sas.c
28.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
/*
* sas: a simple 9-bit serial driver suitable for
* us in implementing the Slot Accounting System (SAS)
* protocol.
*
* - The driver exposes character devices /dev/sas0-N,
* which use the 9-bit support of the UARTs on i.MX
* SOCs to implement the framing portion of the protocol.
*
* - Each write() call is translated into a message with
* MARK parity on the first byte and SPACE parity for the
* remaining bytes of the message.
*
* Received data is parsed according to the same protocol,
* such that a "message" is defined as a set of incoming
* data that starts with a byte with MARK parity and
* terminates when either a timeout occurs or another
* byte with MARK parity is received
*
* - Each read() call returns zero or one complete
* messages.
*
* - Improperly framed incoming messages are reported
* through printk but are not returned to userspace.
* e.g. if a timeout occurs to terminate a message and
* is followed by data with SPACE parity, the characters
* will be dropped.
*
* The driver supports poll().
*
* POLLIN is signalled when a complete message is available.
*
* POLLOUT is signalled when space for a maximum sized message
* is available (device tree maxtxmsg).
*
* Copyright (C) 2015, Boundary Devices
*/
#define DEBUG
#include <linux/cdev.h>
#include <linux/circ_buf.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/fcntl.h>
#include <linux/fs.h>
#include <linux/gpio.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/poll.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/wait.h>
/* Register definitions */
#define URXD0 0x0 /* Receiver Register */
#define URTX0 0x40 /* Transmitter Register */
#define UCR1 0x80 /* Control Register 1 */
#define UCR2 0x84 /* Control Register 2 */
#define UCR3 0x88 /* Control Register 3 */
#define UCR4 0x8c /* Control Register 4 */
#define UFCR 0x90 /* FIFO Control Register */
#define USR1 0x94 /* Status Register 1 */
#define USR2 0x98 /* Status Register 2 */
#define UESC 0x9c /* Escape Character Register */
#define UTIM 0xa0 /* Escape Timer Register */
#define UBIR 0xa4 /* BRM Incremental Register */
#define UBMR 0xa8 /* BRM Modulator Register */
#define UBRC 0xac /* Baud Rate Count Register */
#define IMX21_ONEMS 0xb0 /* One Millisecond register */
#define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
#define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
#define UMCR 0xb8
#define UMCR_MDEN 1 /* 9-bit/Multidrop enable */
#define UMCR_TXB8 (1<<2) /* parity bit goes here */
/* UART Control Register Bit Fields.*/
#define URXD_CHARRDY (1<<15)
#define URXD_ERR (1<<14)
#define URXD_OVRRUN (1<<13)
#define URXD_FRMERR (1<<12)
#define URXD_BRK (1<<11)
#define URXD_PRERR (1<<10)
#define UCR1_ADEN (1<<15) /* Auto detect interrupt */
#define UCR1_ADBR (1<<14) /* Auto detect baud rate */
#define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */
#define UCR1_IDEN (1<<12) /* Idle condition interrupt */
#define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
#define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */
#define UCR1_RDMAEN (1<<8) /* Recv ready DMA enable */
#define UCR1_IREN (1<<7) /* Infrared interface enable */
#define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */
#define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */
#define UCR1_SNDBRK (1<<4) /* Send break */
#define UCR1_TDMAEN (1<<3) /* Transmitter ready DMA enable */
#define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
#define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */
#define UCR1_DOZE (1<<1) /* Doze */
#define UCR1_UARTEN (1<<0) /* UART enabled */
#define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */
#define UCR2_IRTS (1<<14) /* Ignore RTS pin */
#define UCR2_CTSC (1<<13) /* CTS pin control */
