sas.c 28.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
/*
 * sas: a simple 9-bit serial driver suitable for
 * us in implementing the Slot Accounting System (SAS)
 * protocol.
 *
 * - The driver exposes character devices /dev/sas0-N,
 * which use the 9-bit support of the UARTs on i.MX
 * SOCs to implement the framing portion of the protocol.
 *
 * - Each write() call is translated into a message with
 * MARK parity on the first byte and SPACE parity for the
 * remaining bytes of the message.
 *
 * Received data is parsed according to the same protocol,
 * such that a "message" is defined as a set of incoming
 * data that starts with a byte with MARK parity and
 * terminates when either a timeout occurs or another
 * byte with MARK parity is received
 *
 * - Each read() call returns zero or one complete
 * messages.
 *
 * - Improperly framed incoming messages are reported
 * through printk but are not returned to userspace.
 * e.g. if a timeout occurs to terminate a message and
 * is followed by data with SPACE parity, the characters
 * will be dropped.
 *
 * The driver supports poll().
 *
 *	POLLIN is signalled when a complete message is available.
 *
 *	POLLOUT is signalled when space for a maximum sized message
 *		is available (device tree maxtxmsg).
 *
 * Copyright (C) 2015, Boundary Devices
 */

#define DEBUG

#include <linux/cdev.h>
#include <linux/circ_buf.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/fcntl.h>
#include <linux/fs.h>
#include <linux/gpio.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/poll.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/wait.h>

/* Register definitions */
#define URXD0 0x0  /* Receiver Register */
#define URTX0 0x40 /* Transmitter Register */
#define UCR1  0x80 /* Control Register 1 */
#define UCR2  0x84 /* Control Register 2 */
#define UCR3  0x88 /* Control Register 3 */
#define UCR4  0x8c /* Control Register 4 */
#define UFCR  0x90 /* FIFO Control Register */
#define USR1  0x94 /* Status Register 1 */
#define USR2  0x98 /* Status Register 2 */
#define UESC  0x9c /* Escape Character Register */
#define UTIM  0xa0 /* Escape Timer Register */
#define UBIR  0xa4 /* BRM Incremental Register */
#define UBMR  0xa8 /* BRM Modulator Register */
#define UBRC  0xac /* Baud Rate Count Register */
#define IMX21_ONEMS 0xb0 /* One Millisecond register */
#define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
#define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
#define UMCR  0xb8
#define UMCR_MDEN 1		/* 9-bit/Multidrop enable */
#define UMCR_TXB8 (1<<2)	/* parity bit goes here */

/* UART Control Register Bit Fields.*/
#define URXD_CHARRDY	(1<<15)
#define URXD_ERR	(1<<14)
#define URXD_OVRRUN	(1<<13)
#define URXD_FRMERR	(1<<12)
#define URXD_BRK	(1<<11)
#define URXD_PRERR	(1<<10)
#define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
#define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
#define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
#define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
#define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
#define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
#define UCR1_RDMAEN	(1<<8)	/* Recv ready DMA enable */
#define UCR1_IREN	(1<<7)	/* Infrared interface enable */
#define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
#define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
#define UCR1_SNDBRK	(1<<4)	/* Send break */
#define UCR1_TDMAEN	(1<<3)	/* Transmitter ready DMA enable */
#define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
#define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
#define UCR1_DOZE	(1<<1)	/* Doze */
#define UCR1_UARTEN	(1<<0)	/* UART enabled */
#define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
#define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
#define UCR2_CTSC	(1<<13)	/* CTS pin control */
#define UCR2_CTS	(1<<12)	/* Clear to send */
#define UCR2_ESCEN	(1<<11)	/* Escape enable */
#define UCR2_PREN	(1<<8)	/* Parity enable */
#define UCR2_PROE	(1<<7)	/* Parity odd/even */
#define UCR2_STPB	(1<<6)	/* Stop */
#define UCR2_WS		(1<<5)	/* Word size */
#define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
#define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
#define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
#define UCR2_RXEN	(1<<1)	/* Receiver enabled */
#define UCR2_SRST	(1<<0)	/* SW reset */
#define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
#define UCR3_PARERREN	(1<<12) /* Parity enable */
#define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
#define UCR3_DSR	(1<<10) /* Data set ready */
#define UCR3_DCD	(1<<9)	/* Data carrier detect */
#define UCR3_RI		(1<<8)	/* Ring indicator */
#define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
#define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
#define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
#define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
#define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
#define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
#define UCR3_BPEN	(1<<0)	/* Preset registers enable */
#define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
#define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
#define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
#define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
#define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
#define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
#define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
#define UCR4_IRSC	(1<<5)	/* IR special case */
#define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
#define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
#define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
#define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
#define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
#define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
#define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
#define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
#define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
#define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
#define USR1_RTSS	(1<<14) /* RTS pin status */
#define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
#define USR1_RTSD	(1<<12) /* RTS delta */
#define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
#define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
#define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
#define USR1_TIMEOUT	(1<<7)	 /* Receive timeout interrupt status */
#define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
#define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
#define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
#define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
#define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
#define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
#define USR2_IDLE	 (1<<12) /* Idle condition */
#define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
#define USR2_WAKE	 (1<<7)	 /* Wake */
#define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
#define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
#define USR2_BRCD	 (1<<2)	 /* Break condition */
#define USR2_ORE	(1<<1)	 /* Overrun error */
#define USR2_RDR	(1<<0)	 /* Recv data ready */
#define UTS_FRCPERR	(1<<13) /* Force parity error */
#define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
#define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
#define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
#define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
#define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
#define UTS_SOFTRST	 (1<<0)	 /* Software reset */

