btree.c 11.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
/*
 *  linux/fs/hfsplus/btree.c
 *
 * Copyright (C) 2001
 * Brad Boyer (flar@allandria.com)
 * (C) 2003 Ardis Technologies <roman@ardistech.com>
 *
 * Handle opening/closing btree
 */

#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/log2.h>

#include "hfsplus_fs.h"
#include "hfsplus_raw.h"

/*
 * Initial source code of clump size calculation is gotten
 * from http://opensource.apple.com/tarballs/diskdev_cmds/
 */
#define CLUMP_ENTRIES	15

static short clumptbl[CLUMP_ENTRIES * 3] = {
/*
 *	    Volume	Attributes	 Catalog	 Extents
 *	     Size	Clump (MB)	Clump (MB)	Clump (MB)
 */
	/*   1GB */	  4,		  4,		 4,
	/*   2GB */	  6,		  6,		 4,
	/*   4GB */	  8,		  8,		 4,
	/*   8GB */	 11,		 11,		 5,
	/*
	 * For volumes 16GB and larger, we want to make sure that a full OS
	 * install won't require fragmentation of the Catalog or Attributes
	 * B-trees.  We do this by making the clump sizes sufficiently large,
	 * and by leaving a gap after the B-trees for them to grow into.
	 *
	 * For SnowLeopard 10A298, a FullNetInstall with all packages selected
	 * results in:
	 * Catalog B-tree Header
	 *	nodeSize:          8192
	 *	totalNodes:       31616
	 *	freeNodes:         1978
	 * (used = 231.55 MB)
	 * Attributes B-tree Header
	 *	nodeSize:          8192
	 *	totalNodes:       63232
	 *	freeNodes:          958
	 * (used = 486.52 MB)
	 *
	 * We also want Time Machine backup volumes to have a sufficiently
	 * large clump size to reduce fragmentation.
	 *
	 * The series of numbers for Catalog and Attribute form a geometric
	 * series. For Catalog (16GB to 512GB), each term is 8**(1/5) times
	 * the previous term.  For Attributes (16GB to 512GB), each term is
	 * 4**(1/5) times the previous term.  For 1TB to 16TB, each term is
	 * 2**(1/5) times the previous term.
	 */
	/*  16GB */	 64,		 32,		 5,
	/*  32GB */	 84,		 49,		 6,
	/*  64GB */	111,		 74,		 7,
	/* 128GB */	147,		111,		 8,
	/* 256GB */	194,		169,		 9,
	/* 512GB */	256,		256,		11,
	/*   1TB */	294,		294,		14,
	/*   2TB */	338,		338,		16,
	/*   4TB */	388,		388,		20,
	/*   8TB */	446,		446,		25,
	/*  16TB */	512,		512,		32
};

u32 hfsplus_calc_btree_clump_size(u32 block_size, u32 node_size,
					u64 sectors, int file_id)
{
	u32 mod = max(node_size, block_size);
	u32 clump_size;
	int column;
	int i;

	/* Figure out which column of the above table to use for this file. */
	switch (file_id) {
	case HFSPLUS_ATTR_CNID:
		column = 0;
		break;
	case HFSPLUS_CAT_CNID:
		column = 1;
		break;
	default:
		column = 2;
		break;
	}

	/*
	 * The default clump size is 0.8% of the volume size. And
	 * it must also be a multiple of the node and block size.
	 */
	if (sectors < 0x200000) {
		clump_size = sectors << 2;	/*  0.8 %  */
		if (clump_size < (8 * node_size))
			clump_size = 8 * node_size;
	} else {
		/* turn exponent into table index... */
		for (i = 0, sectors = sectors >> 22;
		     sectors && (i < CLUMP_ENTRIES - 1);
		     ++i, sectors = sectors >> 1) {
			/* empty body */
		}

		clump_size = clumptbl[column + (i) * 3] * 1024 * 1024;
	}

	/*
	 * Round the clump size to a multiple of node and block size.
	 * NOTE: This rounds down.
	 */
	clump_size /= mod;
	clump_size *= mod;