#define UCR2_CTS (1<<12) /* Clear to send */
#define UCR2_ESCEN (1<<11) /* Escape enable */
#define UCR2_PREN (1<<8) /* Parity enable */
#define UCR2_PROE (1<<7) /* Parity odd/even */
#define UCR2_STPB (1<<6) /* Stop */
#define UCR2_WS (1<<5) /* Word size */
#define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */
#define UCR2_ATEN (1<<3) /* Aging Timer Enable */
#define UCR2_TXEN (1<<2) /* Transmitter enabled */
#define UCR2_RXEN (1<<1) /* Receiver enabled */
#define UCR2_SRST (1<<0) /* SW reset */
#define UCR3_DTREN (1<<13) /* DTR interrupt enable */
#define UCR3_PARERREN (1<<12) /* Parity enable */
#define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */
#define UCR3_DSR (1<<10) /* Data set ready */
#define UCR3_DCD (1<<9) /* Data carrier detect */
#define UCR3_RI (1<<8) /* Ring indicator */
#define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */
#define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */
#define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */
#define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */
#define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */
#define UCR3_INVT (1<<1) /* Inverted Infrared transmission */
#define UCR3_BPEN (1<<0) /* Preset registers enable */
#define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */
#define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */
#define UCR4_INVR (1<<9) /* Inverted infrared reception */
#define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */
#define UCR4_WKEN (1<<7) /* Wake interrupt enable */
#define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */
#define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */
#define UCR4_IRSC (1<<5) /* IR special case */
#define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */
#define UCR4_BKEN (1<<2) /* Break condition interrupt enable */
#define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */
#define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */
#define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */
#define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */
#define UFCR_RFDIV (7<<7) /* Reference freq divider mask */
#define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7)
#define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */
#define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */
#define USR1_RTSS (1<<14) /* RTS pin status */
#define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */
#define USR1_RTSD (1<<12) /* RTS delta */
#define USR1_ESCF (1<<11) /* Escape seq interrupt flag */
#define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */
#define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */
#define USR1_TIMEOUT (1<<7) /* Receive timeout interrupt status */
#define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */
#define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */
#define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */
#define USR2_ADET (1<<15) /* Auto baud rate detect complete */
#define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */
#define USR2_DTRF (1<<13) /* DTR edge interrupt flag */
#define USR2_IDLE (1<<12) /* Idle condition */
#define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */
#define USR2_WAKE (1<<7) /* Wake */
#define USR2_RTSF (1<<4) /* RTS edge interrupt flag */
#define USR2_TXDC (1<<3) /* Transmitter complete */
#define USR2_BRCD (1<<2) /* Break condition */
#define USR2_ORE (1<<1) /* Overrun error */
#define USR2_RDR (1<<0) /* Recv data ready */
#define UTS_FRCPERR (1<<13) /* Force parity error */
#define UTS_LOOP (1<<12) /* Loop tx and rx */
#define UTS_TXEMPTY (1<<6) /* TxFIFO empty */
#define UTS_RXEMPTY (1<<5) /* RxFIFO empty */
#define UTS_TXFULL (1<<4) /* TxFIFO full */
#define UTS_RXFULL (1<<3) /* RxFIFO full */