static int sas_major;
static dev_t devnum;
static struct class *sas_class;

#define DRIVER_NAME "sas"

#define MS_TO_NS(msec)	((msec) * 1000 * 1000)

static void hrtimer_mod(struct hrtimer *timer, u32 ms)
{
	ktime_t ktime = ktime_set(0, MS_TO_NS(ms));
	hrtimer_try_to_cancel(timer);
	hrtimer_start(timer, ktime, HRTIMER_MODE_REL);
}

struct msg_t {
	int start;
	int end;
};

/*
 * Device structure, to keep track of everything device-specific here
 */
struct sas_dev {
	struct cdev cdev;
	struct device *chrdev;
	struct platform_device *pdev;
	void __iomem *base;
	wait_queue_head_t queue;
	spinlock_t lock; /* only one IRQ at a time */
	struct mutex rx_lock; /* only one reader */
	struct mutex tx_lock; /* only one writer */
	struct hrtimer timer;
	int open_count;

	struct clk *clk_ipg;
	struct clk *clk_per;
	int irq;
	int rxirq;
	int txirq;
	u32 baud;
	u32 interbyte_delay;
	u32 rxbufsize;
	u32 maxrxmsgs;
	u32 txbufsize;
	u32 maxtxmsg;
	u32 flush_on_mark;
	struct circ_buf rxbuf;
	struct msg_t *rxmsgs;
	u32 rxmsgadd;
	u32 rxmsgtake;
	struct circ_buf txbuf;
	u8 *txpbuf; /* parity for outbound characters */
	u8 last_parity;
};

#define CIRC_NEXT(index, size) ((index + 1) & (size - 1))
#define CIRC_PREV(index, size) ((index - 1) & (size - 1))

/* end of last messsage added */
#define PREVMSGEND(dev) (dev->rxmsgs[CIRC_PREV(dev->rxmsgadd, \
					       dev->maxrxmsgs)].end)

/* start of next message */
#define NEXTMSGSTART(dev) (dev->rxmsgs[dev->rxmsgadd].start)

static void flush_msg(struct sas_dev *dev)
{
	if (dev->rxbuf.head != NEXTMSGSTART(dev)) {
		int nextmsg = CIRC_NEXT(dev->rxmsgadd, dev->maxrxmsgs);
		int end = CIRC_PREV(dev->rxbuf.head, dev->rxbufsize);
		if (dev->rxmsgtake != nextmsg) {
			dev->rxmsgs[dev->rxmsgadd].end = end;
			dev->rxmsgadd = nextmsg;
			dev->rxmsgs[nextmsg].start = dev->rxbuf.head;
		} else {
			/* append to the previous message, but whine */
			dev_err(&dev->pdev->dev, "message overflow\n");
			PREVMSGEND(dev) = end;
		}
		wake_up(&dev->queue);
	}
}

static enum hrtimer_restart rx_timer(struct hrtimer *timer)
{
	struct sas_dev *dev = container_of(timer, struct sas_dev, timer);
	flush_msg(dev);
	return HRTIMER_NORESTART;
}

