mtdconcat.c 23 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
/*
 * MTD device concatenation layer
 *
 * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
 * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
 *
 * NAND support by Christian Gan <cgan@iders.ca>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/backing-dev.h>

#include <linux/mtd/mtd.h>
#include <linux/mtd/concat.h>

#include <asm/div64.h>

/*
 * Our storage structure:
 * Subdev points to an array of pointers to struct mtd_info objects
 * which is allocated along with this structure
 *
 */
struct mtd_concat {
	struct mtd_info mtd;
	int num_subdev;
	struct mtd_info **subdev;
};

/*
 * how to calculate the size required for the above structure,
 * including the pointer array subdev points to:
 */
#define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))

/*
 * Given a pointer to the MTD object in the mtd_concat structure,
 * we can retrieve the pointer to that structure with this macro.
 */
#define CONCAT(x)  ((struct mtd_concat *)(x))

/*
 * MTD methods which look up the relevant subdevice, translate the
 * effective address and pass through to the subdevice.
 */

static int
concat_read(struct mtd_info *mtd, loff_t from, size_t len,
	    size_t * retlen, u_char * buf)
{
	struct mtd_concat *concat = CONCAT(mtd);
	int ret = 0, err;
	int i;

	for (i = 0; i < concat->num_subdev; i++) {
		struct mtd_info *subdev = concat->subdev[i];
		size_t size, retsize;

		if (from >= subdev->size) {
			/* Not destined for this subdev */
			size = 0;
			from -= subdev->size;
			continue;
		}
		if (from + len > subdev->size)
			/* First part goes into this subdev */
			size = subdev->size - from;
		else
			/* Entire transaction goes into this subdev */
			size = len;

		err = mtd_read(subdev, from, size, &retsize, buf);

		/* Save information about bitflips! */
		if (unlikely(err)) {
			if (mtd_is_eccerr(err)) {
				mtd->ecc_stats.failed++;
				ret = err;
			} else if (mtd_is_bitflip(err)) {
				mtd->ecc_stats.corrected++;
				/* Do not overwrite -EBADMSG !! */
				if (!ret)
					ret = err;
			} else
				return err;
		}

		*retlen += retsize;
		len -= size;
		if (len == 0)
			return ret;

		buf += size;
		from = 0;
	}
	return -EINVAL;
}

static int
concat_write(struct mtd_info *mtd, loff_t to, size_t len,
	     size_t * retlen, const u_char * buf)
{
	struct mtd_concat *concat = CONCAT(mtd);
	int err = -EINVAL;
	int i;

	for (i = 0; i < concat->num_subdev; i++) {
		struct mtd_info *subdev = concat->subdev[i];
		size_t size, retsize;

		if (to >= subdev->size) {
			size = 0;
			to -= subdev->size;
			continue;
		}
		if (to + len > subdev->size)
			size = subdev->size - to;
		else
			size = len;

		err = mtd_write(subdev, to, size, &retsize, buf);
		if (err)
			break;

		*retlen += retsize;
		len -= size;
		if (len == 0)
			break;

		err = -EINVAL;
		buf += size;
		to = 0;
	}
	return err;
}

static int
concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
		unsigned long count, loff_t to, size_t * retlen)
{
	struct mtd_concat *concat = CONCAT(mtd);
	struct kvec *vecs_copy;
	unsigned long entry_low, entry_high;
	size_t total_len = 0;
	int i;
	int err = -EINVAL;

	/* Calculate total length of data */
	for (i = 0; i < count; i++)
		total_len += vecs[i].iov_len;

	/* Check alignment */
	if (mtd->writesize > 1) {
		uint64_t __to = to;
		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
			return -EINVAL;
	}