#define UTS_SOFTRST (1<<0) /* Software reset */
static int sas_major;
static dev_t devnum;
static struct class *sas_class;
#define DRIVER_NAME "sas"
#define MS_TO_NS(msec) ((msec) * 1000 * 1000)
static void hrtimer_mod(struct hrtimer *timer, u32 ms)
{
ktime_t ktime = ktime_set(0, MS_TO_NS(ms));
hrtimer_try_to_cancel(timer);
hrtimer_start(timer, ktime, HRTIMER_MODE_REL);
}
struct msg_t {
int start;
int end;
};
/*
* Device structure, to keep track of everything device-specific here
*/
struct sas_dev {
struct cdev cdev;
struct device *chrdev;
struct platform_device *pdev;
void __iomem *base;
wait_queue_head_t queue;
spinlock_t lock; /* only one IRQ at a time */
struct mutex rx_lock; /* only one reader */
struct mutex tx_lock; /* only one writer */
struct hrtimer timer;
int open_count;
struct clk *clk_ipg;
struct clk *clk_per;
int irq;
int rxirq;
int txirq;
u32 baud;
u32 interbyte_delay;
u32 rxbufsize;
u32 maxrxmsgs;
u32 txbufsize;
u32 maxtxmsg;
u32 flush_on_mark;
struct circ_buf rxbuf;
struct msg_t *rxmsgs;
u32 rxmsgadd;
u32 rxmsgtake;
struct circ_buf txbuf;
u8 *txpbuf; /* parity for outbound characters */
u8 last_parity;
};
#define CIRC_NEXT(index, size) ((index + 1) & (size - 1))
#define CIRC_PREV(index, size) ((index - 1) & (size - 1))
/* end of last messsage added */
#define PREVMSGEND(dev) (dev->rxmsgs[CIRC_PREV(dev->rxmsgadd, \
dev->maxrxmsgs)].end)
/* start of next message */
#define NEXTMSGSTART(dev) (dev->rxmsgs[dev->rxmsgadd].start)
static void flush_msg(struct sas_dev *dev)
{
if (dev->rxbuf.head != NEXTMSGSTART(dev)) {
int nextmsg = CIRC_NEXT(dev->rxmsgadd, dev->maxrxmsgs);
int end = CIRC_PREV(dev->rxbuf.head, dev->rxbufsize);
if (dev->rxmsgtake != nextmsg) {
dev->rxmsgs[dev->rxmsgadd].end = end;
dev->rxmsgadd = nextmsg;
dev->rxmsgs[nextmsg].start = dev->rxbuf.head;
} else {
/* append to the previous message, but whine */
dev_err(&dev->pdev->dev, "message overflow\n");
PREVMSGEND(dev) = end;
}
wake_up(&dev->queue);
}
}
static enum hrtimer_restart rx_timer(struct hrtimer *timer)
{
struct sas_dev *dev = container_of(timer, struct sas_dev, timer);
flush_msg(dev);
return HRTIMER_NORESTART;
}
static ssize_t sas_read
(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct sas_dev *dev = (struct sas_dev *)file->private_data;
ssize_t numread = 0;
mutex_lock(&dev->rx_lock);
if (dev->rxmsgadd != dev->rxmsgtake) {
struct msg_t *msg = dev->rxmsgs + dev->rxmsgtake;
int start = msg->start;
int firstseg;
int msgleft = (msg->end - msg->start + 1)
& (dev->rxbufsize - 1);
if (msgleft > count) {
numread = -ENOBUFS;
goto out;
}
firstseg = dev->rxbufsize - start;
if (firstseg > msgleft)
firstseg = msgleft;
if (copy_to_user(buf, dev->rxbuf.buf+start, firstseg)) {
numread = -EFAULT;
goto out;
}
count = msgleft;
msgleft -= firstseg;
numread = firstseg;
if (0 < msgleft) {
/* wrap: need to copy a second segment */
buf += firstseg;
if (copy_to_user(buf, dev->rxbuf.buf+0, msgleft)) {
numread = -EFAULT;
goto out;
}
dev->rxbuf.tail = msgleft;
numread += msgleft;
} else {
dev->rxbuf.tail = start + firstseg;
}
dev->rxmsgtake = CIRC_NEXT(dev->rxmsgtake, dev->maxrxmsgs);
} /* have a message */
out:
mutex_unlock(&dev->rx_lock);
return numread;
}
static ssize_t sas_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
int written = 0;
u32 reg;
struct sas_dev *dev = (struct sas_dev *)file->private_data;
mutex_lock(&dev->tx_lock);
if (CIRC_SPACE(dev->txbuf.head,
dev->txbuf.tail,
dev->txbufsize) >= count) {
int start = dev->txbuf.head;
int firstseg = dev->txbufsize - start;
if (firstseg > count)
firstseg = count;
if (copy_from_user(dev->txbuf.buf+start, buf, firstseg)) {
written = -EFAULT;
} else if (count > firstseg) {
/* wrap: copy second segment */
int left = count - firstseg;
buf += firstseg;
if (copy_from_user(dev->txbuf.buf, buf, left))