	/*
	 * Rounding down could have rounded down to 0 if the block size was
	 * greater than the clump size.  If so, just use one block or node.
	 */
	if (clump_size == 0)
		clump_size = mod;

	return clump_size;
}

/* Get a reference to a B*Tree and do some initial checks */
struct hfs_btree *hfs_btree_open(struct super_block *sb, u32 id)
{
	struct hfs_btree *tree;
	struct hfs_btree_header_rec *head;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;
	unsigned int size;

	tree = kzalloc(sizeof(*tree), GFP_KERNEL);
	if (!tree)
		return NULL;

	mutex_init(&tree->tree_lock);
	spin_lock_init(&tree->hash_lock);
	tree->sb = sb;
	tree->cnid = id;
	inode = hfsplus_iget(sb, id);
	if (IS_ERR(inode))
		goto free_tree;
	tree->inode = inode;

	if (!HFSPLUS_I(tree->inode)->first_blocks) {
		pr_err("invalid btree extent records (0 size)\n");
		goto free_inode;
	}

	mapping = tree->inode->i_mapping;
	page = read_mapping_page(mapping, 0, NULL);
	if (IS_ERR(page))
		goto free_inode;

	/* Load the header */
	head = (struct hfs_btree_header_rec *)(kmap(page) +
		sizeof(struct hfs_bnode_desc));
	tree->root = be32_to_cpu(head->root);
	tree->leaf_count = be32_to_cpu(head->leaf_count);
	tree->leaf_head = be32_to_cpu(head->leaf_head);
	tree->leaf_tail = be32_to_cpu(head->leaf_tail);
	tree->node_count = be32_to_cpu(head->node_count);
	tree->free_nodes = be32_to_cpu(head->free_nodes);
	tree->attributes = be32_to_cpu(head->attributes);
	tree->node_size = be16_to_cpu(head->node_size);
	tree->max_key_len = be16_to_cpu(head->max_key_len);
	tree->depth = be16_to_cpu(head->depth);

	/* Verify the tree and set the correct compare function */
	switch (id) {
	case HFSPLUS_EXT_CNID:
		if (tree->max_key_len != HFSPLUS_EXT_KEYLEN - sizeof(u16)) {
			pr_err("invalid extent max_key_len %d\n",
				tree->max_key_len);
			goto fail_page;
		}
		if (tree->attributes & HFS_TREE_VARIDXKEYS) {
			pr_err("invalid extent btree flag\n");
			goto fail_page;
		}

		tree->keycmp = hfsplus_ext_cmp_key;
		break;
	case HFSPLUS_CAT_CNID:
		if (tree->max_key_len != HFSPLUS_CAT_KEYLEN - sizeof(u16)) {
			pr_err("invalid catalog max_key_len %d\n",
				tree->max_key_len);
			goto fail_page;
		}
		if (!(tree->attributes & HFS_TREE_VARIDXKEYS)) {
			pr_err("invalid catalog btree flag\n");
			goto fail_page;
		}

		if (test_bit(HFSPLUS_SB_HFSX, &HFSPLUS_SB(sb)->flags) &&
		    (head->key_type == HFSPLUS_KEY_BINARY))
			tree->keycmp = hfsplus_cat_bin_cmp_key;
		else {
			tree->keycmp = hfsplus_cat_case_cmp_key;
			set_bit(HFSPLUS_SB_CASEFOLD, &HFSPLUS_SB(sb)->flags);
		}
		break;
	case HFSPLUS_ATTR_CNID:
		if (tree->max_key_len != HFSPLUS_ATTR_KEYLEN - sizeof(u16)) {
			pr_err("invalid attributes max_key_len %d\n",
				tree->max_key_len);
			goto fail_page;
		}
		tree->keycmp = hfsplus_attr_bin_cmp_key;
		break;
	default:
		pr_err("unknown B*Tree requested\n");
		goto fail_page;
	}

	if (!(tree->attributes & HFS_TREE_BIGKEYS)) {
		pr_err("invalid btree flag\n");
		goto fail_page;
	}

	size = tree->node_size;
	if (!is_power_of_2(size))
		goto fail_page;
	if (!tree->node_count)
		goto fail_page;

	tree->node_size_shift = ffs(size) - 1;

	tree->pages_per_bnode =
		(tree->node_size + PAGE_CACHE_SIZE - 1) >>
		PAGE_CACHE_SHIFT;

	kunmap(page);
	page_cache_release(page);
	return tree;

 fail_page:
	page_cache_release(page);
 free_inode:
	tree->inode->i_mapping->a_ops = &hfsplus_aops;
	iput(tree->inode);
 free_tree:
	kfree(tree);
	return NULL;
}