	/* make a copy of vecs */
	vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
	if (!vecs_copy)
		return -ENOMEM;

	entry_low = 0;
	for (i = 0; i < concat->num_subdev; i++) {
		struct mtd_info *subdev = concat->subdev[i];
		size_t size, wsize, retsize, old_iov_len;

		if (to >= subdev->size) {
			to -= subdev->size;
			continue;
		}

		size = min_t(uint64_t, total_len, subdev->size - to);
		wsize = size; /* store for future use */

		entry_high = entry_low;
		while (entry_high < count) {
			if (size <= vecs_copy[entry_high].iov_len)
				break;
			size -= vecs_copy[entry_high++].iov_len;
		}

		old_iov_len = vecs_copy[entry_high].iov_len;
		vecs_copy[entry_high].iov_len = size;

		err = mtd_writev(subdev, &vecs_copy[entry_low],
				 entry_high - entry_low + 1, to, &retsize);

		vecs_copy[entry_high].iov_len = old_iov_len - size;
		vecs_copy[entry_high].iov_base += size;

		entry_low = entry_high;

		if (err)
			break;

		*retlen += retsize;
		total_len -= wsize;

		if (total_len == 0)
			break;

		err = -EINVAL;
		to = 0;
	}

	kfree(vecs_copy);
	return err;
}

static int
concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
{
	struct mtd_concat *concat = CONCAT(mtd);
	struct mtd_oob_ops devops = *ops;
	int i, err, ret = 0;

	ops->retlen = ops->oobretlen = 0;

	for (i = 0; i < concat->num_subdev; i++) {
		struct mtd_info *subdev = concat->subdev[i];

		if (from >= subdev->size) {
			from -= subdev->size;
			continue;
		}

		/* partial read ? */
		if (from + devops.len > subdev->size)
			devops.len = subdev->size - from;

		err = mtd_read_oob(subdev, from, &devops);
		ops->retlen += devops.retlen;
		ops->oobretlen += devops.oobretlen;

		/* Save information about bitflips! */
		if (unlikely(err)) {
			if (mtd_is_eccerr(err)) {
				mtd->ecc_stats.failed++;
				ret = err;
			} else if (mtd_is_bitflip(err)) {
				mtd->ecc_stats.corrected++;
				/* Do not overwrite -EBADMSG !! */
				if (!ret)
					ret = err;
			} else
				return err;
		}

		if (devops.datbuf) {
			devops.len = ops->len - ops->retlen;
			if (!devops.len)
				return ret;
			devops.datbuf += devops.retlen;
		}
		if (devops.oobbuf) {
			devops.ooblen = ops->ooblen - ops->oobretlen;
			if (!devops.ooblen)
				return ret;
			devops.oobbuf += ops->oobretlen;
		}

		from = 0;
	}
	return -EINVAL;
}

static int
concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
{
	struct mtd_concat *concat = CONCAT(mtd);
	struct mtd_oob_ops devops = *ops;
	int i, err;

	if (!(mtd->flags & MTD_WRITEABLE))
		return -EROFS;

	ops->retlen = ops->oobretlen = 0;

	for (i = 0; i < concat->num_subdev; i++) {
		struct mtd_info *subdev = concat->subdev[i];

		if (to >= subdev->size) {
			to -= subdev->size;
			continue;
		}

		/* partial write ? */
		if (to + devops.len > subdev->size)
			devops.len = subdev->size - to;

		err = mtd_write_oob(subdev, to, &devops);
		ops->retlen += devops.oobretlen;
		if (err)
			return err;

		if (devops.datbuf) {
			devops.len = ops->len - ops->retlen;
			if (!devops.len)
				return 0;
			devops.datbuf += devops.retlen;
		}
		if (devops.oobbuf) {
			devops.ooblen = ops->ooblen - ops->oobretlen;
			if (!devops.ooblen)
				return 0;
			devops.oobbuf += devops.oobretlen;
		}
		to = 0;
	}
	return -EINVAL;
}

static void concat_erase_callback(struct erase_info *instr)
{
	wake_up((wait_queue_head_t *) instr->priv);
}

static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
{
	int err;
	wait_queue_head_t waitq;
	DECLARE_WAITQUEUE(wait, current);

	/*
	 * This code was stol^H^H^H^Hinspired by mtdchar.c
	 */
	init_waitqueue_head(&waitq);

	erase->mtd = mtd;
	erase->callback = concat_erase_callback;
	erase->priv = (unsigned long) &waitq;

