ssin.S
18.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
|
| ssin.sa 3.3 7/29/91
|
| The entry point sSIN computes the sine of an input argument
| sCOS computes the cosine, and sSINCOS computes both. The
| corresponding entry points with a "d" computes the same
| corresponding function values for denormalized inputs.
|
| Input: Double-extended number X in location pointed to
| by address register a0.
|
| Output: The function value sin(X) or cos(X) returned in Fp0 if SIN or
| COS is requested. Otherwise, for SINCOS, sin(X) is returned
| in Fp0, and cos(X) is returned in Fp1.
|
| Modifies: Fp0 for SIN or COS; both Fp0 and Fp1 for SINCOS.
|
| Accuracy and Monotonicity: The returned result is within 1 ulp in
| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
| result is subsequently rounded to double precision. The
| result is provably monotonic in double precision.
|
| Speed: The programs sSIN and sCOS take approximately 150 cycles for
| input argument X such that |X| < 15Pi, which is the usual
| situation. The speed for sSINCOS is approximately 190 cycles.
|
| Algorithm:
|
| SIN and COS:
| 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1.
|
| 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7.
|
| 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
| k = N mod 4, so in particular, k = 0,1,2,or 3. Overwrite
| k by k := k + AdjN.
|
| 4. If k is even, go to 6.
|
| 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. Return sgn*cos(r)
| where cos(r) is approximated by an even polynomial in r,
| 1 + r*r*(B1+s*(B2+ ... + s*B8)), s = r*r.
| Exit.
|
| 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r)
| where sin(r) is approximated by an odd polynomial in r
| r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r.
| Exit.
|
| 7. If |X| > 1, go to 9.
|
| 8. (|X|<2**(-40)) If SIN is invoked, return X; otherwise return 1.
|
| 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 3.
|
| SINCOS:
| 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
|
| 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
| k = N mod 4, so in particular, k = 0,1,2,or 3.
|
| 3. If k is even, go to 5.
|
| 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), i.e.
| j1 exclusive or with the l.s.b. of k.
| sgn1 := (-1)**j1, sgn2 := (-1)**j2.
| SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where
| sin(r) and cos(r) are computed as odd and even polynomials
| in r, respectively. Exit
|
| 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1.
| SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where
| sin(r) and cos(r) are computed as odd and even polynomials
| in r, respectively. Exit
|
| 6. If |X| > 1, go to 8.
|
| 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit.
|
| 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
|
| Copyright (C) Motorola, Inc. 1990
| All Rights Reserved
|
| For details on the license for this file, please see the
| file, README, in this same directory.
|SSIN idnt 2,1 | Motorola 040 Floating Point Software Package
|section 8
#include "fpsp.h"
BOUNDS1: .long 0x3FD78000,0x4004BC7E
TWOBYPI: .long 0x3FE45F30,0x6DC9C883
SINA7: .long 0xBD6AAA77,0xCCC994F5
SINA6: .long 0x3DE61209,0x7AAE8DA1
SINA5: .long 0xBE5AE645,0x2A118AE4
SINA4: .long 0x3EC71DE3,0xA5341531
SINA3: .long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000
SINA2: .long 0x3FF80000,0x88888888,0x888859AF,0x00000000
SINA1: .long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000
COSB8: .long 0x3D2AC4D0,0xD6011EE3
COSB7: .long 0xBDA9396F,0x9F45AC19
COSB6: .long 0x3E21EED9,0x0612C972
COSB5: .long 0xBE927E4F,0xB79D9FCF
COSB4: .long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000
COSB3: .long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000
COSB2: .long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E
COSB1: .long 0xBF000000
INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A
TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
|xref PITBL
.set INARG,FP_SCR4
.set X,FP_SCR5
.set XDCARE,X+2
.set XFRAC,X+4
.set RPRIME,FP_SCR1
.set SPRIME,FP_SCR2
.set POSNEG1,L_SCR1
.set TWOTO63,L_SCR1
.set ENDFLAG,L_SCR2
.set N,L_SCR2
.set ADJN,L_SCR3
| xref t_frcinx
|xref t_extdnrm
|xref sto_cos
.global ssind
ssind:
|--SIN(X) = X FOR DENORMALIZED X
bra t_extdnrm
.global scosd
scosd:
|--COS(X) = 1 FOR DENORMALIZED X
fmoves #0x3F800000,%fp0
|
| 9D25B Fix: Sometimes the previous fmove.s sets fpsr bits
|
fmovel #0,%fpsr
|
bra t_frcinx
.global ssin
ssin:
|--SET ADJN TO 0
movel #0,ADJN(%a6)
bras SINBGN
.global scos
scos:
|--SET ADJN TO 1
movel #1,ADJN(%a6)
SINBGN:
|--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE
fmovex (%a0),%fp0 | ...LOAD INPUT
movel (%a0),%d0
movew 4(%a0),%d0
fmovex %fp0,X(%a6)
andil #0x7FFFFFFF,%d0 | ...COMPACTIFY X
cmpil #0x3FD78000,%d0 | ...|X| >= 2**(-40)?