/* Release resources used by a btree */
void hfs_btree_close(struct hfs_btree *tree)
{
	struct hfs_bnode *node;
	int i;

	if (!tree)
		return;

	for (i = 0; i < NODE_HASH_SIZE; i++) {
		while ((node = tree->node_hash[i])) {
			tree->node_hash[i] = node->next_hash;
			if (atomic_read(&node->refcnt))
				pr_crit("node %d:%d "
						"still has %d user(s)!\n",
					node->tree->cnid, node->this,
					atomic_read(&node->refcnt));
			hfs_bnode_free(node);
			tree->node_hash_cnt--;
		}
	}
	iput(tree->inode);
	kfree(tree);
}

int hfs_btree_write(struct hfs_btree *tree)
{
	struct hfs_btree_header_rec *head;
	struct hfs_bnode *node;
	struct page *page;

	node = hfs_bnode_find(tree, 0);
	if (IS_ERR(node))
		/* panic? */
		return -EIO;
	/* Load the header */
	page = node->page[0];
	head = (struct hfs_btree_header_rec *)(kmap(page) +
		sizeof(struct hfs_bnode_desc));

	head->root = cpu_to_be32(tree->root);
	head->leaf_count = cpu_to_be32(tree->leaf_count);
	head->leaf_head = cpu_to_be32(tree->leaf_head);
	head->leaf_tail = cpu_to_be32(tree->leaf_tail);
	head->node_count = cpu_to_be32(tree->node_count);
	head->free_nodes = cpu_to_be32(tree->free_nodes);
	head->attributes = cpu_to_be32(tree->attributes);
	head->depth = cpu_to_be16(tree->depth);

	kunmap(page);
	set_page_dirty(page);
	hfs_bnode_put(node);
	return 0;
}

static struct hfs_bnode *hfs_bmap_new_bmap(struct hfs_bnode *prev, u32 idx)
{
	struct hfs_btree *tree = prev->tree;
	struct hfs_bnode *node;
	struct hfs_bnode_desc desc;
	__be32 cnid;

	node = hfs_bnode_create(tree, idx);
	if (IS_ERR(node))
		return node;

	tree->free_nodes--;
	prev->next = idx;
	cnid = cpu_to_be32(idx);
	hfs_bnode_write(prev, &cnid, offsetof(struct hfs_bnode_desc, next), 4);

	node->type = HFS_NODE_MAP;
	node->num_recs = 1;
	hfs_bnode_clear(node, 0, tree->node_size);
	desc.next = 0;
	desc.prev = 0;
	desc.type = HFS_NODE_MAP;
	desc.height = 0;
	desc.num_recs = cpu_to_be16(1);
	desc.reserved = 0;
	hfs_bnode_write(node, &desc, 0, sizeof(desc));
	hfs_bnode_write_u16(node, 14, 0x8000);
	hfs_bnode_write_u16(node, tree->node_size - 2, 14);
	hfs_bnode_write_u16(node, tree->node_size - 4, tree->node_size - 6);

	return node;
}

struct hfs_bnode *hfs_bmap_alloc(struct hfs_btree *tree)
{
	struct hfs_bnode *node, *next_node;
	struct page **pagep;
	u32 nidx, idx;
	unsigned off;
	u16 off16;
	u16 len;
	u8 *data, byte, m;
	int i;

	while (!tree->free_nodes) {
		struct inode *inode = tree->inode;
		struct hfsplus_inode_info *hip = HFSPLUS_I(inode);
		u32 count;
		int res;