	/*
	 * FIXME: Allow INTERRUPTIBLE. Which means
	 * not having the wait_queue head on the stack.
	 */
	err = mtd_erase(mtd, erase);
	if (!err) {
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&waitq, &wait);
		if (erase->state != MTD_ERASE_DONE
		    && erase->state != MTD_ERASE_FAILED)
			schedule();
		remove_wait_queue(&waitq, &wait);
		set_current_state(TASK_RUNNING);

		err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
	}
	return err;
}

static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct mtd_concat *concat = CONCAT(mtd);
	struct mtd_info *subdev;
	int i, err;
	uint64_t length, offset = 0;
	struct erase_info *erase;

	/*
	 * Check for proper erase block alignment of the to-be-erased area.
	 * It is easier to do this based on the super device's erase
	 * region info rather than looking at each particular sub-device
	 * in turn.
	 */
	if (!concat->mtd.numeraseregions) {
		/* the easy case: device has uniform erase block size */
		if (instr->addr & (concat->mtd.erasesize - 1))
			return -EINVAL;
		if (instr->len & (concat->mtd.erasesize - 1))
			return -EINVAL;
	} else {
		/* device has variable erase size */
		struct mtd_erase_region_info *erase_regions =
		    concat->mtd.eraseregions;

		/*
		 * Find the erase region where the to-be-erased area begins:
		 */
		for (i = 0; i < concat->mtd.numeraseregions &&
		     instr->addr >= erase_regions[i].offset; i++) ;
		--i;

		/*
		 * Now erase_regions[i] is the region in which the
		 * to-be-erased area begins. Verify that the starting
		 * offset is aligned to this region's erase size:
		 */
		if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
			return -EINVAL;

		/*
		 * now find the erase region where the to-be-erased area ends:
		 */
		for (; i < concat->mtd.numeraseregions &&
		     (instr->addr + instr->len) >= erase_regions[i].offset;
		     ++i) ;
		--i;
		/*
		 * check if the ending offset is aligned to this region's erase size
		 */
		if (i < 0 || ((instr->addr + instr->len) &
					(erase_regions[i].erasesize - 1)))
			return -EINVAL;
	}

	/* make a local copy of instr to avoid modifying the caller's struct */
	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);

	if (!erase)
		return -ENOMEM;

	*erase = *instr;
	length = instr->len;

	/*
	 * find the subdevice where the to-be-erased area begins, adjust
	 * starting offset to be relative to the subdevice start
	 */
	for (i = 0; i < concat->num_subdev; i++) {
		subdev = concat->subdev[i];
		if (subdev->size <= erase->addr) {
			erase->addr -= subdev->size;
			offset += subdev->size;
		} else {
			break;
		}
	}

	/* must never happen since size limit has been verified above */
	BUG_ON(i >= concat->num_subdev);

	/* now do the erase: */
	err = 0;
	for (; length > 0; i++) {
		/* loop for all subdevices affected by this request */
		subdev = concat->subdev[i];	/* get current subdevice */

		/* limit length to subdevice's size: */
		if (erase->addr + length > subdev->size)
			erase->len = subdev->size - erase->addr;
		else
			erase->len = length;

		length -= erase->len;
		if ((err = concat_dev_erase(subdev, erase))) {
			/* sanity check: should never happen since
			 * block alignment has been checked above */
			BUG_ON(err == -EINVAL);
			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
				instr->fail_addr = erase->fail_addr + offset;
			break;
		}
		/*
		 * erase->addr specifies the offset of the area to be
		 * erased *within the current subdevice*. It can be
		 * non-zero only the first time through this loop, i.e.
		 * for the first subdevice where blocks need to be erased.
		 * All the following erases must begin at the start of the
		 * current subdevice, i.e. at offset zero.
		 */
		erase->addr = 0;
		offset += subdev->size;
	}
	instr->state = erase->state;
	kfree(erase);
	if (err)
		return err;

	if (instr->callback)
		instr->callback(instr);
	return 0;
}

static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct mtd_concat *concat = CONCAT(mtd);
	int i, err = -EINVAL;

	for (i = 0; i < concat->num_subdev; i++) {
		struct mtd_info *subdev = concat->subdev[i];
		uint64_t size;

		if (ofs >= subdev->size) {
			size = 0;
			ofs -= subdev->size;
			continue;
		}
		if (ofs + len > subdev->size)
			size = subdev->size - ofs;
		else
			size = len;

