pgtable.c 16.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
/*
 * Copyright 2010 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 */

#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/spinlock.h>
#include <linux/cpumask.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>

#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/fixmap.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/homecache.h>

#define K(x) ((x) << (PAGE_SHIFT-10))

/*
 * The normal show_free_areas() is too verbose on Tile, with dozens
 * of processors and often four NUMA zones each with high and lowmem.
 */
void show_mem(unsigned int filter)
{
	struct zone *zone;

	pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu"
	       " free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu"
	       " pagecache:%lu swap:%lu\n",
	       (global_page_state(NR_ACTIVE_ANON) +
		global_page_state(NR_ACTIVE_FILE)),
	       (global_page_state(NR_INACTIVE_ANON) +
		global_page_state(NR_INACTIVE_FILE)),
	       global_page_state(NR_FILE_DIRTY),
	       global_page_state(NR_WRITEBACK),
	       global_page_state(NR_UNSTABLE_NFS),
	       global_page_state(NR_FREE_PAGES),
	       (global_page_state(NR_SLAB_RECLAIMABLE) +
		global_page_state(NR_SLAB_UNRECLAIMABLE)),
	       global_page_state(NR_FILE_MAPPED),
	       global_page_state(NR_PAGETABLE),
	       global_page_state(NR_BOUNCE),
	       global_page_state(NR_FILE_PAGES),
	       get_nr_swap_pages());

	for_each_zone(zone) {
		unsigned long flags, order, total = 0, largest_order = -1;

		if (!populated_zone(zone))
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			int nr = zone->free_area[order].nr_free;
			total += nr << order;
			if (nr)
				largest_order = order;
		}
		spin_unlock_irqrestore(&zone->lock, flags);
		pr_err("Node %d %7s: %lukB (largest %luKb)\n",
		       zone_to_nid(zone), zone->name,
		       K(total), largest_order ? K(1UL) << largest_order : 0);
	}
}

/**
 * shatter_huge_page() - ensure a given address is mapped by a small page.
 *
 * This function converts a huge PTE mapping kernel LOWMEM into a bunch
 * of small PTEs with the same caching.  No cache flush required, but we
 * must do a global TLB flush.
 *
 * Any caller that wishes to modify a kernel mapping that might
 * have been made with a huge page should call this function,
 * since doing so properly avoids race conditions with installing the
 * newly-shattered page and then flushing all the TLB entries.
 *
 * @addr: Address at which to shatter any existing huge page.
 */
void shatter_huge_page(unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	unsigned long flags = 0;  /* happy compiler */
#ifdef __PAGETABLE_PMD_FOLDED
	struct list_head *pos;
#endif

	/* Get a pointer to the pmd entry that we need to change. */
	addr &= HPAGE_MASK;
	BUG_ON(pgd_addr_invalid(addr));
	BUG_ON(addr < PAGE_OFFSET);  /* only for kernel LOWMEM */
	pgd = swapper_pg_dir + pgd_index(addr);
	pud = pud_offset(pgd, addr);
	BUG_ON(!pud_present(*pud));
	pmd = pmd_offset(pud, addr);
	BUG_ON(!pmd_present(*pmd));
	if (!pmd_huge_page(*pmd))
		return;

	spin_lock_irqsave(&init_mm.page_table_lock, flags);
	if (!pmd_huge_page(*pmd)) {
		/* Lost the race to convert the huge page. */
		spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
		return;
	}

	/* Shatter the huge page into the preallocated L2 page table. */
	pmd_populate_kernel(&init_mm, pmd, get_prealloc_pte(pmd_pfn(*pmd)));

#ifdef __PAGETABLE_PMD_FOLDED
	/* Walk every pgd on the system and update the pmd there. */
	spin_lock(&pgd_lock);
	list_for_each(pos, &pgd_list) {
		pmd_t *copy_pmd;
		pgd = list_to_pgd(pos) + pgd_index(addr);
		pud = pud_offset(pgd, addr);
		copy_pmd = pmd_offset(pud, addr);
		__set_pmd(copy_pmd, *pmd);
	}
	spin_unlock(&pgd_lock);
#endif

	/* Tell every cpu to notice the change. */
	flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE,
		     cpu_possible_mask, NULL, 0);