written = -EFAULT;
}
if (0 == written) {
u32 nextbyte = start / 8;
u32 const pbytemask = (dev->txbufsize / 8) - 1;
u8 mask = 1 << (start & 7);
u8 byteval = dev->txpbuf[start/8] | mask;
mask = ~(mask << 1);
written = 1;
while (--count) {
if ('\xff' == mask) {
dev->txpbuf[nextbyte] = byteval;
nextbyte = (nextbyte + 1) & pbytemask;
byteval = dev->txpbuf[nextbyte];
mask = (u8)~1;
}
byteval &= mask;
mask = (mask << 1) | 1;
written++;
}
dev->txpbuf[nextbyte] = byteval;
dev->txbuf.head = (dev->txbuf.head + written)
& (dev->txbufsize - 1);
reg = readl(dev->base + UCR1);
reg |= UCR1_TRDYEN;
writel(reg, dev->base + UCR1);
}
}
mutex_unlock(&dev->tx_lock);
return written;
}
static unsigned int sas_poll(struct file *file, struct poll_table_struct *table)
{
unsigned int flags = 0;
struct sas_dev *dev = (struct sas_dev *)file->private_data;
if (!dev)
return -EINVAL;
poll_wait(file, &dev->queue, table);
if (dev->rxbuf.head != dev->rxbuf.tail)
flags |= POLLIN | POLLRDNORM;
if (CIRC_SPACE(dev->txbuf.head,
dev->txbuf.tail,
dev->txbufsize) >= dev->maxtxmsg) {
flags |= POLLOUT;
}
return flags;
}
static void sas_rxint(struct sas_dev *dev)
{
int space = CIRC_SPACE(dev->rxbuf.head,
dev->rxbuf.tail,
dev->rxbufsize);
while (space >= 3) {
u32 in = readl(dev->base + URXD0);
if (!(in & URXD_CHARRDY))
break;
if (in & URXD_PRERR) {
/*
* if a part of a message is present, terminate it
* and notify userspace
*/
if (dev->flush_on_mark)
flush_msg(dev);
dev->rxbuf.buf[dev->rxbuf.head] = 0xff;
dev->rxbuf.head = CIRC_NEXT(dev->rxbuf.head,
dev->rxbufsize);
dev->rxbuf.buf[dev->rxbuf.head] = 0;
dev->rxbuf.head = CIRC_NEXT(dev->rxbuf.head,
dev->rxbufsize);
dev->rxbuf.buf[dev->rxbuf.head] = in;
dev->rxbuf.head = CIRC_NEXT(dev->rxbuf.head,
dev->rxbufsize);
space -= 3;
} else {
dev->rxbuf.buf[dev->rxbuf.head] = in;
dev->rxbuf.head = CIRC_NEXT(dev->rxbuf.head,
dev->rxbufsize);
space--;
}
hrtimer_mod(&dev->timer, dev->interbyte_delay);
if (!(readl(dev->base + USR2) & USR2_RDR))
break;
}
if (3 >= space) {
dev_err(&dev->pdev->dev, "overrun");
while (readl(dev->base + URXD0) & URXD_CHARRDY)
;
}
}
static void sas_txint(struct sas_dev *dev)
{
u32 reg;
while (CIRC_CNT(dev->txbuf.head,
dev->txbuf.tail,
dev->txbufsize) &&
!(readl(dev->base + IMX21_UTS) & UTS_TXFULL)) {
u8 shift = dev->txbuf.tail & 7;
u8 mask = 1 << shift;
u8 parity = (dev->txpbuf[dev->txbuf.tail/8] & mask);
if (parity != dev->last_parity) {
reg = readl(dev->base + USR2);
if (!(reg & USR2_TXDC)) {
/* wait for shift register empty */
reg = readl(dev->base + UCR1);
if ((reg & (UCR1_TRDYEN | UCR1_TXMPTYEN))
!= (UCR1_TRDYEN | UCR1_TXMPTYEN)) {
/* only interrupt on empty */
reg &= ~UCR1_TRDYEN;
reg |= UCR1_TXMPTYEN;
writel(reg, dev->base + UCR1);
}
break;
}
reg = readl(dev->base + UMCR);
if (parity)
reg |= UMCR_TXB8;
else
reg &= ~UMCR_TXB8;
writel(reg, dev->base + UMCR);
dev->last_parity = parity;
} /* parity change */
writel(dev->txbuf.buf[dev->txbuf.tail], dev->base + URTX0);
dev->txbuf.tail = CIRC_NEXT(dev->txbuf.tail, dev->txbufsize);
if (CIRC_SPACE(dev->txbuf.head,
dev->txbuf.tail,
dev->txbufsize) >= dev->maxtxmsg)
wake_up(&dev->queue);
}
if (!CIRC_CNT(dev->txbuf.head,
dev->txbuf.tail,
dev->txbufsize)) {
reg = readl(dev->base + UCR1);
if (reg & (UCR1_TRDYEN | UCR1_TXMPTYEN)) {
reg &= ~(UCR1_TRDYEN | UCR1_TXMPTYEN);
writel(reg, dev->base + UCR1);
}
}
}
static irqreturn_t irq_handler(int irq, void *dev_id)
{
struct sas_dev *dev = dev_id;
unsigned int sts;
sts = readl(dev->base + USR1);
if (sts & USR1_RRDY)
sas_rxint(dev_id);
if (sts & USR1_TRDY)
sas_txint(dev_id);
sts = readl(dev->base + USR2);
if (sts & USR2_ORE)
writel(USR2_ORE, dev->base + USR2);
return IRQ_HANDLED;
}
/*
* We don't want address detection, so force an
* address match by entering loopback and transmitting
* a character with the mark bit set.
