ssinh.S
3.33 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
| ssinh.sa 3.1 12/10/90
|
| The entry point sSinh computes the hyperbolic sine of
| an input argument; sSinhd does the same except for denormalized
| input.
|
| Input: Double-extended number X in location pointed to
| by address register a0.
|
| Output: The value sinh(X) returned in floating-point register Fp0.
|
| Accuracy and Monotonicity: The returned result is within 3 ulps in
| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
| result is subsequently rounded to double precision. The
| result is provably monotonic in double precision.
|
| Speed: The program sSINH takes approximately 280 cycles.
|
| Algorithm:
|
| SINH
| 1. If |X| > 16380 log2, go to 3.
|
| 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formulae
| y = |X|, sgn = sign(X), and z = expm1(Y),
| sinh(X) = sgn*(1/2)*( z + z/(1+z) ).
| Exit.
|
| 3. If |X| > 16480 log2, go to 5.
|
| 4. (16380 log2 < |X| <= 16480 log2)
| sinh(X) = sign(X) * exp(|X|)/2.
| However, invoking exp(|X|) may cause premature overflow.
| Thus, we calculate sinh(X) as follows:
| Y := |X|
| sgn := sign(X)
| sgnFact := sgn * 2**(16380)
| Y' := Y - 16381 log2
| sinh(X) := sgnFact * exp(Y').
| Exit.
|
| 5. (|X| > 16480 log2) sinh(X) must overflow. Return
| sign(X)*Huge*Huge to generate overflow and an infinity with
| the appropriate sign. Huge is the largest finite number in
| extended format. Exit.
|
| Copyright (C) Motorola, Inc. 1990
| All Rights Reserved
|
| For details on the license for this file, please see the
| file, README, in this same directory.
|SSINH idnt 2,1 | Motorola 040 Floating Point Software Package
|section 8
T1: .long 0x40C62D38,0xD3D64634 | ... 16381 LOG2 LEAD
T2: .long 0x3D6F90AE,0xB1E75CC7 | ... 16381 LOG2 TRAIL
|xref t_frcinx
|xref t_ovfl
|xref t_extdnrm
|xref setox
|xref setoxm1
.global ssinhd
ssinhd:
|--SINH(X) = X FOR DENORMALIZED X
bra t_extdnrm
.global ssinh
ssinh:
fmovex (%a0),%fp0 | ...LOAD INPUT
movel (%a0),%d0
movew 4(%a0),%d0
movel %d0,%a1 | save a copy of original (compacted) operand
andl #0x7FFFFFFF,%d0
cmpl #0x400CB167,%d0
bgts SINHBIG
|--THIS IS THE USUAL CASE, |X| < 16380 LOG2
|--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) )
fabsx %fp0 | ...Y = |X|
moveml %a1/%d1,-(%sp)
fmovemx %fp0-%fp0,(%a0)
clrl %d1
bsr setoxm1 | ...FP0 IS Z = EXPM1(Y)
fmovel #0,%fpcr
moveml (%sp)+,%a1/%d1
fmovex %fp0,%fp1
fadds #0x3F800000,%fp1 | ...1+Z
fmovex %fp0,-(%sp)
fdivx %fp1,%fp0 | ...Z/(1+Z)
movel %a1,%d0
andl #0x80000000,%d0
orl #0x3F000000,%d0
faddx (%sp)+,%fp0
movel %d0,-(%sp)
fmovel %d1,%fpcr
fmuls (%sp)+,%fp0 |last fp inst - possible exceptions set
bra t_frcinx
SINHBIG:
cmpl #0x400CB2B3,%d0
bgt t_ovfl
fabsx %fp0
fsubd T1(%pc),%fp0 | ...(|X|-16381LOG2_LEAD)
movel #0,-(%sp)
movel #0x80000000,-(%sp)
movel %a1,%d0
andl #0x80000000,%d0
orl #0x7FFB0000,%d0
movel %d0,-(%sp) | ...EXTENDED FMT
fsubd T2(%pc),%fp0 | ...|X| - 16381 LOG2, ACCURATE
movel %d1,-(%sp)
clrl %d1
fmovemx %fp0-%fp0,(%a0)
bsr setox
fmovel (%sp)+,%fpcr
fmulx (%sp)+,%fp0 |possible exception
bra t_frcinx
|end