	/* Hold the lock until the TLB flush is finished to avoid races. */
	spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
}

/*
 * List of all pgd's needed so it can invalidate entries in both cached
 * and uncached pgd's. This is essentially codepath-based locking
 * against pageattr.c; it is the unique case in which a valid change
 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
 * vmalloc faults work because attached pagetables are never freed.
 *
 * The lock is always taken with interrupts disabled, unlike on x86
 * and other platforms, because we need to take the lock in
 * shatter_huge_page(), which may be called from an interrupt context.
 * We are not at risk from the tlbflush IPI deadlock that was seen on
 * x86, since we use the flush_remote() API to have the hypervisor do
 * the TLB flushes regardless of irq disabling.
 */
DEFINE_SPINLOCK(pgd_lock);
LIST_HEAD(pgd_list);

static inline void pgd_list_add(pgd_t *pgd)
{
	list_add(pgd_to_list(pgd), &pgd_list);
}

static inline void pgd_list_del(pgd_t *pgd)
{
	list_del(pgd_to_list(pgd));
}

#define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET)
#define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START)

static void pgd_ctor(pgd_t *pgd)
{
	unsigned long flags;

	memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t));
	spin_lock_irqsave(&pgd_lock, flags);

#ifndef __tilegx__
	/*
	 * Check that the user interrupt vector has no L2.
	 * It never should for the swapper, and new page tables
	 * should always start with an empty user interrupt vector.
	 */
	BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0);
#endif

	memcpy(pgd + KERNEL_PGD_INDEX_START,
	       swapper_pg_dir + KERNEL_PGD_INDEX_START,
	       KERNEL_PGD_PTRS * sizeof(pgd_t));

	pgd_list_add(pgd);
	spin_unlock_irqrestore(&pgd_lock, flags);
}

static void pgd_dtor(pgd_t *pgd)
{
	unsigned long flags; /* can be called from interrupt context */

	spin_lock_irqsave(&pgd_lock, flags);
	pgd_list_del(pgd);
	spin_unlock_irqrestore(&pgd_lock, flags);
}

pgd_t *pgd_alloc(struct mm_struct *mm)
{
	pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
	if (pgd)
		pgd_ctor(pgd);
	return pgd;
}

void pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
	pgd_dtor(pgd);
	kmem_cache_free(pgd_cache, pgd);
}


#define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER)

struct page *pgtable_alloc_one(struct mm_struct *mm, unsigned long address,
			       int order)
{
	gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO;
	struct page *p;
	int i;

	p = alloc_pages(flags, L2_USER_PGTABLE_ORDER);
	if (p == NULL)
		return NULL;

	if (!pgtable_page_ctor(p)) {
		__free_pages(p, L2_USER_PGTABLE_ORDER);
		return NULL;
	}

	/*
	 * Make every page have a page_count() of one, not just the first.
	 * We don't use __GFP_COMP since it doesn't look like it works
	 * correctly with tlb_remove_page().
	 */
	for (i = 1; i < order; ++i) {
		init_page_count(p+i);
		inc_zone_page_state(p+i, NR_PAGETABLE);
	}

	return p;
}

/*
 * Free page immediately (used in __pte_alloc if we raced with another
 * process).  We have to correct whatever pte_alloc_one() did before
 * returning the pages to the allocator.
 */
void pgtable_free(struct mm_struct *mm, struct page *p, int order)
{
	int i;

	pgtable_page_dtor(p);
	__free_page(p);

	for (i = 1; i < order; ++i) {
		__free_page(p+i);
		dec_zone_page_state(p+i, NR_PAGETABLE);
	}
}

void __pgtable_free_tlb(struct mmu_gather *tlb, struct page *pte,
			unsigned long address, int order)
{
	int i;

	pgtable_page_dtor(pte);
	tlb_remove_page(tlb, pte);

	for (i = 1; i < order; ++i) {
		tlb_remove_page(tlb, pte + i);
		dec_zone_page_state(pte + i, NR_PAGETABLE);
	}
}