*/
static void force_address_match(struct sas_dev *dev)
{
writel(UCR1_UARTEN, dev->base + UCR1);
/* loopback */
writel(UTS_LOOP, dev->base + IMX21_UTS);
/* mark parity */
writel(UMCR_TXB8 | UMCR_MDEN, dev->base + UMCR);
/* transmit a null */
writel(0, dev->base + URTX0);
/* wait for receiver ready */
usleep_range(1000, 2000);
(void)readl(dev->base + URXD0);
/* out of loopback */
writel(0, dev->base + IMX21_UTS);
/* and space parity */
writel(UMCR_MDEN, dev->base + UMCR);
}
static int sas_open(struct inode *inode, struct file *file)
{
int rval = 0;
unsigned long flags;
struct sas_dev *dev = container_of(inode->i_cdev,
struct sas_dev, cdev);
file->private_data = dev;
spin_lock_irqsave(&dev->lock, flags);
if (1 == ++dev->open_count) {
rval = clk_enable(dev->clk_per);
if (rval)
goto out;
rval = clk_enable(dev->clk_ipg);
if (rval) {
clk_disable(dev->clk_per);
goto out;
}
rval = devm_request_irq(&dev->pdev->dev,
dev->irq, irq_handler,
IRQF_TRIGGER_PROBE, DRIVER_NAME, dev);
if (!rval) {
writel(0x0, dev->base + UCR1);
writel(0x0, dev->base + UCR2);
while (!(readl(dev->base + UCR2) & UCR2_SRST))
;
writel(IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP,
dev->base + UCR3);
writel(0x8000, dev->base + UCR4);
writel(0x002b, dev->base + UESC);
writel(0x0, dev->base + UTIM);
writel(0x0, dev->base + IMX1_UTS);
/* divide input clock by 2, receive fifo 1, txtl 2 */
writel((4 << 7) | 0x801, dev->base + UFCR);
writel(0xf, dev->base + UBIR);
writel(clk_get_rate(dev->clk_per) / (2 * dev->baud),
dev->base + UBMR);
writel(UMCR_MDEN, dev->base + UMCR);
writel(UCR2_WS | UCR2_IRTS
| UCR2_RXEN | UCR2_TXEN
| UCR2_SRST | UCR2_PREN,
dev->base + UCR2);
force_address_match(dev);
writel(UCR1_UARTEN | UCR1_RRDYEN, dev->base + UCR1);
dev->rxbuf.head =
dev->rxbuf.tail =
dev->txbuf.head =
dev->txbuf.tail = 0;
dev->rxmsgadd =
dev->rxmsgtake = 0;
dev->rxmsgs[0].start = 0;
dev->last_parity = 0xff;
} else {
dev_err(&dev->pdev->dev,
"Error %d requesting irq %d\n",
rval, dev->irq);
--dev->open_count;
}
}
out:
spin_unlock_irqrestore(&dev->lock, flags);
return rval;
}
static int sas_release(struct inode *inode, struct file *file)
{
unsigned long flags;
struct sas_dev *dev = container_of(inode->i_cdev,
struct sas_dev, cdev);
spin_lock_irqsave(&dev->lock, flags);
if (0 == --dev->open_count) {
writel(0x0, dev->base + UCR1);
writel(0x0, dev->base + UCR2);
devm_free_irq(&dev->pdev->dev, dev->irq, dev);
clk_disable(dev->clk_ipg);
clk_disable(dev->clk_per);
}
spin_unlock_irqrestore(&dev->lock, flags);
return -1;
}
static struct file_operations const sas_fops = {
.owner = THIS_MODULE,
.read = sas_read,
.write = sas_write,
.poll = sas_poll,
.open = sas_open,
.release = sas_release,
};
static ssize_t show_ibdelay(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sas_dev *sas = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", sas ? sas->interbyte_delay : -1);
}
static ssize_t store_ibdelay(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
u32 val;
struct sas_dev *sas = dev_get_drvdata(dev);
if (1 == sscanf(buf, "%u", &val)) {
if (sas) {
sas->interbyte_delay = val;