bges SOK1
bra SINSM
SOK1:
cmpil #0x4004BC7E,%d0 | ...|X| < 15 PI?
blts SINMAIN
bra REDUCEX
SINMAIN:
|--THIS IS THE USUAL CASE, |X| <= 15 PI.
|--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
fmovex %fp0,%fp1
fmuld TWOBYPI,%fp1 | ...X*2/PI
|--HIDE THE NEXT THREE INSTRUCTIONS
lea PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32
|--FP1 IS NOW READY
fmovel %fp1,N(%a6) | ...CONVERT TO INTEGER
movel N(%a6),%d0
asll #4,%d0
addal %d0,%a1 | ...A1 IS THE ADDRESS OF N*PIBY2
| ...WHICH IS IN TWO PIECES Y1 & Y2
fsubx (%a1)+,%fp0 | ...X-Y1
|--HIDE THE NEXT ONE
fsubs (%a1),%fp0 | ...FP0 IS R = (X-Y1)-Y2
SINCONT:
|--continuation from REDUCEX
|--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED
movel N(%a6),%d0
addl ADJN(%a6),%d0 | ...SEE IF D0 IS ODD OR EVEN
rorl #1,%d0 | ...D0 WAS ODD IFF D0 IS NEGATIVE
cmpil #0,%d0
blt COSPOLY
SINPOLY:
|--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
|--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
|--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE
|--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS
|--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])
|--WHERE T=S*S.
|--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION
|--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT.
fmovex %fp0,X(%a6) | ...X IS R
fmulx %fp0,%fp0 | ...FP0 IS S
|---HIDE THE NEXT TWO WHILE WAITING FOR FP0
fmoved SINA7,%fp3
fmoved SINA6,%fp2
|--FP0 IS NOW READY
fmovex %fp0,%fp1
fmulx %fp1,%fp1 | ...FP1 IS T
|--HIDE THE NEXT TWO WHILE WAITING FOR FP1
rorl #1,%d0
andil #0x80000000,%d0
| ...LEAST SIG. BIT OF D0 IN SIGN POSITION
eorl %d0,X(%a6) | ...X IS NOW R'= SGN*R
fmulx %fp1,%fp3 | ...TA7
fmulx %fp1,%fp2 | ...TA6
faddd SINA5,%fp3 | ...A5+TA7
faddd SINA4,%fp2 | ...A4+TA6
fmulx %fp1,%fp3 | ...T(A5+TA7)
fmulx %fp1,%fp2 | ...T(A4+TA6)
faddd SINA3,%fp3 | ...A3+T(A5+TA7)
faddx SINA2,%fp2 | ...A2+T(A4+TA6)
fmulx %fp3,%fp1 | ...T(A3+T(A5+TA7))
fmulx %fp0,%fp2 | ...S(A2+T(A4+TA6))
faddx SINA1,%fp1 | ...A1+T(A3+T(A5+TA7))
fmulx X(%a6),%fp0 | ...R'*S
faddx %fp2,%fp1 | ...[A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]
|--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
|--FP2 RELEASED, RESTORE NOW AND TAKE FULL ADVANTAGE OF HIDING
fmulx %fp1,%fp0 | ...SIN(R')-R'
|--FP1 RELEASED.
fmovel %d1,%FPCR |restore users exceptions
faddx X(%a6),%fp0 |last inst - possible exception set
bra t_frcinx
COSPOLY:
|--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
|--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY
|--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE
|--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS
|--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))])
|--WHERE T=S*S.