		err = mtd_lock(subdev, ofs, size);
		if (err)
			break;

		len -= size;
		if (len == 0)
			break;

		err = -EINVAL;
		ofs = 0;
	}

	return err;
}

static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct mtd_concat *concat = CONCAT(mtd);
	int i, err = 0;

	for (i = 0; i < concat->num_subdev; i++) {
		struct mtd_info *subdev = concat->subdev[i];
		uint64_t size;

		if (ofs >= subdev->size) {
			size = 0;
			ofs -= subdev->size;
			continue;
		}
		if (ofs + len > subdev->size)
			size = subdev->size - ofs;
		else
			size = len;

		err = mtd_unlock(subdev, ofs, size);
		if (err)
			break;

		len -= size;
		if (len == 0)
			break;

		err = -EINVAL;
		ofs = 0;
	}

	return err;
}

static void concat_sync(struct mtd_info *mtd)
{
	struct mtd_concat *concat = CONCAT(mtd);
	int i;

	for (i = 0; i < concat->num_subdev; i++) {
		struct mtd_info *subdev = concat->subdev[i];
		mtd_sync(subdev);
	}
}

static int concat_suspend(struct mtd_info *mtd)
{
	struct mtd_concat *concat = CONCAT(mtd);
	int i, rc = 0;

	for (i = 0; i < concat->num_subdev; i++) {
		struct mtd_info *subdev = concat->subdev[i];
		if ((rc = mtd_suspend(subdev)) < 0)
			return rc;
	}
	return rc;
}

static void concat_resume(struct mtd_info *mtd)
{
	struct mtd_concat *concat = CONCAT(mtd);
	int i;

	for (i = 0; i < concat->num_subdev; i++) {
		struct mtd_info *subdev = concat->subdev[i];
		mtd_resume(subdev);
	}
}

static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
	struct mtd_concat *concat = CONCAT(mtd);
	int i, res = 0;

	if (!mtd_can_have_bb(concat->subdev[0]))
		return res;

	for (i = 0; i < concat->num_subdev; i++) {
		struct mtd_info *subdev = concat->subdev[i];

		if (ofs >= subdev->size) {
			ofs -= subdev->size;
			continue;
		}

		res = mtd_block_isbad(subdev, ofs);
		break;
	}

	return res;
}

static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
	struct mtd_concat *concat = CONCAT(mtd);
	int i, err = -EINVAL;

	for (i = 0; i < concat->num_subdev; i++) {
		struct mtd_info *subdev = concat->subdev[i];

		if (ofs >= subdev->size) {
			ofs -= subdev->size;
			continue;
		}

		err = mtd_block_markbad(subdev, ofs);
		if (!err)
			mtd->ecc_stats.badblocks++;
		break;
	}

	return err;
}

/*
 * try to support NOMMU mmaps on concatenated devices
 * - we don't support subdev spanning as we can't guarantee it'll work
 */
static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
					      unsigned long len,
					      unsigned long offset,
					      unsigned long flags)
{
	struct mtd_concat *concat = CONCAT(mtd);
	int i;

	for (i = 0; i < concat->num_subdev; i++) {
		struct mtd_info *subdev = concat->subdev[i];

		if (offset >= subdev->size) {
			offset -= subdev->size;
			continue;
		}

		return mtd_get_unmapped_area(subdev, len, offset, flags);
	}

	return (unsigned long) -ENOSYS;
}

/*
 * This function constructs a virtual MTD device by concatenating
 * num_devs MTD devices. A pointer to the new device object is
 * stored to *new_dev upon success. This function does _not_
 * register any devices: this is the caller's responsibility.
 */
struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
				   int num_devs,	/* number of subdevices      */
				   const char *name)
{				/* name for the new device   */
	int i;
	size_t size;
	struct mtd_concat *concat;
	uint32_t max_erasesize, curr_erasesize;
	int num_erase_region;
	int max_writebufsize = 0;

	printk(KERN_NOTICE "Concatenating MTD devices:\n");
	for (i = 0; i < num_devs; i++)
		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
	printk(KERN_NOTICE "into device \"%s\"\n", name);

