_PASID))
				continue;

			if (svm->pasid >= pasid_max) {
				dev_warn(dev,
					 "Limited PASID width. Cannot use existing PASID %d\n",
					 svm->pasid);
				ret = -ENOSPC;
				goto out;
			}

			list_for_each_entry(sdev, &svm->devs, list) {
				if (dev == sdev->dev) {
					if (sdev->ops != ops) {
						ret = -EBUSY;
						goto out;
					}
					sdev->users++;
					goto success;
				}
			}

			break;
		}
	}

	sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
	if (!sdev) {
		ret = -ENOMEM;
		goto out;
	}
	sdev->dev = dev;

	ret = intel_iommu_enable_pasid(iommu, sdev);
	if (ret || !pasid) {
		/* If they don't actually want to assign a PASID, this is
		 * just an enabling check/preparation. */
		kfree(sdev);
		goto out;
	}
	/* Finish the setup now we know we're keeping it */
	sdev->users = 1;
	sdev->ops = ops;
	init_rcu_head(&sdev->rcu);

	if (!svm) {
		svm = kzalloc(sizeof(*svm), GFP_KERNEL);
		if (!svm) {
			ret = -ENOMEM;
			kfree(sdev);
			goto out;
		}
		svm->iommu = iommu;

		if (pasid_max > iommu->pasid_max)
			pasid_max = iommu->pasid_max;

		/* Do not use PASID 0 in caching mode (virtualised IOMMU) */
		ret = idr_alloc(&iommu->pasid_idr, svm,
				!!cap_caching_mode(iommu->cap),
				pasid_max - 1, GFP_KERNEL);
		if (ret < 0) {
			kfree(svm);
			goto out;
		}
		svm->pasid = ret;
		svm->notifier.ops = &intel_mmuops;
		svm->mm = mm;
		svm->flags = flags;
		INIT_LIST_HEAD_RCU(&svm->devs);
		ret = -ENOMEM;
		if (mm) {
			ret = mmu_notifier_register(&svm->notifier, mm);
			if (ret) {
				idr_remove(&svm->iommu->pasid_idr, svm->pasid);
				kfree(svm);
				kfree(sdev);
				goto out;
			}
			iommu->pasid_table[svm->pasid].val = (u64)__pa(mm->pgd) | 1;
		} else
			iommu->pasid_table[svm->pasid].val = (u64)__pa(init_mm.pgd) | 1 | (1ULL << 11);
		wmb();
		/* In caching mode, we still have to flush with PASID 0 when
		 * a PASID table entry becomes present. Not entirely clear
		 * *why* that would be the case — surely we could just issue
		 * a flush with the PASID value that we've changed? The PASID
		 * is the index into the table, after all. It's not like domain
		 * IDs in the case of the equivalent context-entry change in
		 * caching mode. And for that matter it's not entirely clear why
		 * a VMM would be in the business of caching the PASID table
		 * anyway. Surely that can be left entirely to the guest? */
		if (cap_caching_mode(iommu->cap))
			intel_flush_pasid_dev(svm, sdev, 0);
	}
	list_add_rcu(&sdev->list, &svm->devs);

 success:
	*pasid = svm->pasid;
	ret = 0;
 out:
	mutex_unlock(&pasid_mutex);
	if (mm)
		mmput(mm);
	return ret;
}
EXPORT_SYMBOL_GPL(intel_svm_bind_mm);

int intel_svm_unbind_mm(struct device *dev, int pasid)
{
	struct intel_svm_dev *sdev;
	struct intel_iommu *iommu;
	struct intel_svm *svm;
	int ret = -EINVAL;

	mutex_lock(&pasid_mutex);
	iommu = intel_svm_device_to_iommu(dev);
	if (!iommu || !iommu->pasid_table)
		goto out;

	svm = idr_find(&iommu->pasid_idr, pasid);
	if (!svm)
		goto out;

	list_for_each_entry(sdev, &svm->devs, list) {
		if (dev == sdev->dev) {
			ret = 0;
			sdev->users--;
			if (!sdev->users) {
				list_del_rcu(&sdev->list);
				/* Flush the PASID cache and IOTLB for this device.
				 * Note that we do depend on the hardware *not* using
				 * the PASID any more. Just as we depend on other
				 * devices never using PASIDs that they have no right
				 * to use. We have a *shared* PASID table, because it's
				 * large and has to be physically contiguous. So it's
				 * hard to be as defensive as we might like. */
				intel_flush_pasid_dev(svm, sdev, svm->pasid);
				intel_flush_svm_range_dev(svm, sdev, 0, -1, 0, !svm->mm);
				kfree_rcu(sdev, rcu);

				if (list_empty(&svm->devs)) {

					idr_remove(&svm->iommu->pasid_idr, svm->pasid);
					if (svm->mm)
						mmu_notifier_unregister(&svm->notifier, svm->mm);

					/* We mandate that no page faults may be outstanding
					 * for the PASID when intel_svm_unbind_mm() is called.
					 * If that is not obeyed, subtle errors will happen.
					 * Let's make them less subtle... */
					memset(svm, 0x6b, sizeof(*svm));
					kfree(svm);
				}
			}
			break;
		}
	}
 out:
	mutex_unlock(&pasid_mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(intel_svm_unbind_mm);

/* Page request queue descriptor */
struct page_req_dsc {
	u64 srr:1;
	u64 bof:1;
	u64 pasid_present:1;
	u64 lpig:1;
	u64 pasid:20;
	u64 bus:8;
	u64 private:23;
	u64 prg_index:9;
	u64 rd_req:1;
	u64 wr_req:1;
	u64 exe_req:1;
	u64 priv_req:1;
	u64 devfn:8;
	u64 addr:52;
};