|--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION
|--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2
|--AND IS THEREFORE STORED AS SINGLE PRECISION.
fmulx %fp0,%fp0 | ...FP0 IS S
|---HIDE THE NEXT TWO WHILE WAITING FOR FP0
fmoved COSB8,%fp2
fmoved COSB7,%fp3
|--FP0 IS NOW READY
fmovex %fp0,%fp1
fmulx %fp1,%fp1 | ...FP1 IS T
|--HIDE THE NEXT TWO WHILE WAITING FOR FP1
fmovex %fp0,X(%a6) | ...X IS S
rorl #1,%d0
andil #0x80000000,%d0
| ...LEAST SIG. BIT OF D0 IN SIGN POSITION
fmulx %fp1,%fp2 | ...TB8
|--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
eorl %d0,X(%a6) | ...X IS NOW S'= SGN*S
andil #0x80000000,%d0
fmulx %fp1,%fp3 | ...TB7
|--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
oril #0x3F800000,%d0 | ...D0 IS SGN IN SINGLE
movel %d0,POSNEG1(%a6)
faddd COSB6,%fp2 | ...B6+TB8
faddd COSB5,%fp3 | ...B5+TB7
fmulx %fp1,%fp2 | ...T(B6+TB8)
fmulx %fp1,%fp3 | ...T(B5+TB7)
faddd COSB4,%fp2 | ...B4+T(B6+TB8)
faddx COSB3,%fp3 | ...B3+T(B5+TB7)
fmulx %fp1,%fp2 | ...T(B4+T(B6+TB8))
fmulx %fp3,%fp1 | ...T(B3+T(B5+TB7))
faddx COSB2,%fp2 | ...B2+T(B4+T(B6+TB8))
fadds COSB1,%fp1 | ...B1+T(B3+T(B5+TB7))
fmulx %fp2,%fp0 | ...S(B2+T(B4+T(B6+TB8)))
|--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
|--FP2 RELEASED.
faddx %fp1,%fp0
|--FP1 RELEASED
fmulx X(%a6),%fp0
fmovel %d1,%FPCR |restore users exceptions
fadds POSNEG1(%a6),%fp0 |last inst - possible exception set
bra t_frcinx
SINBORS:
|--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
|--IF |X| < 2**(-40), RETURN X OR 1.
cmpil #0x3FFF8000,%d0
bgts REDUCEX
SINSM:
movel ADJN(%a6),%d0
cmpil #0,%d0
bgts COSTINY
SINTINY:
movew #0x0000,XDCARE(%a6) | ...JUST IN CASE
fmovel %d1,%FPCR |restore users exceptions
fmovex X(%a6),%fp0 |last inst - possible exception set
bra t_frcinx
COSTINY:
fmoves #0x3F800000,%fp0
fmovel %d1,%FPCR |restore users exceptions
fsubs #0x00800000,%fp0 |last inst - possible exception set
bra t_frcinx
REDUCEX:
|--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
|--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
|--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
fmovemx %fp2-%fp5,-(%a7) | ...save FP2 through FP5
movel %d2,-(%a7)
fmoves #0x00000000,%fp1
|--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
|--there is a danger of unwanted overflow in first LOOP iteration. In this
|--case, reduce argument by one remainder step to make subsequent reduction
|--safe.
cmpil #0x7ffeffff,%d0 |is argument dangerously large?
bnes LOOP
movel #0x7ffe0000,FP_SCR2(%a6) |yes
| ;create 2**16383*PI/2
movel #0xc90fdaa2,FP_SCR2+4(%a6)
clrl FP_SCR2+8(%a6)
ftstx %fp0 |test sign of argument
movel #0x7fdc0000,FP_SCR3(%a6) |create low half of 2**16383*
| ;PI/2 at FP_SCR3
movel #0x85a308d3,FP_SCR3+4(%a6)
clrl FP_SCR3+8(%a6)
fblt red_neg
orw #0x8000,FP_SCR2(%a6) |positive arg
orw #0x8000,FP_SCR3(%a6)
red_neg:
faddx FP_SCR2(%a6),%fp0 |high part of reduction is exact
fmovex %fp0,%fp1 |save high result in fp1
faddx FP_SCR3(%a6),%fp0 |low part of reduction
fsubx %fp0,%fp1 |determine low component of result
faddx FP_SCR3(%a6),%fp1 |fp0/fp1 are reduced argument.