#ifndef __tilegx__

/*
 * FIXME: needs to be atomic vs hypervisor writes.  For now we make the
 * window of vulnerability a bit smaller by doing an unlocked 8-bit update.
 */
int ptep_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long addr, pte_t *ptep)
{
#if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16
# error Code assumes HV_PTE "accessed" bit in second byte
#endif
	u8 *tmp = (u8 *)ptep;
	u8 second_byte = tmp[1];
	if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8))))
		return 0;
	tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8));
	return 1;
}

/*
 * This implementation is atomic vs hypervisor writes, since the hypervisor
 * always writes the low word (where "accessed" and "dirty" are) and this
 * routine only writes the high word.
 */
void ptep_set_wrprotect(struct mm_struct *mm,
			unsigned long addr, pte_t *ptep)
{
#if HV_PTE_INDEX_WRITABLE < 32
# error Code assumes HV_PTE "writable" bit in high word
#endif
	u32 *tmp = (u32 *)ptep;
	tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32));
}

#endif

/*
 * Return a pointer to the PTE that corresponds to the given
 * address in the given page table.  A NULL page table just uses
 * the standard kernel page table; the preferred API in this case
 * is virt_to_kpte().
 *
 * The returned pointer can point to a huge page in other levels
 * of the page table than the bottom, if the huge page is present
 * in the page table.  For bottom-level PTEs, the returned pointer
 * can point to a PTE that is either present or not.
 */
pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;

	if (pgd_addr_invalid(addr))
		return NULL;

	pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr);
	pud = pud_offset(pgd, addr);
	if (!pud_present(*pud))
		return NULL;
	if (pud_huge_page(*pud))
		return (pte_t *)pud;
	pmd = pmd_offset(pud, addr);
	if (!pmd_present(*pmd))
		return NULL;
	if (pmd_huge_page(*pmd))
		return (pte_t *)pmd;
	return pte_offset_kernel(pmd, addr);
}
EXPORT_SYMBOL(virt_to_pte);

pte_t *virt_to_kpte(unsigned long kaddr)
{
	BUG_ON(kaddr < PAGE_OFFSET);
	return virt_to_pte(NULL, kaddr);
}
EXPORT_SYMBOL(virt_to_kpte);

pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu)
{
	unsigned int width = smp_width;
	int x = cpu % width;
	int y = cpu / width;
	BUG_ON(y >= smp_height);
	BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
	BUG_ON(cpu < 0 || cpu >= NR_CPUS);
	BUG_ON(!cpu_is_valid_lotar(cpu));
	return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y));
}

int get_remote_cache_cpu(pgprot_t prot)
{
	HV_LOTAR lotar = hv_pte_get_lotar(prot);
	int x = HV_LOTAR_X(lotar);
	int y = HV_LOTAR_Y(lotar);
	BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
	return x + y * smp_width;
}

/*
 * Convert a kernel VA to a PA and homing information.
 */
int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte)
{
	struct page *page = virt_to_page(va);
	pte_t null_pte = { 0 };

	*cpa = __pa(va);

	/* Note that this is not writing a page table, just returning a pte. */
	*pte = pte_set_home(null_pte, page_home(page));

	return 0; /* return non-zero if not hfh? */
}
EXPORT_SYMBOL(va_to_cpa_and_pte);

void __set_pte(pte_t *ptep, pte_t pte)
{
#ifdef __tilegx__
	*ptep = pte;
#else
# if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32
#  error Must write the present and migrating bits last
# endif
	if (pte_present(pte)) {
		((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
		barrier();
		((u32 *)ptep)[0] = (u32)(pte_val(pte));
	} else {
		((u32 *)ptep)[0] = (u32)(pte_val(pte));
		barrier();
		((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
	}
#endif /* __tilegx__ */
}

void set_pte(pte_t *ptep, pte_t pte)
{
	if (pte_present(pte) &&
	    (!CHIP_HAS_MMIO() || hv_pte_get_mode(pte) != HV_PTE_MODE_MMIO)) {
		/* The PTE actually references physical memory. */
		unsigned long pfn = pte_pfn(pte);
		if (pfn_valid(pfn)) {
			/* Update the home of the PTE from the struct page. */
			pte = pte_set_home(pte, page_home(pfn_to_page(pfn)));
		} else if (hv_pte_get_mode(pte) == 0) {
			/* remap_pfn_range(), etc, must supply PTE mode. */
			panic("set_pte(): out-of-range PFN and mode 0\n");
		}
	}