	/* allocate the device structure */
	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
	concat = kzalloc(size, GFP_KERNEL);
	if (!concat) {
		printk
		    ("memory allocation error while creating concatenated device \"%s\"\n",
		     name);
		return NULL;
	}
	concat->subdev = (struct mtd_info **) (concat + 1);

	/*
	 * Set up the new "super" device's MTD object structure, check for
	 * incompatibilities between the subdevices.
	 */
	concat->mtd.type = subdev[0]->type;
	concat->mtd.flags = subdev[0]->flags;
	concat->mtd.size = subdev[0]->size;
	concat->mtd.erasesize = subdev[0]->erasesize;
	concat->mtd.writesize = subdev[0]->writesize;

	for (i = 0; i < num_devs; i++)
		if (max_writebufsize < subdev[i]->writebufsize)
			max_writebufsize = subdev[i]->writebufsize;
	concat->mtd.writebufsize = max_writebufsize;

	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
	concat->mtd.oobsize = subdev[0]->oobsize;
	concat->mtd.oobavail = subdev[0]->oobavail;
	if (subdev[0]->_writev)
		concat->mtd._writev = concat_writev;
	if (subdev[0]->_read_oob)
		concat->mtd._read_oob = concat_read_oob;
	if (subdev[0]->_write_oob)
		concat->mtd._write_oob = concat_write_oob;
	if (subdev[0]->_block_isbad)
		concat->mtd._block_isbad = concat_block_isbad;
	if (subdev[0]->_block_markbad)
		concat->mtd._block_markbad = concat_block_markbad;

	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;

	concat->mtd.backing_dev_info = subdev[0]->backing_dev_info;

	concat->subdev[0] = subdev[0];

	for (i = 1; i < num_devs; i++) {
		if (concat->mtd.type != subdev[i]->type) {
			kfree(concat);
			printk("Incompatible device type on \"%s\"\n",
			       subdev[i]->name);
			return NULL;
		}
		if (concat->mtd.flags != subdev[i]->flags) {
			/*
			 * Expect all flags except MTD_WRITEABLE to be
			 * equal on all subdevices.
			 */
			if ((concat->mtd.flags ^ subdev[i]->
			     flags) & ~MTD_WRITEABLE) {
				kfree(concat);
				printk("Incompatible device flags on \"%s\"\n",
				       subdev[i]->name);
				return NULL;
			} else
				/* if writeable attribute differs,
				   make super device writeable */
				concat->mtd.flags |=
				    subdev[i]->flags & MTD_WRITEABLE;
		}

		/* only permit direct mapping if the BDIs are all the same
		 * - copy-mapping is still permitted
		 */
		if (concat->mtd.backing_dev_info !=
		    subdev[i]->backing_dev_info)
			concat->mtd.backing_dev_info =
				&default_backing_dev_info;

		concat->mtd.size += subdev[i]->size;
		concat->mtd.ecc_stats.badblocks +=
			subdev[i]->ecc_stats.badblocks;
		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
		    !concat->mtd._read_oob  != !subdev[i]->_read_oob ||
		    !concat->mtd._write_oob != !subdev[i]->_write_oob) {
			kfree(concat);
			printk("Incompatible OOB or ECC data on \"%s\"\n",
			       subdev[i]->name);
			return NULL;
		}
		concat->subdev[i] = subdev[i];

	}

	concat->mtd.ecclayout = subdev[0]->ecclayout;

	concat->num_subdev = num_devs;
	concat->mtd.name = name;

	concat->mtd._erase = concat_erase;
	concat->mtd._read = concat_read;
	concat->mtd._write = concat_write;
	concat->mtd._sync = concat_sync;
	concat->mtd._lock = concat_lock;
	concat->mtd._unlock = concat_unlock;
	concat->mtd._suspend = concat_suspend;
	concat->mtd._resume = concat_resume;
	concat->mtd._get_unmapped_area = concat_get_unmapped_area;

