keystone-sa-lld.c
10.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
/*
* Keystone crypto accelerator driver
*
* Copyright (C) 2015, 2016 Texas Instruments Incorporated - http://www.ti.com
*
* Authors: Sandeep Nair
* Vitaly Andrianov
*
* Contributors:Tinku Mannan
* Hao Zhang
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/types.h>
#include <linux/crypto.h>
#include <linux/cryptohash.h>
#include <crypto/aes.h>
#include <crypto/sha.h>
#include <crypto/md5.h>
#include "keystone-sa.h"
#include "keystone-sa-hlp.h"
/* Byte offset for key in encryption security context */
#define SC_ENC_KEY_OFFSET (1 + 27 + 4)
/* Byte offset for Aux-1 in encryption security context */
#define SC_ENC_AUX1_OFFSET (1 + 27 + 4 + 32)
struct sa_eng_mci_tbl sa_mci_tbl;
/* Perform 16 byte swizzling */
void sa_swiz_128(u8 *in, u8 *out, u16 len)
{
u8 data[16];
int i, j;
for (i = 0; i < len - 15; i += 16) {
memcpy(data, &in[i], 16);
for (j = 0; j < 16; j++)
out[i + j] = data[15 - j];
}
}
/* Convert CRA name to internal algorithm ID */
void sa_conv_calg_to_salg(const char *cra_name, int *ealg_id, int *aalg_id)
{
*ealg_id = SA_EALG_ID_NONE;
*aalg_id = SA_AALG_ID_NONE;
if (!strcmp(cra_name, "authenc(hmac(sha1),cbc(aes))")) {
*ealg_id = SA_EALG_ID_AES_CBC;
*aalg_id = SA_AALG_ID_HMAC_SHA1;
} else if (!strcmp(cra_name, "authenc(hmac(sha1),cbc(des3_ede))")) {
*ealg_id = SA_EALG_ID_3DES_CBC;
*aalg_id = SA_AALG_ID_HMAC_SHA1;
} else if (!strcmp(cra_name, "authenc(xcbc(aes),cbc(aes))")) {
*ealg_id = SA_EALG_ID_AES_CBC;
*aalg_id = SA_AALG_ID_AES_XCBC;
} else if (!strcmp(cra_name, "authenc(xcbc(aes),cbc(des3_ede))")) {
*ealg_id = SA_EALG_ID_3DES_CBC;
*aalg_id = SA_AALG_ID_AES_XCBC;
} else if (!strcmp(cra_name, "cbc(aes)")) {
*ealg_id = SA_EALG_ID_AES_CBC;
} else if (!strcmp(cra_name, "cbc(des3_ede)")) {
*ealg_id = SA_EALG_ID_3DES_CBC;
} else if (!strcmp(cra_name, "hmac(sha1)")) {
*aalg_id = SA_AALG_ID_HMAC_SHA1;
} else if (!strcmp(cra_name, "xcbc(aes)")) {
*aalg_id = SA_AALG_ID_AES_XCBC;
} else
pr_err("%s - unsupported cra_name %s\n", __func__, cra_name);
}
struct sa_eng_info sa_eng_info_tbl[SA_ALG_ID_LAST] = {
[SA_EALG_ID_NONE] = { SA_ENG_ID_NONE, 0},
[SA_EALG_ID_NULL] = { SA_ENG_ID_NONE, 0},
[SA_EALG_ID_AES_CTR] = { SA_ENG_ID_NONE, 0},
[SA_EALG_ID_AES_F8] = { SA_ENG_ID_NONE, 0},
[SA_EALG_ID_AES_CBC] = { SA_ENG_ID_EM1, SA_CTX_ENC_TYPE1_SZ},
[SA_EALG_ID_DES_CBC] = { SA_ENG_ID_EM1, SA_CTX_ENC_TYPE1_SZ},
[SA_EALG_ID_3DES_CBC] = { SA_ENG_ID_EM1, SA_CTX_ENC_TYPE1_SZ},
[SA_EALG_ID_CCM] = { SA_ENG_ID_NONE, 0},
[SA_EALG_ID_GCM] = { SA_ENG_ID_NONE, 0},
