lmb.c
8.26 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/*
* Procedures for maintaining information about logical memory blocks.
*
* Peter Bergner, IBM Corp. June 2001.
* Copyright (C) 2001 Peter Bergner.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <lmb.h>
#define LMB_ALLOC_ANYWHERE 0
void lmb_dump_all(struct lmb *lmb)
{
#ifdef DEBUG
unsigned long i;
debug("lmb_dump_all:\n");
debug(" memory.cnt = 0x%lx\n", lmb->memory.cnt);
debug(" memory.size = 0x%llx\n",
(unsigned long long)lmb->memory.size);
for (i=0; i < lmb->memory.cnt ;i++) {
debug(" memory.reg[0x%lx].base = 0x%llx\n", i,
(long long unsigned)lmb->memory.region[i].base);
debug(" .size = 0x%llx\n",
(long long unsigned)lmb->memory.region[i].size);
}
debug("\n reserved.cnt = 0x%lx\n",
lmb->reserved.cnt);
debug(" reserved.size = 0x%llx\n",
(long long unsigned)lmb->reserved.size);
for (i=0; i < lmb->reserved.cnt ;i++) {
debug(" reserved.reg[0x%lx].base = 0x%llx\n", i,
(long long unsigned)lmb->reserved.region[i].base);
debug(" .size = 0x%llx\n",
(long long unsigned)lmb->reserved.region[i].size);
}
#endif /* DEBUG */
}
static long lmb_addrs_overlap(phys_addr_t base1,
phys_size_t size1, phys_addr_t base2, phys_size_t size2)
{
return ((base1 < (base2+size2)) && (base2 < (base1+size1)));
}
static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
phys_addr_t base2, phys_size_t size2)
{
if (base2 == base1 + size1)
return 1;
else if (base1 == base2 + size2)
return -1;
return 0;
}
static long lmb_regions_adjacent(struct lmb_region *rgn,
unsigned long r1, unsigned long r2)
{
phys_addr_t base1 = rgn->region[r1].base;
phys_size_t size1 = rgn->region[r1].size;
phys_addr_t base2 = rgn->region[r2].base;
phys_size_t size2 = rgn->region[r2].size;
return lmb_addrs_adjacent(base1, size1, base2, size2);
}
static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
{
unsigned long i;
for (i = r; i < rgn->cnt - 1; i++) {
rgn->region[i].base = rgn->region[i + 1].base;
rgn->region[i].size = rgn->region[i + 1].size;
}
rgn->cnt--;
}
/* Assumption: base addr of region 1 < base addr of region 2 */
static void lmb_coalesce_regions(struct lmb_region *rgn,
unsigned long r1, unsigned long r2)
{
rgn->region[r1].size += rgn->region[r2].size;
lmb_remove_region(rgn, r2);
}
void lmb_init(struct lmb *lmb)
{
/* Create a dummy zero size LMB which will get coalesced away later.
* This simplifies the lmb_add() code below...
*/
lmb->memory.region[0].base = 0;
lmb->memory.region[0].size = 0;
lmb->memory.cnt = 1;
lmb->memory.size = 0;
/* Ditto. */
lmb->reserved.region[0].base = 0;
lmb->reserved.region[0].size = 0;
lmb->reserved.cnt = 1;
lmb->reserved.size = 0;
}
/* This routine called with relocation disabled. */
static long lmb_add_region(struct lmb_region *rgn, phys_addr_t base, phys_size_t size)
{
unsigned long coalesced = 0;
long adjacent, i;
if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) {
rgn->region[0].base = base;
rgn->region[0].size = size;
return 0;
}
/* First try and coalesce this LMB with another. */
for (i=0; i < rgn->cnt; i++) {
phys_addr_t rgnbase = rgn->region[i].base;
phys_size_t rgnsize = rgn->region[i].size;
if ((rgnbase == base) && (rgnsize == size))
/* Already have this region, so we're done */
return 0;
adjacent = lmb_addrs_adjacent(base,size,rgnbase,rgnsize);
if ( adjacent > 0 ) {
rgn->region[i].base -= size;
rgn->region[i].size += size;
coalesced++;
break;
}
else if ( adjacent < 0 ) {
rgn->region[i].size += size;
coalesced++;
break;
}
}
if ((i < rgn->cnt-1) && lmb_regions_adjacent(rgn, i, i+1) ) {
lmb_coalesce_regions(rgn, i, i+1);
coalesced++;
}
if (coalesced)
return coalesced;
if (rgn->cnt >= MAX_LMB_REGIONS)
return -1;
/* Couldn't coalesce the LMB, so add it to the sorted table. */
for (i = rgn->cnt-1; i >= 0; i--) {
if (base < rgn->region[i].base) {
rgn->region[i+1].base = rgn->region[i].base;
rgn->region[i+1].size = rgn->region[i].size;
} else {
rgn->region[i+1].base = base;
rgn->region[i+1].size = size;
break;
}
}