|--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
|--integer quotient will be stored in N
|--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1)
LOOP:
fmovex %fp0,INARG(%a6) | ...+-2**K * F, 1 <= F < 2
movew INARG(%a6),%d0
movel %d0,%a1 | ...save a copy of D0
andil #0x00007FFF,%d0
subil #0x00003FFF,%d0 | ...D0 IS K
cmpil #28,%d0
bles LASTLOOP
CONTLOOP:
subil #27,%d0 | ...D0 IS L := K-27
movel #0,ENDFLAG(%a6)
bras WORK
LASTLOOP:
clrl %d0 | ...D0 IS L := 0
movel #1,ENDFLAG(%a6)
WORK:
|--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
|--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
|--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
|--2**L * (PIby2_1), 2**L * (PIby2_2)
movel #0x00003FFE,%d2 | ...BIASED EXPO OF 2/PI
subl %d0,%d2 | ...BIASED EXPO OF 2**(-L)*(2/PI)
movel #0xA2F9836E,FP_SCR1+4(%a6)
movel #0x4E44152A,FP_SCR1+8(%a6)
movew %d2,FP_SCR1(%a6) | ...FP_SCR1 is 2**(-L)*(2/PI)
fmovex %fp0,%fp2
fmulx FP_SCR1(%a6),%fp2
|--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
|--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
|--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
|--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
|--US THE DESIRED VALUE IN FLOATING POINT.
|--HIDE SIX CYCLES OF INSTRUCTION
movel %a1,%d2
swap %d2
andil #0x80000000,%d2
oril #0x5F000000,%d2 | ...D2 IS SIGN(INARG)*2**63 IN SGL
movel %d2,TWOTO63(%a6)
movel %d0,%d2
addil #0x00003FFF,%d2 | ...BIASED EXPO OF 2**L * (PI/2)
|--FP2 IS READY
fadds TWOTO63(%a6),%fp2 | ...THE FRACTIONAL PART OF FP1 IS ROUNDED
|--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2
movew %d2,FP_SCR2(%a6)
clrw FP_SCR2+2(%a6)
movel #0xC90FDAA2,FP_SCR2+4(%a6)
clrl FP_SCR2+8(%a6) | ...FP_SCR2 is 2**(L) * Piby2_1
|--FP2 IS READY
fsubs TWOTO63(%a6),%fp2 | ...FP2 is N
addil #0x00003FDD,%d0
movew %d0,FP_SCR3(%a6)
clrw FP_SCR3+2(%a6)
movel #0x85A308D3,FP_SCR3+4(%a6)
clrl FP_SCR3+8(%a6) | ...FP_SCR3 is 2**(L) * Piby2_2
movel ENDFLAG(%a6),%d0
|--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
|--P2 = 2**(L) * Piby2_2
fmovex %fp2,%fp4
fmulx FP_SCR2(%a6),%fp4 | ...W = N*P1
fmovex %fp2,%fp5
fmulx FP_SCR3(%a6),%fp5 | ...w = N*P2
fmovex %fp4,%fp3
|--we want P+p = W+w but |p| <= half ulp of P
|--Then, we need to compute A := R-P and a := r-p
faddx %fp5,%fp3 | ...FP3 is P
fsubx %fp3,%fp4 | ...W-P
fsubx %fp3,%fp0 | ...FP0 is A := R - P
faddx %fp5,%fp4 | ...FP4 is p = (W-P)+w
fmovex %fp0,%fp3 | ...FP3 A
fsubx %fp4,%fp1 | ...FP1 is a := r - p
|--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
|--|r| <= half ulp of R.