[SA_AALG_ID_NULL] = { SA_ENG_ID_NONE, 0},
[SA_AALG_ID_MD5] = { SA_ENG_ID_NONE, 0},
[SA_AALG_ID_SHA1] = { SA_ENG_ID_NONE, 0},
[SA_AALG_ID_SHA2_224] = { SA_ENG_ID_NONE, 0},
[SA_AALG_ID_SHA2_256] = { SA_ENG_ID_NONE, 0},
[SA_AALG_ID_HMAC_MD5] = { SA_ENG_ID_AM1, SA_CTX_AUTH_TYPE2_SZ},
[SA_AALG_ID_HMAC_SHA1] = { SA_ENG_ID_AM1, SA_CTX_AUTH_TYPE2_SZ},
[SA_AALG_ID_HMAC_SHA2_224] = { SA_ENG_ID_NONE, 0},
[SA_AALG_ID_HMAC_SHA2_256] = { SA_ENG_ID_NONE, 0},
[SA_AALG_ID_GMAC] = { SA_ENG_ID_NONE, 0},
[SA_AALG_ID_CMAC] = {SA_ENG_ID_EM1, SA_CTX_AUTH_TYPE1_SZ},
[SA_AALG_ID_CBC_MAC] = { SA_ENG_ID_NONE, 0},
[SA_AALG_ID_AES_XCBC] = {SA_ENG_ID_EM1, SA_CTX_AUTH_TYPE1_SZ}
};
/* Given an algorithm ID get the engine details */
struct sa_eng_info *sa_get_engine_info(int alg_id)
{
if (alg_id < SA_ALG_ID_LAST)
return &sa_eng_info_tbl[alg_id];
pr_err("%s: unsupported algo\n", __func__);
return &sa_eng_info_tbl[SA_EALG_ID_NONE];
}
/* Given an algorithm get the hash size */
int sa_get_hash_size(u16 aalg_id)
{
int hash_size = 0;
switch (aalg_id) {
case SA_AALG_ID_MD5:
case SA_AALG_ID_HMAC_MD5:
hash_size = MD5_DIGEST_SIZE;
break;
case SA_AALG_ID_SHA1:
case SA_AALG_ID_HMAC_SHA1:
hash_size = SHA1_DIGEST_SIZE;
break;
case SA_AALG_ID_SHA2_224:
case SA_AALG_ID_HMAC_SHA2_224:
hash_size = SHA224_DIGEST_SIZE;
break;
case SA_AALG_ID_SHA2_256:
case SA_AALG_ID_HMAC_SHA2_256:
hash_size = SHA256_DIGEST_SIZE;
break;
case SA_AALG_ID_AES_XCBC:
case SA_AALG_ID_CMAC:
hash_size = AES_BLOCK_SIZE;
break;
default:
pr_err("%s: unsupported hash\n", __func__);
break;
}
return hash_size;
}
/* Initialize MD5 digest */
static inline void md5_init(u32 *hash)
{
/* Load magic initialization constants */
hash[0] = 0x67452301;
hash[1] = 0xefcdab89;
hash[2] = 0x98badcfe;
hash[3] = 0x10325476;
}
/* Generate HMAC-MD5 intermediate Hash */
static void sa_hmac_md5_get_pad(const u8 *key, u16 key_sz, u32 *ipad, u32 *opad)
{
u8 k_ipad[MD5_MESSAGE_BYTES];
u8 k_opad[MD5_MESSAGE_BYTES];
int i;
for (i = 0; i < key_sz; i++) {
k_ipad[i] = key[i] ^ 0x36;
k_opad[i] = key[i] ^ 0x5c;
}
/* Instead of XOR with 0 */
for (; i < SHA_MESSAGE_BYTES; i++) {
k_ipad[i] = 0x36;
k_opad[i] = 0x5c;
}
/* SHA-1 on k_ipad */
md5_init(ipad);
md5_transform(ipad, (u32 *)k_ipad);
/* SHA-1 on k_opad */
md5_init(opad);
md5_transform(ipad, (u32 *)k_opad);
}
/* Generate HMAC-SHA1 intermediate Hash */
static
void sa_hmac_sha1_get_pad(const u8 *key, u16 key_sz, u32 *ipad, u32 *opad)
{
u32 ws[SHA_WORKSPACE_WORDS];
u8 k_ipad[SHA_MESSAGE_BYTES];
u8 k_opad[SHA_MESSAGE_BYTES];
int i;
for (i = 0; i < key_sz; i++) {