static ssize_t sas_read
	(struct file *file, char __user *buf,
	 size_t count, loff_t *ppos)
{
	struct sas_dev *dev = (struct sas_dev *)file->private_data;
	ssize_t numread = 0;

	mutex_lock(&dev->rx_lock);
	if (dev->rxmsgadd != dev->rxmsgtake) {
		struct msg_t *msg = dev->rxmsgs + dev->rxmsgtake;
		int start = msg->start;
		int firstseg;
		int msgleft = (msg->end - msg->start + 1)
				& (dev->rxbufsize - 1);
		if (msgleft > count) {
			numread = -ENOBUFS;
			goto out;
		}
		firstseg = dev->rxbufsize - start;
		if (firstseg > msgleft)
			firstseg = msgleft;
		if (copy_to_user(buf, dev->rxbuf.buf+start, firstseg)) {
			numread = -EFAULT;
			goto out;
		}
		count = msgleft;
		msgleft -= firstseg;
		numread = firstseg;
		if (0 < msgleft) {
			/* wrap: need to copy a second segment */
			buf += firstseg;
			if (copy_to_user(buf, dev->rxbuf.buf+0, msgleft)) {
				numread = -EFAULT;
				goto out;
			}
			dev->rxbuf.tail = msgleft;
			numread += msgleft;
		} else {
			dev->rxbuf.tail = start + firstseg;
		}
		dev->rxmsgtake = CIRC_NEXT(dev->rxmsgtake, dev->maxrxmsgs);
	} /* have a message */
out:
	mutex_unlock(&dev->rx_lock);
	return numread;
}

static ssize_t sas_write(struct file *file, const char __user *buf,
			 size_t count, loff_t *ppos)
{
	int written = 0;
	u32 reg;
	struct sas_dev *dev = (struct sas_dev *)file->private_data;

	mutex_lock(&dev->tx_lock);
	if (CIRC_SPACE(dev->txbuf.head,
		       dev->txbuf.tail,
		       dev->txbufsize) >= count) {
		int start = dev->txbuf.head;
		int firstseg = dev->txbufsize - start;
		if (firstseg > count)
			firstseg = count;
		if (copy_from_user(dev->txbuf.buf+start, buf, firstseg)) {
			written = -EFAULT;
		} else if (count > firstseg) {
			/* wrap: copy second segment */

			int left = count - firstseg;
			buf += firstseg;
			if (copy_from_user(dev->txbuf.buf, buf, left))
				written = -EFAULT;
		}
		if (0 == written) {
			u32 nextbyte = start / 8;
			u32 const pbytemask = (dev->txbufsize / 8) - 1;
			u8 mask = 1 << (start & 7);
			u8 byteval = dev->txpbuf[start/8] | mask;
			mask = ~(mask << 1);
			written = 1;
			while (--count) {
				if ('\xff' == mask) {
					dev->txpbuf[nextbyte] = byteval;
					nextbyte = (nextbyte + 1) & pbytemask;
					byteval = dev->txpbuf[nextbyte];
					mask = (u8)~1;
				}
				byteval &= mask;
				mask = (mask << 1) | 1;
				written++;
			}
			dev->txpbuf[nextbyte] = byteval;
			dev->txbuf.head = (dev->txbuf.head + written)
						& (dev->txbufsize - 1);
			reg = readl(dev->base + UCR1);
			reg |= UCR1_TRDYEN;
			writel(reg, dev->base + UCR1);
		}
	}

	mutex_unlock(&dev->tx_lock);
	return written;
}

static unsigned int sas_poll(struct file *file, struct poll_table_struct *table)
{
	unsigned int flags = 0;
	struct sas_dev *dev = (struct sas_dev *)file->private_data;
	if (!dev)
		return -EINVAL;

	poll_wait(file, &dev->queue, table);

	if (dev->rxbuf.head != dev->rxbuf.tail)
		flags |= POLLIN | POLLRDNORM;
	if (CIRC_SPACE(dev->txbuf.head,
		       dev->txbuf.tail,
		       dev->txbufsize) >= dev->maxtxmsg) {
		flags |= POLLOUT;
	}
	return flags;
}