faddx %fp1,%fp0 | ...FP0 is R := A+a
|--No need to calculate r if this is the last loop
cmpil #0,%d0
bgt RESTORE
|--Need to calculate r
fsubx %fp0,%fp3 | ...A-R
faddx %fp3,%fp1 | ...FP1 is r := (A-R)+a
bra LOOP
RESTORE:
fmovel %fp2,N(%a6)
movel (%a7)+,%d2
fmovemx (%a7)+,%fp2-%fp5
movel ADJN(%a6),%d0
cmpil #4,%d0
blt SINCONT
bras SCCONT
.global ssincosd
ssincosd:
|--SIN AND COS OF X FOR DENORMALIZED X
fmoves #0x3F800000,%fp1
bsr sto_cos |store cosine result
bra t_extdnrm
.global ssincos
ssincos:
|--SET ADJN TO 4
movel #4,ADJN(%a6)
fmovex (%a0),%fp0 | ...LOAD INPUT
movel (%a0),%d0
movew 4(%a0),%d0
fmovex %fp0,X(%a6)
andil #0x7FFFFFFF,%d0 | ...COMPACTIFY X
cmpil #0x3FD78000,%d0 | ...|X| >= 2**(-40)?
bges SCOK1
bra SCSM
SCOK1:
cmpil #0x4004BC7E,%d0 | ...|X| < 15 PI?
blts SCMAIN
bra REDUCEX
SCMAIN:
|--THIS IS THE USUAL CASE, |X| <= 15 PI.
|--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
fmovex %fp0,%fp1
fmuld TWOBYPI,%fp1 | ...X*2/PI
|--HIDE THE NEXT THREE INSTRUCTIONS
lea PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32
|--FP1 IS NOW READY
fmovel %fp1,N(%a6) | ...CONVERT TO INTEGER
movel N(%a6),%d0
asll #4,%d0
addal %d0,%a1 | ...ADDRESS OF N*PIBY2, IN Y1, Y2
fsubx (%a1)+,%fp0 | ...X-Y1
fsubs (%a1),%fp0 | ...FP0 IS R = (X-Y1)-Y2
SCCONT:
|--continuation point from REDUCEX
|--HIDE THE NEXT TWO
movel N(%a6),%d0
rorl #1,%d0
cmpil #0,%d0 | ...D0 < 0 IFF N IS ODD
bge NEVEN
NODD:
|--REGISTERS SAVED SO FAR: D0, A0, FP2.
fmovex %fp0,RPRIME(%a6)
fmulx %fp0,%fp0 | ...FP0 IS S = R*R
fmoved SINA7,%fp1 | ...A7
fmoved COSB8,%fp2 | ...B8
fmulx %fp0,%fp1 | ...SA7
movel %d2,-(%a7)
movel %d0,%d2
fmulx %fp0,%fp2 | ...SB8
rorl #1,%d2
andil #0x80000000,%d2
faddd SINA6,%fp1 | ...A6+SA7
eorl %d0,%d2
andil #0x80000000,%d2
faddd COSB7,%fp2 | ...B7+SB8
fmulx %fp0,%fp1 | ...S(A6+SA7)
eorl %d2,RPRIME(%a6)
movel (%a7)+,%d2
fmulx %fp0,%fp2 | ...S(B7+SB8)
rorl #1,%d0
andil #0x80000000,%d0
faddd SINA5,%fp1 | ...A5+S(A6+SA7)
movel #0x3F800000,POSNEG1(%a6)
eorl %d0,POSNEG1(%a6)
faddd COSB6,%fp2 | ...B6+S(B7+SB8)
fmulx %fp0,%fp1 | ...S(A5+S(A6+SA7))
fmulx %fp0,%fp2 | ...S(B6+S(B7+SB8))
fmovex %fp0,SPRIME(%a6)
faddd SINA4,%fp1 | ...A4+S(A5+S(A6+SA7))
eorl %d0,SPRIME(%a6)
faddd COSB5,%fp2 | ...B5+S(B6+S(B7+SB8))
fmulx %fp0,%fp1 | ...S(A4+...)
fmulx %fp0,%fp2 | ...S(B5+...)
faddd SINA3,%fp1 | ...A3+S(A4+...)
faddd COSB4,%fp2 | ...B4+S(B5+...)
fmulx %fp0,%fp1 | ...S(A3+...)
fmulx %fp0,%fp2 | ...S(B4+...)
faddx SINA2,%fp1 | ...A2+S(A3+...)
faddx COSB3,%fp2 | ...B3+S(B4+...)
fmulx %fp0,%fp1 | ...S(A2+...)
fmulx %fp0,%fp2 | ...S(B3+...)
faddx SINA1,%fp1 | ...A1+S(A2+...)
faddx COSB2,%fp2 | ...B2+S(B3+...)