return count;
} else {
return -ENODEV;
}
} else {
return -EINVAL;
}
}
static struct kobj_attribute ibdelay =
__ATTR(ibdelay, 0644, (void *)show_ibdelay, (void *)store_ibdelay);
static ssize_t show_rxhead(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sas_dev *sas = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", sas ? sas->rxbuf.head : -1);
}
static struct kobj_attribute rxhead =
__ATTR(rxhead, 0644, (void *)show_rxhead, NULL);
static ssize_t show_rxtail(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sas_dev *sas = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", sas ? sas->rxbuf.tail : -1);
}
static struct kobj_attribute rxtail =
__ATTR(rxtail, 0644, (void *)show_rxtail, NULL);
static ssize_t show_txhead(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sas_dev *sas = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", sas ? sas->txbuf.head : -1);
}
static struct kobj_attribute txhead =
__ATTR(txhead, 0644, (void *)show_txhead, NULL);
static ssize_t show_txtail(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sas_dev *sas = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", sas ? sas->txbuf.tail : -1);
}
static struct kobj_attribute txtail =
__ATTR(txtail, 0644, (void *)show_txtail, NULL);
static ssize_t show_rxmsgadd(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sas_dev *sas = dev_get_drvdata(dev);
return sprintf(buf, "%d: [%d:%d]\n",
sas ? sas->rxmsgadd : -1,
sas ? sas->rxmsgs[sas->rxmsgadd].start : -1,
sas ? sas->rxmsgs[sas->rxmsgadd].end : -1);
}
static struct kobj_attribute rxmsgadd =
__ATTR(rxmsgadd, 0644, (void *)show_rxmsgadd, NULL);
static ssize_t show_rxmsgtake(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sas_dev *sas = dev_get_drvdata(dev);
return sprintf(buf, "%d: [%d:%d]\n",
sas ? sas->rxmsgtake : -1,
sas ? sas->rxmsgs[sas->rxmsgtake].start : -1,
sas ? sas->rxmsgs[sas->rxmsgtake].end : -1);
}
static struct kobj_attribute rxmsgtake =
__ATTR(rxmsgtake, 0644, (void *)show_rxmsgtake, NULL);
static struct attribute *sas_attrs[] = {
&ibdelay.attr,
&rxhead.attr,
&rxtail.attr,
&txhead.attr,
&txtail.attr,
&rxmsgadd.attr,
&rxmsgtake.attr,
NULL,
};
static struct attribute_group sas_attr_grp = {
.attrs = sas_attrs,
};
static int sas_of_probe(struct platform_device *pdev,
struct device_node *np,
struct sas_dev *dev)
{
dev->irq = irq_of_parse_and_map(np, 0);
if (of_property_read_u32(np, "baud", &dev->baud))
return -EINVAL;
if (of_property_read_u32(np, "interbyte_delay", &dev->interbyte_delay))
return -EINVAL;
if (of_property_read_u32(np, "rxbufsize", &dev->rxbufsize))
return -EINVAL;
dev->maxrxmsgs = dev->rxbufsize / 4;
if ((dev->maxrxmsgs == 0) ||
(dev->maxrxmsgs & (dev->maxrxmsgs-1))) {
dev_err(&pdev->dev,
"maxrxmsgs %u must be a non-zero power of 2\n",
dev->maxrxmsgs);
}
if (of_property_read_u32(np, "txbufsize", &dev->txbufsize))
return -EINVAL;
if (of_property_read_u32(np, "maxtxmsg", &dev->maxtxmsg))
return -EINVAL;
if (of_property_read_u32(np, "flush_on_mark", &dev->flush_on_mark))
return -EINVAL;
/* force power of two for transmit and receive buffers */