k_ipad[i] = key[i] ^ 0x36;
k_opad[i] = key[i] ^ 0x5c;
}
/* Instead of XOR with 0 */
for (; i < SHA_MESSAGE_BYTES; i++) {
k_ipad[i] = 0x36;
k_opad[i] = 0x5c;
}
/* SHA-1 on k_ipad */
sha_init(ipad);
sha_transform(ipad, k_ipad, ws);
for (i = 0; i < SHA_DIGEST_WORDS; i++)
ipad[i] = cpu_to_be32(ipad[i]);
/* SHA-1 on k_opad */
sha_init(opad);
sha_transform(opad, k_opad, ws);
for (i = 0; i < SHA_DIGEST_WORDS; i++)
opad[i] = cpu_to_be32(opad[i]);
}
/* Derive the inverse key used in AES-CBC decryption operation */
static inline int sa_aes_inv_key(u8 *inv_key, const u8 *key, u16 key_sz)
{
struct crypto_aes_ctx ctx;
int key_pos;
if (crypto_aes_expand_key(&ctx, key, key_sz)) {
pr_err("%s: bad key len(%d)\n", __func__, key_sz);
return -1;
}
/* Refer the implementation of crypto_aes_expand_key()
* to understand the below logic
*/
switch (key_sz) {
case AES_KEYSIZE_128:
case AES_KEYSIZE_192:
key_pos = key_sz + 24;
break;
case AES_KEYSIZE_256:
key_pos = key_sz + 24 - 4;
break;
default:
pr_err("%s: bad key len(%d)\n", __func__, key_sz);
return -1;
}
memcpy(inv_key, &ctx.key_enc[key_pos], key_sz);
return 0;
}
/* Set Security context for the encryption engine */
int sa_set_sc_enc(u16 alg_id, const u8 *key, u16 key_sz,
u16 aad_len, u8 enc, u8 *sc_buf)
{
u8 ghash[16]; /* AES block size */
const u8 *mci = NULL;
/* Convert the key size (16/24/32) to the key size index (0/1/2) */
int key_idx = (key_sz >> 3) - 2;
/* Set Encryption mode selector to crypto processing */
sc_buf[0] = 0;
/* Select the mode control instruction */
switch (alg_id) {
case SA_EALG_ID_AES_CBC:
mci = (enc) ? sa_mci_tbl.aes_enc[SA_ENG_ALGO_CBC][key_idx] :
sa_mci_tbl.aes_dec[SA_ENG_ALGO_CBC][key_idx];
break;
case SA_EALG_ID_CCM:
mci = (enc) ? sa_mci_tbl.aes_enc[SA_ENG_ALGO_CCM][key_idx] :
sa_mci_tbl.aes_dec[SA_ENG_ALGO_CCM][key_idx];
break;
case SA_EALG_ID_AES_F8:
mci = sa_mci_tbl.aes_enc[SA_ENG_ALGO_F8][key_idx];
break;
case SA_EALG_ID_AES_CTR:
mci = sa_mci_tbl.aes_enc[SA_ENG_ALGO_CTR][key_idx];
break;
case SA_EALG_ID_GCM:
mci = (enc) ? sa_mci_tbl.aes_enc[SA_ENG_ALGO_GCM][key_idx] :
sa_mci_tbl.aes_dec[SA_ENG_ALGO_GCM][key_idx];
/* Set AAD length at byte offset 23 in Aux-1 */
sc_buf[SC_ENC_AUX1_OFFSET + 23] = (aad_len << 3);
/* fall through to GMAC */
case SA_AALG_ID_GMAC:
/* copy GCM Hash in Aux-1 */
memcpy(&sc_buf[SC_ENC_AUX1_OFFSET], ghash, 16);
break;
case SA_AALG_ID_AES_XCBC:
case SA_AALG_ID_CMAC:
mci = sa_mci_tbl.aes_enc[SA_ENG_ALGO_CMAC][key_idx];
break;
case SA_AALG_ID_CBC_MAC:
mci = sa_mci_tbl.aes_enc[SA_ENG_ALGO_CBCMAC][key_idx];
break;
case SA_EALG_ID_3DES_CBC:
mci = (enc) ? sa_mci_tbl._3des_enc[SA_ENG_ALGO_CBC] :
sa_mci_tbl._3des_dec[SA_ENG_ALGO_CBC];
break;
}
/* Set the mode control instructions in security context */
if (mci)
memcpy(&sc_buf[1], mci, 27);
/* For AES-CBC decryption get the inverse key */
if ((alg_id == SA_EALG_ID_AES_CBC) && !enc) {
if (sa_aes_inv_key(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz))
return -1;
}
/* For AES-XCBC-MAC get the subkey */
else if (alg_id == SA_AALG_ID_AES_XCBC) {
if (sa_aes_xcbc_subkey(&sc_buf[SC_ENC_KEY_OFFSET], NULL,
NULL, key, key_sz))
return -1;
}
/* For all other cases: key is used */
else
memcpy(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz);
return 0;
}
/* Set Security context for the authentication engine */
void sa_set_sc_auth(u16 alg_id, const u8 *key, u16 key_sz, u8 *sc_buf)
{
u32 ipad[8], opad[8];
u8 mac_sz, keyed_mac = 0;
/* Set Authentication mode selector to hash processing */
sc_buf[0] = 0;
/* Auth SW ctrl word: bit[6]=1 (upload computed hash to TLR section) */
sc_buf[1] = 0x40;
switch (alg_id) {
case SA_AALG_ID_MD5:
/*
* Auth SW ctrl word: bit[4]=1 (basic hash)
* bit[3:0]=1 (MD5 operation)
*/
sc_buf[1] |= (0x10 | 0x1);
break;
case SA_AALG_ID_SHA1:
/*
* Auth SW ctrl word: bit[4]=1 (basic hash)
* bit[3:0]=2 (SHA1 operation)
*/
sc_buf[1] |= (0x10 | 0x2);
break;
case SA_AALG_ID_SHA2_224:
/*
* Auth SW ctrl word: bit[4]=1 (basic hash)
* bit[3:0]=3 (SHA2-224 operation)
*/
sc_buf[1] |= (0x10 | 0x3);
break;
case SA_AALG_ID_SHA2_256:
/*
* Auth SW ctrl word: bit[4]=1 (basic hash)
* bit[3:0]=4 (SHA2-256 operation)
*/
sc_buf[1] |= (0x10 | 0x4);
break;
case SA_AALG_ID_HMAC_MD5:
/*
* Auth SW ctrl word: bit[4]=0 (HMAC)
* bit[3:0]=1 (MD5 operation)
*/
sc_buf[1] |= 0x1;
keyed_mac = 1;
mac_sz = MD5_DIGEST_SIZE;
sa_hmac_md5_get_pad(key, key_sz, ipad, opad);
break;
case SA_AALG_ID_HMAC_SHA1:
/*
* Auth SW ctrl word: bit[4]=0 (HMAC)
* bit[3:0]=2 (SHA1 operation)
*/
sc_buf[1] |= 0x2;
keyed_mac = 1;
mac_sz = SHA1_DIGEST_SIZE;
sa_hmac_sha1_get_pad(key, key_sz, ipad, opad);
break;
case SA_AALG_ID_HMAC_SHA2_224:
/*
* Auth SW ctrl word: bit[4]=0 (HMAC)
* bit[3:0]=3 (SHA2-224 operation)
*/
sc_buf[1] |= 0x3;
keyed_mac = 1;
mac_sz = SHA224_DIGEST_SIZE;
break;
case SA_AALG_ID_HMAC_SHA2_256:
/*
* Auth SW ctrl word: bit[4]=0 (HMAC)
* bit[3:0]=4 (SHA2-256 operation)
*/
sc_buf[1] |= 0x4;
keyed_mac = 1;
mac_sz = SHA256_DIGEST_SIZE;
break;
}
/* Copy the keys or ipad/opad */
if (keyed_mac) {
/* Copy ipad to AuthKey */
memcpy(&sc_buf[32], ipad, mac_sz);
/* Copy opad to Aux-1 */
memcpy(&sc_buf[64], opad, mac_sz);
}
}