static void sas_rxint(struct sas_dev *dev)
{
	int space = CIRC_SPACE(dev->rxbuf.head,
			       dev->rxbuf.tail,
			       dev->rxbufsize);
	while (space >= 3) {
		u32 in = readl(dev->base + URXD0);
		if (!(in & URXD_CHARRDY))
			break;
		if (in & URXD_PRERR) {
			/*
			 * if a part of a message is present, terminate it
			 * and notify userspace
			 */
			if (dev->flush_on_mark)
				flush_msg(dev);
			dev->rxbuf.buf[dev->rxbuf.head] = 0xff;
			dev->rxbuf.head = CIRC_NEXT(dev->rxbuf.head,
						    dev->rxbufsize);
			dev->rxbuf.buf[dev->rxbuf.head] = 0;
			dev->rxbuf.head = CIRC_NEXT(dev->rxbuf.head,
						    dev->rxbufsize);
			dev->rxbuf.buf[dev->rxbuf.head] = in;
			dev->rxbuf.head = CIRC_NEXT(dev->rxbuf.head,
						    dev->rxbufsize);

			space -= 3;
		} else {
			dev->rxbuf.buf[dev->rxbuf.head] = in;
			dev->rxbuf.head = CIRC_NEXT(dev->rxbuf.head,
						    dev->rxbufsize);
			space--;
		}

		hrtimer_mod(&dev->timer, dev->interbyte_delay);
		if (!(readl(dev->base + USR2) & USR2_RDR))
			break;
	}
	if (3 >= space) {
		dev_err(&dev->pdev->dev, "overrun");
		while (readl(dev->base + URXD0) & URXD_CHARRDY)
			;
	}
}

static void sas_txint(struct sas_dev *dev)
{
	u32 reg;
	while (CIRC_CNT(dev->txbuf.head,
			dev->txbuf.tail,
			dev->txbufsize) &&
			!(readl(dev->base + IMX21_UTS) & UTS_TXFULL)) {
		u8 shift = dev->txbuf.tail & 7;
		u8 mask = 1 << shift;
		u8 parity = (dev->txpbuf[dev->txbuf.tail/8] & mask);
		if (parity != dev->last_parity) {
			reg = readl(dev->base + USR2);
			if (!(reg & USR2_TXDC)) {
				/* wait for shift register empty */
				reg = readl(dev->base + UCR1);
				if ((reg & (UCR1_TRDYEN | UCR1_TXMPTYEN))
					!= (UCR1_TRDYEN | UCR1_TXMPTYEN)) {
					/* only interrupt on empty */
					reg &= ~UCR1_TRDYEN;
					reg |= UCR1_TXMPTYEN;
					writel(reg, dev->base + UCR1);
				}
				break;
			}
			reg = readl(dev->base + UMCR);
			if (parity)
				reg |= UMCR_TXB8;
			else
				reg &= ~UMCR_TXB8;
			writel(reg, dev->base + UMCR);
			dev->last_parity = parity;
		} /* parity change */

		writel(dev->txbuf.buf[dev->txbuf.tail], dev->base + URTX0);
		dev->txbuf.tail = CIRC_NEXT(dev->txbuf.tail, dev->txbufsize);
		if (CIRC_SPACE(dev->txbuf.head,
			       dev->txbuf.tail,
			       dev->txbufsize) >= dev->maxtxmsg)
			wake_up(&dev->queue);
	}
	if (!CIRC_CNT(dev->txbuf.head,
		      dev->txbuf.tail,
		      dev->txbufsize)) {
		reg = readl(dev->base + UCR1);
		if (reg & (UCR1_TRDYEN | UCR1_TXMPTYEN)) {
			reg &= ~(UCR1_TRDYEN | UCR1_TXMPTYEN);
			writel(reg, dev->base + UCR1);
		}
	}
}

static irqreturn_t irq_handler(int irq, void *dev_id)
{
	struct sas_dev *dev = dev_id;
	unsigned int sts;

	sts = readl(dev->base + USR1);
	if (sts & USR1_RRDY)
		sas_rxint(dev_id);

	if (sts & USR1_TRDY)
		sas_txint(dev_id);

	sts = readl(dev->base + USR2);
	if (sts & USR2_ORE)
		writel(USR2_ORE, dev->base + USR2);
	return IRQ_HANDLED;
}

/*
 * We don't want address detection, so force an
 * address match by entering loopback and transmitting
 * a character with the mark bit set.
 */
static void force_address_match(struct sas_dev *dev)
{
	writel(UCR1_UARTEN, dev->base + UCR1);

	/* loopback */
	writel(UTS_LOOP, dev->base + IMX21_UTS);

	/* mark parity */
	writel(UMCR_TXB8 | UMCR_MDEN, dev->base + UMCR);

	/* transmit a null */
	writel(0, dev->base + URTX0);