if (base < rgn->region[0].base) {
rgn->region[0].base = base;
rgn->region[0].size = size;
}
rgn->cnt++;
return 0;
}
/* This routine may be called with relocation disabled. */
long lmb_add(struct lmb *lmb, phys_addr_t base, phys_size_t size)
{
struct lmb_region *_rgn = &(lmb->memory);
return lmb_add_region(_rgn, base, size);
}
long lmb_free(struct lmb *lmb, phys_addr_t base, phys_size_t size)
{
struct lmb_region *rgn = &(lmb->reserved);
phys_addr_t rgnbegin, rgnend;
phys_addr_t end = base + size;
int i;
rgnbegin = rgnend = 0; /* supress gcc warnings */
/* Find the region where (base, size) belongs to */
for (i=0; i < rgn->cnt; i++) {
rgnbegin = rgn->region[i].base;
rgnend = rgnbegin + rgn->region[i].size;
if ((rgnbegin <= base) && (end <= rgnend))
break;
}
/* Didn't find the region */
if (i == rgn->cnt)
return -1;
/* Check to see if we are removing entire region */
if ((rgnbegin == base) && (rgnend == end)) {
lmb_remove_region(rgn, i);
return 0;
}
/* Check to see if region is matching at the front */
if (rgnbegin == base) {
rgn->region[i].base = end;
rgn->region[i].size -= size;
return 0;
}
/* Check to see if the region is matching at the end */
if (rgnend == end) {
rgn->region[i].size -= size;
return 0;
}
/*
* We need to split the entry - adjust the current one to the
* beginging of the hole and add the region after hole.
*/
rgn->region[i].size = base - rgn->region[i].base;
return lmb_add_region(rgn, end, rgnend - end);
}
long lmb_reserve(struct lmb *lmb, phys_addr_t base, phys_size_t size)
{
struct lmb_region *_rgn = &(lmb->reserved);
return lmb_add_region(_rgn, base, size);
}
static long lmb_overlaps_region(struct lmb_region *rgn, phys_addr_t base,
phys_size_t size)
{
unsigned long i;
for (i=0; i < rgn->cnt; i++) {
phys_addr_t rgnbase = rgn->region[i].base;
phys_size_t rgnsize = rgn->region[i].size;
if ( lmb_addrs_overlap(base,size,rgnbase,rgnsize) ) {
break;
}
}
return (i < rgn->cnt) ? i : -1;
}
phys_addr_t lmb_alloc(struct lmb *lmb, phys_size_t size, ulong align)
{
return lmb_alloc_base(lmb, size, align, LMB_ALLOC_ANYWHERE);
}
phys_addr_t lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
{
phys_addr_t alloc;
alloc = __lmb_alloc_base(lmb, size, align, max_addr);
if (alloc == 0)
printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
(ulong)size, (ulong)max_addr);
return alloc;
}
static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
{
return addr & ~(size - 1);
}
static phys_addr_t lmb_align_up(phys_addr_t addr, ulong size)
{
return (addr + (size - 1)) & ~(size - 1);
}
phys_addr_t __lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
{
long i, j;
phys_addr_t base = 0;
phys_addr_t res_base;
for (i = lmb->memory.cnt-1; i >= 0; i--) {
phys_addr_t lmbbase = lmb->memory.region[i].base;
phys_size_t lmbsize = lmb->memory.region[i].size;
if (lmbsize < size)
continue;
if (max_addr == LMB_ALLOC_ANYWHERE)
base = lmb_align_down(lmbbase + lmbsize - size, align);
else if (lmbbase < max_addr) {
base = lmbbase + lmbsize;
if (base < lmbbase)
base = -1;
base = min(base, max_addr);
base = lmb_align_down(base - size, align);
} else
continue;
while (base && lmbbase <= base) {
j = lmb_overlaps_region(&lmb->reserved, base, size);
if (j < 0) {
/* This area isn't reserved, take it */
if (lmb_add_region(&lmb->reserved, base,
lmb_align_up(size,
align)) < 0)
return 0;
return base;
}
res_base = lmb->reserved.region[j].base;
if (res_base < size)
break;
base = lmb_align_down(res_base - size, align);
}
}
return 0;
}
int lmb_is_reserved(struct lmb *lmb, phys_addr_t addr)
{
int i;
for (i = 0; i < lmb->reserved.cnt; i++) {
phys_addr_t upper = lmb->reserved.region[i].base +
lmb->reserved.region[i].size - 1;
if ((addr >= lmb->reserved.region[i].base) && (addr <= upper))
return 1;
}
return 0;
}
__weak void board_lmb_reserve(struct lmb *lmb)
{
/* please define platform specific board_lmb_reserve() */
}
__weak void arch_lmb_reserve(struct lmb *lmb)
{
/* please define platform specific arch_lmb_reserve() */
}