if ((dev->rxbufsize & (dev->rxbufsize-1)) ||
(dev->rxbufsize == 0) ||
(dev->txbufsize & (dev->txbufsize-1)) ||
(dev->txbufsize == 0)) {
dev_err(&pdev->dev,
"rx/txbufsize must be a non-zero power of 2\n");
return -EINVAL;
}
return 0;
}
static int sas_probe(struct platform_device *pdev)
{
int result = 0;
struct sas_dev *dev;
struct device_node *np = pdev->dev.of_node;
void __iomem *base;
struct resource *res;
if (!np)
return -ENODEV;
dev = devm_kzalloc(&pdev->dev, sizeof(struct sas_dev), GFP_KERNEL);
if (!dev) {
dev_err(&pdev->dev, "%s: alloc failure", DRIVER_NAME);
result = -ENOMEM;
goto fail_entry;
}
dev->pdev = pdev;
cdev_init(&dev->cdev, &sas_fops);
dev->cdev.owner = THIS_MODULE;
dev->cdev.ops = &sas_fops;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "%s: IORESOURCE_MEM", DRIVER_NAME);
result = -ENODEV;
goto fail_entry;
}
base = devm_ioremap(&pdev->dev, res->start, PAGE_SIZE);
if (!base) {
dev_err(&pdev->dev, "%s: ioremap", DRIVER_NAME);
result = -ENOMEM;
goto fail_entry;
}
dev->base = base;
dev->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
if (IS_ERR(dev->clk_ipg)) {
result = PTR_ERR(dev->clk_ipg);
dev_err(&pdev->dev, "failed to get ipg clk: %d\n", result);
return result;
}
dev->clk_per = devm_clk_get(&pdev->dev, "per");
if (IS_ERR(dev->clk_per)) {
result = PTR_ERR(dev->clk_per);
dev_err(&pdev->dev, "failed to get per clk: %d\n", result);
return result;
}
if (0 != sas_of_probe(pdev, np, dev)) {
dev_err(&pdev->dev, "Invalid dt spec\n");
result = -ENODEV;
goto fail_entry;
}
dev->rxbuf.buf = devm_kzalloc(&pdev->dev, dev->rxbufsize, GFP_KERNEL);
if (!dev->rxbuf.buf) {
dev_err(&pdev->dev, "%s: allocating rxbuf(%d)",
DRIVER_NAME, dev->rxbufsize);
goto fail_entry;
}
dev->rxmsgs = devm_kzalloc(&pdev->dev,
dev->maxrxmsgs * sizeof(dev->rxmsgs[0]),
GFP_KERNEL);
if (!dev->rxmsgs) {
dev_err(&pdev->dev, "%s: allocating rxmsgs(%d)",
DRIVER_NAME, dev->maxrxmsgs);
goto fail_entry;
}
dev->txbuf.buf = devm_kzalloc(&pdev->dev, dev->txbufsize, GFP_KERNEL);
if (!dev->txbuf.buf) {
dev_err(&pdev->dev, "%s: allocating txbuf(%d)",
DRIVER_NAME, dev->txbufsize);
goto fail_entry;
}
dev->txpbuf = devm_kzalloc(&pdev->dev,
(dev->txbufsize+7)/8,
GFP_KERNEL);
if (!dev->txpbuf) {
dev_err(&pdev->dev, "%s: allocating txbuf(%d)", DRIVER_NAME,
(dev->txbufsize+7)/8);
goto fail_entry;
}
mutex_init(&dev->rx_lock);
mutex_init(&dev->tx_lock);
init_waitqueue_head(&dev->queue);
hrtimer_init(&dev->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
dev->timer.function = rx_timer;
result = cdev_add(&dev->cdev, devnum, 1);
if (result < 0) {
dev_err(&pdev->dev, "%s: couldn't add device: err %d\n",
DRIVER_NAME, result);
goto fail_cdevadd;
}
result = sysfs_create_group(&pdev->dev.kobj, &sas_attr_grp);
if (result) {
pr_err("failed to create sysfs entries");
goto fail_cdevadd;
}
result = clk_prepare_enable(dev->clk_per);
if (result)
goto fail_cdevadd;
result = clk_prepare_enable(dev->clk_ipg);
if (result) {
clk_disable_unprepare(dev->clk_per);
goto fail_cdevadd;
}
spin_lock_init(&dev->lock);
dev->chrdev = device_create(sas_class, &platform_bus,