	/* wait for receiver ready */
	usleep_range(1000, 2000);
	(void)readl(dev->base + URXD0);

	/* out of loopback */
	writel(0, dev->base + IMX21_UTS);

	/* and space parity */
	writel(UMCR_MDEN, dev->base + UMCR);
}

static int sas_open(struct inode *inode, struct file *file)
{
	int rval = 0;
	unsigned long flags;
	struct sas_dev *dev = container_of(inode->i_cdev,
					   struct sas_dev, cdev);
	file->private_data = dev;
	spin_lock_irqsave(&dev->lock, flags);
	if (1 == ++dev->open_count) {
		rval = clk_enable(dev->clk_per);
		if (rval)
			goto out;
		rval = clk_enable(dev->clk_ipg);
		if (rval) {
			clk_disable(dev->clk_per);
			goto out;
		}
		rval = devm_request_irq(&dev->pdev->dev,
					  dev->irq, irq_handler,
					  IRQF_TRIGGER_PROBE, DRIVER_NAME, dev);
		if (!rval) {
			writel(0x0, dev->base + UCR1);
			writel(0x0, dev->base + UCR2);

			while (!(readl(dev->base + UCR2) & UCR2_SRST))
				;

			writel(IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP,
			       dev->base + UCR3);
			writel(0x8000, dev->base + UCR4);
			writel(0x002b, dev->base + UESC);
			writel(0x0, dev->base + UTIM);
			writel(0x0, dev->base + IMX1_UTS);
			/* divide input clock by 2, receive fifo 1, txtl 2 */
			writel((4 << 7) | 0x801, dev->base + UFCR);
			writel(0xf, dev->base + UBIR);
			writel(clk_get_rate(dev->clk_per) / (2 * dev->baud),
			       dev->base + UBMR);
			writel(UMCR_MDEN, dev->base + UMCR);
			writel(UCR2_WS | UCR2_IRTS
			       | UCR2_RXEN | UCR2_TXEN
			       | UCR2_SRST | UCR2_PREN,
			       dev->base + UCR2);

			force_address_match(dev);
			writel(UCR1_UARTEN | UCR1_RRDYEN, dev->base + UCR1);

			dev->rxbuf.head =
			dev->rxbuf.tail =
			dev->txbuf.head =
			dev->txbuf.tail = 0;
			dev->rxmsgadd =
			dev->rxmsgtake = 0;
			dev->rxmsgs[0].start = 0;
			dev->last_parity = 0xff;
		} else {
			dev_err(&dev->pdev->dev,
				"Error %d requesting irq %d\n",
				rval, dev->irq);
			--dev->open_count;
		}
	}
out:
	spin_unlock_irqrestore(&dev->lock, flags);
	return rval;
}

static int sas_release(struct inode *inode, struct file *file)
{
	unsigned long flags;
	struct sas_dev *dev = container_of(inode->i_cdev,
					   struct sas_dev, cdev);
	spin_lock_irqsave(&dev->lock, flags);
	if (0 == --dev->open_count) {
		writel(0x0, dev->base + UCR1);
		writel(0x0, dev->base + UCR2);
		devm_free_irq(&dev->pdev->dev, dev->irq, dev);
		clk_disable(dev->clk_ipg);
		clk_disable(dev->clk_per);
	}

	spin_unlock_irqrestore(&dev->lock, flags);
	return -1;
}

static struct file_operations const sas_fops = {
	.owner = THIS_MODULE,
	.read = sas_read,
	.write = sas_write,
	.poll = sas_poll,
	.open = sas_open,
	.release = sas_release,
};

static ssize_t show_ibdelay(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct sas_dev *sas = dev_get_drvdata(dev);
	return sprintf(buf, "%d\n", sas ? sas->interbyte_delay : -1);
}

static ssize_t store_ibdelay(struct device *dev,
			     struct device_attribute *attr,
			     const char *buf,
			     size_t count)
{
	u32 val;
	struct sas_dev *sas = dev_get_drvdata(dev);
	if (1 == sscanf(buf, "%u", &val)) {
		if (sas) {
			sas->interbyte_delay = val;
			return count;
		} else {
			return -ENODEV;
		}
	} else {
		return -EINVAL;
	}
}

static struct kobj_attribute ibdelay =
__ATTR(ibdelay, 0644, (void *)show_ibdelay, (void *)store_ibdelay);