		res = hfsplus_file_extend(inode);
		if (res)
			return ERR_PTR(res);
		hip->phys_size = inode->i_size =
			(loff_t)hip->alloc_blocks <<
				HFSPLUS_SB(tree->sb)->alloc_blksz_shift;
		hip->fs_blocks =
			hip->alloc_blocks << HFSPLUS_SB(tree->sb)->fs_shift;
		inode_set_bytes(inode, inode->i_size);
		count = inode->i_size >> tree->node_size_shift;
		tree->free_nodes = count - tree->node_count;
		tree->node_count = count;
	}

	nidx = 0;
	node = hfs_bnode_find(tree, nidx);
	if (IS_ERR(node))
		return node;
	len = hfs_brec_lenoff(node, 2, &off16);
	off = off16;

	off += node->page_offset;
	pagep = node->page + (off >> PAGE_CACHE_SHIFT);
	data = kmap(*pagep);
	off &= ~PAGE_CACHE_MASK;
	idx = 0;

	for (;;) {
		while (len) {
			byte = data[off];
			if (byte != 0xff) {
				for (m = 0x80, i = 0; i < 8; m >>= 1, i++) {
					if (!(byte & m)) {
						idx += i;
						data[off] |= m;
						set_page_dirty(*pagep);
						kunmap(*pagep);
						tree->free_nodes--;
						mark_inode_dirty(tree->inode);
						hfs_bnode_put(node);
						return hfs_bnode_create(tree,
							idx);
					}
				}
			}
			if (++off >= PAGE_CACHE_SIZE) {
				kunmap(*pagep);
				data = kmap(*++pagep);
				off = 0;
			}
			idx += 8;
			len--;
		}
		kunmap(*pagep);
		nidx = node->next;
		if (!nidx) {
			hfs_dbg(BNODE_MOD, "create new bmap node\n");
			next_node = hfs_bmap_new_bmap(node, idx);
		} else
			next_node = hfs_bnode_find(tree, nidx);
		hfs_bnode_put(node);
		if (IS_ERR(next_node))
			return next_node;
		node = next_node;

		len = hfs_brec_lenoff(node, 0, &off16);
		off = off16;
		off += node->page_offset;
		pagep = node->page + (off >> PAGE_CACHE_SHIFT);
		data = kmap(*pagep);
		off &= ~PAGE_CACHE_MASK;
	}
}

void hfs_bmap_free(struct hfs_bnode *node)
{
	struct hfs_btree *tree;
	struct page *page;
	u16 off, len;
	u32 nidx;
	u8 *data, byte, m;

	hfs_dbg(BNODE_MOD, "btree_free_node: %u\n", node->this);
	BUG_ON(!node->this);
	tree = node->tree;
	nidx = node->this;
	node = hfs_bnode_find(tree, 0);
	if (IS_ERR(node))
		return;
	len = hfs_brec_lenoff(node, 2, &off);
	while (nidx >= len * 8) {
		u32 i;

		nidx -= len * 8;
		i = node->next;
		hfs_bnode_put(node);
		if (!i) {
			/* panic */;
			pr_crit("unable to free bnode %u. "
					"bmap not found!\n",
				node->this);
			return;
		}
		node = hfs_bnode_find(tree, i);
		if (IS_ERR(node))
			return;
		if (node->type != HFS_NODE_MAP) {
			/* panic */;
			pr_crit("invalid bmap found! "
					"(%u,%d)\n",
				node->this, node->type);
			hfs_bnode_put(node);
			return;
		}
		len = hfs_brec_lenoff(node, 0, &off);
	}
	off += node->page_offset + nidx / 8;
	page = node->page[off >> PAGE_CACHE_SHIFT];
	data = kmap(page);
	off &= ~PAGE_CACHE_MASK;
	m = 1 << (~nidx & 7);
	byte = data[off];
	if (!(byte & m)) {
		pr_crit("trying to free free bnode "
				"%u(%d)\n",
			node->this, node->type);
		kunmap(page);
		hfs_bnode_put(node);
		return;
	}
	data[off] = byte & ~m;
	set_page_dirty(page);
	kunmap(page);
	hfs_bnode_put(node);
	tree->free_nodes++;
	mark_inode_dirty(tree->inode);
}