#define PRQ_RING_MASK ((0x1000 << PRQ_ORDER) - 0x10)

static bool access_error(struct vm_area_struct *vma, struct page_req_dsc *req)
{
	unsigned long requested = 0;

	if (req->exe_req)
		requested |= VM_EXEC;

	if (req->rd_req)
		requested |= VM_READ;

	if (req->wr_req)
		requested |= VM_WRITE;

	return (requested & ~vma->vm_flags) != 0;
}

static irqreturn_t prq_event_thread(int irq, void *d)
{
	struct intel_iommu *iommu = d;
	struct intel_svm *svm = NULL;
	int head, tail, handled = 0;

	/* Clear PPR bit before reading head/tail registers, to
	 * ensure that we get a new interrupt if needed. */
	writel(DMA_PRS_PPR, iommu->reg + DMAR_PRS_REG);

	tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK;
	head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK;
	while (head != tail) {
		struct intel_svm_dev *sdev;
		struct vm_area_struct *vma;
		struct page_req_dsc *req;
		struct qi_desc resp;
		int ret, result;
		u64 address;

		handled = 1;

		req = &iommu->prq[head / sizeof(*req)];

		result = QI_RESP_FAILURE;
		address = (u64)req->addr << VTD_PAGE_SHIFT;
		if (!req->pasid_present) {
			pr_err("%s: Page request without PASID: %08llx %08llx\n",
			       iommu->name, ((unsigned long long *)req)[0],
			       ((unsigned long long *)req)[1]);
			goto bad_req;
		}

		if (!svm || svm->pasid != req->pasid) {
			rcu_read_lock();
			svm = idr_find(&iommu->pasid_idr, req->pasid);
			/* It *can't* go away, because the driver is not permitted
			 * to unbind the mm while any page faults are outstanding.
			 * So we only need RCU to protect the internal idr code. */
			rcu_read_unlock();

			if (!svm) {
				pr_err("%s: Page request for invalid PASID %d: %08llx %08llx\n",
				       iommu->name, req->pasid, ((unsigned long long *)req)[0],
				       ((unsigned long long *)req)[1]);
				goto no_pasid;
			}
		}

		result = QI_RESP_INVALID;
		/* Since we're using init_mm.pgd directly, we should never take
		 * any faults on kernel addresses. */
		if (!svm->mm)
			goto bad_req;
		/* If the mm is already defunct, don't handle faults. */
		if (!atomic_inc_not_zero(&svm->mm->mm_users))
			goto bad_req;
		down_read(&svm->mm->mmap_sem);
		vma = find_extend_vma(svm->mm, address);
		if (!vma || address < vma->vm_start)
			goto invalid;

		if (access_error(vma, req))
			goto invalid;

		ret = handle_mm_fault(svm->mm, vma, address,
				      req->wr_req ? FAULT_FLAG_WRITE : 0);
		if (ret & VM_FAULT_ERROR)
			goto invalid;

		result = QI_RESP_SUCCESS;
	invalid:
		up_read(&svm->mm->mmap_sem);
		mmput(svm->mm);
	bad_req:
		/* Accounting for major/minor faults? */
		rcu_read_lock();
		list_for_each_entry_rcu(sdev, &svm->devs, list) {
			if (sdev->sid == PCI_DEVID(req->bus, req->devfn))
				break;
		}
		/* Other devices can go away, but the drivers are not permitted
		 * to unbind while any page faults might be in flight. So it's
		 * OK to drop the 'lock' here now we have it. */
		rcu_read_unlock();

		if (WARN_ON(&sdev->list == &svm->devs))
			sdev = NULL;

		if (sdev && sdev->ops && sdev->ops->fault_cb) {
			int rwxp = (req->rd_req << 3) | (req->wr_req << 2) |
				(req->exe_req << 1) | (req->priv_req);
			sdev->ops->fault_cb(sdev->dev, req->pasid, req->addr, req->private, rwxp, result);
		}
		/* We get here in the error case where the PASID lookup failed,
		   and these can be NULL. Do not use them below this point! */
		sdev = NULL;
		svm = NULL;
	no_pasid:
		if (req->lpig) {
			/* Page Group Response */
			resp.low = QI_PGRP_PASID(req->pasid) |
				QI_PGRP_DID((req->bus << 8) | req->devfn) |
				QI_PGRP_PASID_P(req->pasid_present) |
				QI_PGRP_RESP_TYPE;
			resp.high = QI_PGRP_IDX(req->prg_index) |
				QI_PGRP_PRIV(req->private) | QI_PGRP_RESP_CODE(result);

			qi_submit_sync(&resp, iommu);
		} else if (req->srr) {
			/* Page Stream Response */
			resp.low = QI_PSTRM_IDX(req->prg_index) |
				QI_PSTRM_PRIV(req->private) | QI_PSTRM_BUS(req->bus) |
				QI_PSTRM_PASID(req->pasid) | QI_PSTRM_RESP_TYPE;
			resp.high = QI_PSTRM_ADDR(address) | QI_PSTRM_DEVFN(req->devfn) |
				QI_PSTRM_RESP_CODE(result);

			qi_submit_sync(&resp, iommu);
		}

		head = (head + sizeof(*req)) & PRQ_RING_MASK;
	}

	dmar_writeq(iommu->reg + DMAR_PQH_REG, tail);

	return IRQ_RETVAL(handled);
}