static ssize_t show_rxhead(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct sas_dev *sas = dev_get_drvdata(dev);
	return sprintf(buf, "%d\n", sas ? sas->rxbuf.head : -1);
}

static struct kobj_attribute rxhead =
__ATTR(rxhead, 0644, (void *)show_rxhead, NULL);

static ssize_t show_rxtail(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct sas_dev *sas = dev_get_drvdata(dev);
	return sprintf(buf, "%d\n", sas ? sas->rxbuf.tail : -1);
}

static struct kobj_attribute rxtail =
__ATTR(rxtail, 0644, (void *)show_rxtail, NULL);

static ssize_t show_txhead(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct sas_dev *sas = dev_get_drvdata(dev);
	return sprintf(buf, "%d\n", sas ? sas->txbuf.head : -1);
}

static struct kobj_attribute txhead =
__ATTR(txhead, 0644, (void *)show_txhead, NULL);

static ssize_t show_txtail(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct sas_dev *sas = dev_get_drvdata(dev);
	return sprintf(buf, "%d\n", sas ? sas->txbuf.tail : -1);
}

static struct kobj_attribute txtail =
__ATTR(txtail, 0644, (void *)show_txtail, NULL);

static ssize_t show_rxmsgadd(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct sas_dev *sas = dev_get_drvdata(dev);
	return sprintf(buf, "%d: [%d:%d]\n",
		sas ? sas->rxmsgadd : -1,
		sas ? sas->rxmsgs[sas->rxmsgadd].start : -1,
		sas ? sas->rxmsgs[sas->rxmsgadd].end : -1);
}

static struct kobj_attribute rxmsgadd =
__ATTR(rxmsgadd, 0644, (void *)show_rxmsgadd, NULL);

static ssize_t show_rxmsgtake(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct sas_dev *sas = dev_get_drvdata(dev);
	return sprintf(buf, "%d: [%d:%d]\n",
		sas ? sas->rxmsgtake : -1,
		sas ? sas->rxmsgs[sas->rxmsgtake].start : -1,
		sas ? sas->rxmsgs[sas->rxmsgtake].end : -1);
}

static struct kobj_attribute rxmsgtake =
__ATTR(rxmsgtake, 0644, (void *)show_rxmsgtake, NULL);

static struct attribute *sas_attrs[] = {
	&ibdelay.attr,
	&rxhead.attr,
	&rxtail.attr,
	&txhead.attr,
	&txtail.attr,
	&rxmsgadd.attr,
	&rxmsgtake.attr,
	NULL,
};

static struct attribute_group sas_attr_grp = {
	.attrs = sas_attrs,
};

static int sas_of_probe(struct platform_device *pdev,
			struct device_node *np,
			struct sas_dev *dev)
{
	dev->irq = irq_of_parse_and_map(np, 0);
	if (of_property_read_u32(np, "baud", &dev->baud))
		return -EINVAL;
	if (of_property_read_u32(np, "interbyte_delay", &dev->interbyte_delay))
		return -EINVAL;
	if (of_property_read_u32(np, "rxbufsize", &dev->rxbufsize))
		return -EINVAL;
	dev->maxrxmsgs = dev->rxbufsize / 4;
	if ((dev->maxrxmsgs == 0) ||
	    (dev->maxrxmsgs & (dev->maxrxmsgs-1))) {
		dev_err(&pdev->dev,
			"maxrxmsgs %u must be a non-zero power of 2\n",
			dev->maxrxmsgs);
	}
	if (of_property_read_u32(np, "txbufsize", &dev->txbufsize))
		return -EINVAL;
	if (of_property_read_u32(np, "maxtxmsg", &dev->maxtxmsg))
		return -EINVAL;
	if (of_property_read_u32(np, "flush_on_mark", &dev->flush_on_mark))
		return -EINVAL;
	/* force power of two for transmit and receive buffers */
	if ((dev->rxbufsize & (dev->rxbufsize-1)) ||
	    (dev->rxbufsize == 0) ||
	    (dev->txbufsize & (dev->txbufsize-1)) ||
	    (dev->txbufsize == 0)) {
		dev_err(&pdev->dev,
			"rx/txbufsize must be a non-zero power of 2\n");
		return -EINVAL;
	}
	return 0;
}

static int sas_probe(struct platform_device *pdev)
{
	int result = 0;
	struct sas_dev *dev;
	struct device_node *np = pdev->dev.of_node;
	void __iomem *base;
	struct resource *res;