devnum, NULL, "%s", DRIVER_NAME);
platform_set_drvdata(pdev, dev);
dev_dbg(&pdev->dev, "%s: uart_clk == %ld\n",
DRIVER_NAME, clk_get_rate(dev->clk_per));
dev_dbg(&pdev->dev, "%s: ipg_clk == %ld\n",
DRIVER_NAME, clk_get_rate(dev->clk_per));
dev_dbg(&pdev->dev, "%s: irq == %d\n",
DRIVER_NAME, dev->irq);
dev_dbg(&pdev->dev, "%s: rxirq == %d\n",
DRIVER_NAME, dev->rxirq);
dev_dbg(&pdev->dev, "%s: txirq == %d\n",
DRIVER_NAME, dev->txirq);
dev_dbg(&pdev->dev, "%s: baud == %u\n",
DRIVER_NAME, dev->baud);
dev_dbg(&pdev->dev, "%s: ib_delay == %u ms\n",
DRIVER_NAME, dev->interbyte_delay);
dev_dbg(&pdev->dev, "%s: clks == %p/%p\n",
DRIVER_NAME, dev->clk_ipg, dev->clk_per);
dev_dbg(&pdev->dev, "%s: mem == %p\n",
DRIVER_NAME, (void *)res->start);
dev_dbg(&pdev->dev, "%s: rxbufsize == %u\n",
DRIVER_NAME, dev->rxbufsize);
dev_dbg(&pdev->dev, "%s: maxrxmsgs == %u\n",
DRIVER_NAME, dev->maxrxmsgs);
dev_dbg(&pdev->dev, "%s: txbufsize == %u\n",
DRIVER_NAME, dev->txbufsize);
dev_dbg(&pdev->dev, "%s: maxtxmsg == %u\n",
DRIVER_NAME, dev->maxtxmsg);
dev_dbg(&pdev->dev, "%s: sas_dev == %p\n",
DRIVER_NAME, dev);
dev_dbg(&pdev->dev, "%s: flush_on_mark == %d\n",
DRIVER_NAME, dev->flush_on_mark);
dev_info(&pdev->dev, "sas driver installed\n");
return 0;
fail_cdevadd:
devm_kfree(&pdev->dev, dev);
fail_entry:
return result;
}
static int sas_remove(struct platform_device *pdev)
{
struct sas_dev *dev = platform_get_drvdata(pdev);
if (dev) {
sysfs_remove_group(&pdev->dev.kobj, &sas_attr_grp);
clk_disable_unprepare(dev->clk_per);
clk_disable_unprepare(dev->clk_ipg);
cdev_del(&dev->cdev);
}
dev_info(&pdev->dev, "sas driver released\n");
return 0;
}
static const struct of_device_id sas_ids[] = {
{ .compatible = "boundary,sas", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sas_ids);
static struct platform_driver sas_driver = {
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
.of_match_table = sas_ids,
},
.probe = sas_probe,
.remove = sas_remove,
};
static char *sas_devnode(struct device *dev, umode_t *mode)
{
if (mode)
*mode = S_IRUGO | S_IWUSR;
return kasprintf(GFP_KERNEL, "%s", DRIVER_NAME);
}
static int __init sas_init(void)
{
int result;
/* Create a sysfs class. */
sas_class = class_create(THIS_MODULE, "sas");
if (IS_ERR(sas_class)) {
result = PTR_ERR(sas_class);
goto fail_class;
}
sas_class->devnode = sas_devnode;
result = alloc_chrdev_region(&devnum, 0, 1, DRIVER_NAME);
if (result < 0) {
pr_err("%s: couldn't chrdevs: err %d\n",
DRIVER_NAME, result);
goto fail_chrdev;
}
sas_major = MAJOR(devnum);
result = platform_driver_register(&sas_driver);
if (result < 0) {
pr_err("%s: couldn't register driver, err %d\n",
DRIVER_NAME, result);
goto fail_platform;
}
return 0;
fail_platform:
unregister_chrdev_region(devnum, 1);
fail_chrdev:
class_destroy(sas_class);
sas_class = NULL;
fail_class:
return result;
}
static void __exit sas_cleanup(void)
{
platform_driver_unregister(&sas_driver);
unregister_chrdev_region(devnum, 1);
if (!IS_ERR(sas_class))
class_destroy(sas_class);
}
module_init(sas_init);
module_exit(sas_cleanup);
MODULE_LICENSE("GPL");