fmulx %fp0,%fp1 | ...S(A1+...)
fmulx %fp2,%fp0 | ...S(B2+...)
fmulx RPRIME(%a6),%fp1 | ...R'S(A1+...)
fadds COSB1,%fp0 | ...B1+S(B2...)
fmulx SPRIME(%a6),%fp0 | ...S'(B1+S(B2+...))
movel %d1,-(%sp) |restore users mode & precision
andil #0xff,%d1 |mask off all exceptions
fmovel %d1,%FPCR
faddx RPRIME(%a6),%fp1 | ...COS(X)
bsr sto_cos |store cosine result
fmovel (%sp)+,%FPCR |restore users exceptions
fadds POSNEG1(%a6),%fp0 | ...SIN(X)
bra t_frcinx
NEVEN:
|--REGISTERS SAVED SO FAR: FP2.
fmovex %fp0,RPRIME(%a6)
fmulx %fp0,%fp0 | ...FP0 IS S = R*R
fmoved COSB8,%fp1 | ...B8
fmoved SINA7,%fp2 | ...A7
fmulx %fp0,%fp1 | ...SB8
fmovex %fp0,SPRIME(%a6)
fmulx %fp0,%fp2 | ...SA7
rorl #1,%d0
andil #0x80000000,%d0
faddd COSB7,%fp1 | ...B7+SB8
faddd SINA6,%fp2 | ...A6+SA7
eorl %d0,RPRIME(%a6)
eorl %d0,SPRIME(%a6)
fmulx %fp0,%fp1 | ...S(B7+SB8)
oril #0x3F800000,%d0
movel %d0,POSNEG1(%a6)
fmulx %fp0,%fp2 | ...S(A6+SA7)
faddd COSB6,%fp1 | ...B6+S(B7+SB8)
faddd SINA5,%fp2 | ...A5+S(A6+SA7)
fmulx %fp0,%fp1 | ...S(B6+S(B7+SB8))
fmulx %fp0,%fp2 | ...S(A5+S(A6+SA7))
faddd COSB5,%fp1 | ...B5+S(B6+S(B7+SB8))
faddd SINA4,%fp2 | ...A4+S(A5+S(A6+SA7))
fmulx %fp0,%fp1 | ...S(B5+...)
fmulx %fp0,%fp2 | ...S(A4+...)
faddd COSB4,%fp1 | ...B4+S(B5+...)
faddd SINA3,%fp2 | ...A3+S(A4+...)
fmulx %fp0,%fp1 | ...S(B4+...)
fmulx %fp0,%fp2 | ...S(A3+...)
faddx COSB3,%fp1 | ...B3+S(B4+...)
faddx SINA2,%fp2 | ...A2+S(A3+...)
fmulx %fp0,%fp1 | ...S(B3+...)
fmulx %fp0,%fp2 | ...S(A2+...)
faddx COSB2,%fp1 | ...B2+S(B3+...)
faddx SINA1,%fp2 | ...A1+S(A2+...)
fmulx %fp0,%fp1 | ...S(B2+...)
fmulx %fp2,%fp0 | ...s(a1+...)
fadds COSB1,%fp1 | ...B1+S(B2...)
fmulx RPRIME(%a6),%fp0 | ...R'S(A1+...)
fmulx SPRIME(%a6),%fp1 | ...S'(B1+S(B2+...))
movel %d1,-(%sp) |save users mode & precision
andil #0xff,%d1 |mask off all exceptions
fmovel %d1,%FPCR
fadds POSNEG1(%a6),%fp1 | ...COS(X)
bsr sto_cos |store cosine result
fmovel (%sp)+,%FPCR |restore users exceptions
faddx RPRIME(%a6),%fp0 | ...SIN(X)
bra t_frcinx
SCBORS:
cmpil #0x3FFF8000,%d0
bgt REDUCEX
SCSM:
movew #0x0000,XDCARE(%a6)
fmoves #0x3F800000,%fp1
movel %d1,-(%sp) |save users mode & precision
andil #0xff,%d1 |mask off all exceptions
fmovel %d1,%FPCR
fsubs #0x00800000,%fp1
bsr sto_cos |store cosine result
fmovel (%sp)+,%FPCR |restore users exceptions
fmovex X(%a6),%fp0
bra t_frcinx
|end