	if (!np)
		return -ENODEV;

	dev = devm_kzalloc(&pdev->dev, sizeof(struct sas_dev), GFP_KERNEL);
	if (!dev) {
		dev_err(&pdev->dev, "%s: alloc failure", DRIVER_NAME);
		result = -ENOMEM;
		goto fail_entry;
	}

	dev->pdev = pdev;
	cdev_init(&dev->cdev, &sas_fops);
	dev->cdev.owner = THIS_MODULE;
	dev->cdev.ops = &sas_fops;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		dev_err(&pdev->dev, "%s: IORESOURCE_MEM", DRIVER_NAME);
		result = -ENODEV;
		goto fail_entry;
	}

	base = devm_ioremap(&pdev->dev, res->start, PAGE_SIZE);
	if (!base) {
		dev_err(&pdev->dev, "%s: ioremap", DRIVER_NAME);
		result = -ENOMEM;
		goto fail_entry;
	}
	dev->base = base;

	dev->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
	if (IS_ERR(dev->clk_ipg)) {
		result = PTR_ERR(dev->clk_ipg);
		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", result);
		return result;
	}

	dev->clk_per = devm_clk_get(&pdev->dev, "per");
	if (IS_ERR(dev->clk_per)) {
		result = PTR_ERR(dev->clk_per);
		dev_err(&pdev->dev, "failed to get per clk: %d\n", result);
		return result;
	}

	if (0 != sas_of_probe(pdev, np, dev)) {
		dev_err(&pdev->dev, "Invalid dt spec\n");
		result = -ENODEV;
		goto fail_entry;
	}

	dev->rxbuf.buf = devm_kzalloc(&pdev->dev, dev->rxbufsize, GFP_KERNEL);
	if (!dev->rxbuf.buf) {
		dev_err(&pdev->dev, "%s: allocating rxbuf(%d)",
			DRIVER_NAME, dev->rxbufsize);
		goto fail_entry;
	}

	dev->rxmsgs = devm_kzalloc(&pdev->dev,
				   dev->maxrxmsgs * sizeof(dev->rxmsgs[0]),
				   GFP_KERNEL);
	if (!dev->rxmsgs) {
		dev_err(&pdev->dev, "%s: allocating rxmsgs(%d)",
			DRIVER_NAME, dev->maxrxmsgs);
		goto fail_entry;
	}

	dev->txbuf.buf = devm_kzalloc(&pdev->dev, dev->txbufsize, GFP_KERNEL);
	if (!dev->txbuf.buf) {
		dev_err(&pdev->dev, "%s: allocating txbuf(%d)",
			DRIVER_NAME, dev->txbufsize);
		goto fail_entry;
	}

	dev->txpbuf = devm_kzalloc(&pdev->dev,
				   (dev->txbufsize+7)/8,
				   GFP_KERNEL);
	if (!dev->txpbuf) {
		dev_err(&pdev->dev, "%s: allocating txbuf(%d)", DRIVER_NAME,
			(dev->txbufsize+7)/8);
		goto fail_entry;
	}

	mutex_init(&dev->rx_lock);
	mutex_init(&dev->tx_lock);

	init_waitqueue_head(&dev->queue);

	hrtimer_init(&dev->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	dev->timer.function = rx_timer;

	result = cdev_add(&dev->cdev, devnum, 1);
	if (result < 0) {
		dev_err(&pdev->dev, "%s: couldn't add device: err %d\n",
			DRIVER_NAME, result);
		goto fail_cdevadd;
	}

	result = sysfs_create_group(&pdev->dev.kobj, &sas_attr_grp);
	if (result) {
		pr_err("failed to create sysfs entries");
		goto fail_cdevadd;
	}

	result = clk_prepare_enable(dev->clk_per);
	if (result)
		goto fail_cdevadd;
	result = clk_prepare_enable(dev->clk_ipg);
	if (result) {
		clk_disable_unprepare(dev->clk_per);
		goto fail_cdevadd;
	}

	spin_lock_init(&dev->lock);

	dev->chrdev = device_create(sas_class, &platform_bus,
				    devnum, NULL, "%s", DRIVER_NAME);
	platform_set_drvdata(pdev, dev);