	__set_pte(ptep, pte);
}

/* Can this mm load a PTE with cached_priority set? */
static inline int mm_is_priority_cached(struct mm_struct *mm)
{
	return mm->context.priority_cached != 0;
}

/*
 * Add a priority mapping to an mm_context and
 * notify the hypervisor if this is the first one.
 */
void start_mm_caching(struct mm_struct *mm)
{
	if (!mm_is_priority_cached(mm)) {
		mm->context.priority_cached = -1UL;
		hv_set_caching(-1UL);
	}
}

/*
 * Validate and return the priority_cached flag.  We know if it's zero
 * that we don't need to scan, since we immediately set it non-zero
 * when we first consider a MAP_CACHE_PRIORITY mapping.
 *
 * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it,
 * since we're in an interrupt context (servicing switch_mm) we don't
 * worry about it and don't unset the "priority_cached" field.
 * Presumably we'll come back later and have more luck and clear
 * the value then; for now we'll just keep the cache marked for priority.
 */
static unsigned long update_priority_cached(struct mm_struct *mm)
{
	if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) {
		struct vm_area_struct *vm;
		for (vm = mm->mmap; vm; vm = vm->vm_next) {
			if (hv_pte_get_cached_priority(vm->vm_page_prot))
				break;
		}
		if (vm == NULL)
			mm->context.priority_cached = 0;
		up_write(&mm->mmap_sem);
	}
	return mm->context.priority_cached;
}

/* Set caching correctly for an mm that we are switching to. */
void check_mm_caching(struct mm_struct *prev, struct mm_struct *next)
{
	if (!mm_is_priority_cached(next)) {
		/*
		 * If the new mm doesn't use priority caching, just see if we
		 * need the hv_set_caching(), or can assume it's already zero.
		 */
		if (mm_is_priority_cached(prev))
			hv_set_caching(0);
	} else {
		hv_set_caching(update_priority_cached(next));
	}
}

#if CHIP_HAS_MMIO()

/* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */
void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
			   pgprot_t home)
{
	void *addr;
	struct vm_struct *area;
	unsigned long offset, last_addr;
	pgprot_t pgprot;

	/* Don't allow wraparound or zero size */
	last_addr = phys_addr + size - 1;
	if (!size || last_addr < phys_addr)
		return NULL;

	/* Create a read/write, MMIO VA mapping homed at the requested shim. */
	pgprot = PAGE_KERNEL;
	pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO);
	pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home));

	/*
	 * Mappings have to be page-aligned
	 */
	offset = phys_addr & ~PAGE_MASK;
	phys_addr &= PAGE_MASK;
	size = PAGE_ALIGN(last_addr+1) - phys_addr;

	/*
	 * Ok, go for it..
	 */
	area = get_vm_area(size, VM_IOREMAP /* | other flags? */);
	if (!area)
		return NULL;
	area->phys_addr = phys_addr;
	addr = area->addr;
	if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size,
			       phys_addr, pgprot)) {
		free_vm_area(area);
		return NULL;
	}
	return (__force void __iomem *) (offset + (char *)addr);
}
EXPORT_SYMBOL(ioremap_prot);

/* Unmap an MMIO VA mapping. */
void iounmap(volatile void __iomem *addr_in)
{
	volatile void __iomem *addr = (volatile void __iomem *)
		(PAGE_MASK & (unsigned long __force)addr_in);
#if 1
	vunmap((void * __force)addr);
#else
	/* x86 uses this complicated flow instead of vunmap().  Is
	 * there any particular reason we should do the same? */
	struct vm_struct *p, *o;

	/* Use the vm area unlocked, assuming the caller
	   ensures there isn't another iounmap for the same address
	   in parallel. Reuse of the virtual address is prevented by
	   leaving it in the global lists until we're done with it.
	   cpa takes care of the direct mappings. */
	p = find_vm_area((void *)addr);

	if (!p) {
		pr_err("iounmap: bad address %p\n", addr);
		dump_stack();
		return;
	}

	/* Finally remove it */
	o = remove_vm_area((void *)addr);
	BUG_ON(p != o || o == NULL);
	kfree(p);
#endif
}
EXPORT_SYMBOL(iounmap);

#endif /* CHIP_HAS_MMIO() */