	/*
	 * Combine the erase block size info of the subdevices:
	 *
	 * first, walk the map of the new device and see how
	 * many changes in erase size we have
	 */
	max_erasesize = curr_erasesize = subdev[0]->erasesize;
	num_erase_region = 1;
	for (i = 0; i < num_devs; i++) {
		if (subdev[i]->numeraseregions == 0) {
			/* current subdevice has uniform erase size */
			if (subdev[i]->erasesize != curr_erasesize) {
				/* if it differs from the last subdevice's erase size, count it */
				++num_erase_region;
				curr_erasesize = subdev[i]->erasesize;
				if (curr_erasesize > max_erasesize)
					max_erasesize = curr_erasesize;
			}
		} else {
			/* current subdevice has variable erase size */
			int j;
			for (j = 0; j < subdev[i]->numeraseregions; j++) {

				/* walk the list of erase regions, count any changes */
				if (subdev[i]->eraseregions[j].erasesize !=
				    curr_erasesize) {
					++num_erase_region;
					curr_erasesize =
					    subdev[i]->eraseregions[j].
					    erasesize;
					if (curr_erasesize > max_erasesize)
						max_erasesize = curr_erasesize;
				}
			}
		}
	}

	if (num_erase_region == 1) {
		/*
		 * All subdevices have the same uniform erase size.
		 * This is easy:
		 */
		concat->mtd.erasesize = curr_erasesize;
		concat->mtd.numeraseregions = 0;
	} else {
		uint64_t tmp64;

		/*
		 * erase block size varies across the subdevices: allocate
		 * space to store the data describing the variable erase regions
		 */
		struct mtd_erase_region_info *erase_region_p;
		uint64_t begin, position;

		concat->mtd.erasesize = max_erasesize;
		concat->mtd.numeraseregions = num_erase_region;
		concat->mtd.eraseregions = erase_region_p =
		    kmalloc(num_erase_region *
			    sizeof (struct mtd_erase_region_info), GFP_KERNEL);
		if (!erase_region_p) {
			kfree(concat);
			printk
			    ("memory allocation error while creating erase region list"
			     " for device \"%s\"\n", name);
			return NULL;
		}

		/*
		 * walk the map of the new device once more and fill in
		 * in erase region info:
		 */
		curr_erasesize = subdev[0]->erasesize;
		begin = position = 0;
		for (i = 0; i < num_devs; i++) {
			if (subdev[i]->numeraseregions == 0) {
				/* current subdevice has uniform erase size */
				if (subdev[i]->erasesize != curr_erasesize) {
					/*
					 *  fill in an mtd_erase_region_info structure for the area
					 *  we have walked so far:
					 */
					erase_region_p->offset = begin;
					erase_region_p->erasesize =
					    curr_erasesize;
					tmp64 = position - begin;
					do_div(tmp64, curr_erasesize);
					erase_region_p->numblocks = tmp64;
					begin = position;

					curr_erasesize = subdev[i]->erasesize;
					++erase_region_p;
				}
				position += subdev[i]->size;
			} else {
				/* current subdevice has variable erase size */
				int j;
				for (j = 0; j < subdev[i]->numeraseregions; j++) {
					/* walk the list of erase regions, count any changes */
					if (subdev[i]->eraseregions[j].
					    erasesize != curr_erasesize) {
						erase_region_p->offset = begin;
						erase_region_p->erasesize =
						    curr_erasesize;
						tmp64 = position - begin;
						do_div(tmp64, curr_erasesize);
						erase_region_p->numblocks = tmp64;
						begin = position;

						curr_erasesize =
						    subdev[i]->eraseregions[j].
						    erasesize;
						++erase_region_p;
					}
					position +=
					    subdev[i]->eraseregions[j].
					    numblocks * (uint64_t)curr_erasesize;
				}
			}
		}
		/* Now write the final entry */
		erase_region_p->offset = begin;
		erase_region_p->erasesize = curr_erasesize;
		tmp64 = position - begin;
		do_div(tmp64, curr_erasesize);
		erase_region_p->numblocks = tmp64;
	}

	return &concat->mtd;
}

/*
 * This function destroys an MTD object obtained from concat_mtd_devs()
 */

void mtd_concat_destroy(struct mtd_info *mtd)
{
	struct mtd_concat *concat = CONCAT(mtd);
	if (concat->mtd.numeraseregions)
		kfree(concat->mtd.eraseregions);
	kfree(concat);
}

EXPORT_SYMBOL(mtd_concat_create);
EXPORT_SYMBOL(mtd_concat_destroy);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");