	dev_dbg(&pdev->dev, "%s: uart_clk == %ld\n",
		DRIVER_NAME, clk_get_rate(dev->clk_per));
	dev_dbg(&pdev->dev, "%s: ipg_clk == %ld\n",
		DRIVER_NAME, clk_get_rate(dev->clk_per));
	dev_dbg(&pdev->dev, "%s: irq == %d\n",
		DRIVER_NAME, dev->irq);
	dev_dbg(&pdev->dev, "%s: rxirq == %d\n",
		DRIVER_NAME, dev->rxirq);
	dev_dbg(&pdev->dev, "%s: txirq == %d\n",
		DRIVER_NAME, dev->txirq);
	dev_dbg(&pdev->dev, "%s: baud  == %u\n",
		DRIVER_NAME, dev->baud);
	dev_dbg(&pdev->dev, "%s: ib_delay == %u ms\n",
		DRIVER_NAME, dev->interbyte_delay);
	dev_dbg(&pdev->dev, "%s: clks == %p/%p\n",
		DRIVER_NAME, dev->clk_ipg, dev->clk_per);
	dev_dbg(&pdev->dev, "%s: mem == %p\n",
		DRIVER_NAME, (void *)res->start);
	dev_dbg(&pdev->dev, "%s: rxbufsize == %u\n",
		DRIVER_NAME, dev->rxbufsize);
	dev_dbg(&pdev->dev, "%s: maxrxmsgs == %u\n",
		DRIVER_NAME, dev->maxrxmsgs);
	dev_dbg(&pdev->dev, "%s: txbufsize == %u\n",
		DRIVER_NAME, dev->txbufsize);
	dev_dbg(&pdev->dev, "%s: maxtxmsg == %u\n",
		DRIVER_NAME, dev->maxtxmsg);
	dev_dbg(&pdev->dev, "%s: sas_dev == %p\n",
		DRIVER_NAME, dev);
	dev_dbg(&pdev->dev, "%s: flush_on_mark == %d\n",
		DRIVER_NAME, dev->flush_on_mark);
	dev_info(&pdev->dev, "sas driver installed\n");
	return 0;

fail_cdevadd:
	devm_kfree(&pdev->dev, dev);
fail_entry:
	return result;
}

static int sas_remove(struct platform_device *pdev)
{
	struct sas_dev *dev = platform_get_drvdata(pdev);
	if (dev) {
		sysfs_remove_group(&pdev->dev.kobj, &sas_attr_grp);
		clk_disable_unprepare(dev->clk_per);
		clk_disable_unprepare(dev->clk_ipg);
		cdev_del(&dev->cdev);
	}

	dev_info(&pdev->dev, "sas driver released\n");
	return 0;
}

static const struct of_device_id sas_ids[] = {
	{ .compatible = "boundary,sas", },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sas_ids);

static struct platform_driver sas_driver = {
	.driver = {
		.name = DRIVER_NAME,
		.owner	= THIS_MODULE,
		.of_match_table = sas_ids,
		},
	.probe = sas_probe,
	.remove = sas_remove,
};

static char *sas_devnode(struct device *dev, umode_t *mode)
{
	if (mode)
		*mode = S_IRUGO | S_IWUSR;
	return kasprintf(GFP_KERNEL, "%s", DRIVER_NAME);
}

static int __init sas_init(void)
{
	int result;

	/* Create a sysfs class. */
	sas_class = class_create(THIS_MODULE, "sas");
	if (IS_ERR(sas_class)) {
		result = PTR_ERR(sas_class);
		goto fail_class;
	}
	sas_class->devnode = sas_devnode;

	result = alloc_chrdev_region(&devnum, 0, 1, DRIVER_NAME);
	if (result < 0) {
		pr_err("%s: couldn't chrdevs: err %d\n",
		       DRIVER_NAME, result);
		goto fail_chrdev;
	}
	sas_major = MAJOR(devnum);

	result = platform_driver_register(&sas_driver);
	if (result < 0) {
		pr_err("%s: couldn't register driver, err %d\n",
		       DRIVER_NAME, result);
		goto fail_platform;
	}

	return 0;

fail_platform:
	unregister_chrdev_region(devnum, 1);

fail_chrdev:
	class_destroy(sas_class);
	sas_class = NULL;

fail_class:
	return result;
}

static void __exit sas_cleanup(void)
{
	platform_driver_unregister(&sas_driver);

	unregister_chrdev_region(devnum, 1);

	if (!IS_ERR(sas_class))
		class_destroy(sas_class);
}

module_init(sas_init);
module_exit(sas_cleanup);
MODULE_LICENSE("GPL");