nandbiterrs.c 10.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
/*
 * Copyright © 2012 NetCommWireless
 * Iwo Mergler <Iwo.Mergler@netcommwireless.com.au>
 *
 * Test for multi-bit error recovery on a NAND page This mostly tests the
 * ECC controller / driver.
 *
 * There are two test modes:
 *
 *	0 - artificially inserting bit errors until the ECC fails
 *	    This is the default method and fairly quick. It should
 *	    be independent of the quality of the FLASH.
 *
 *	1 - re-writing the same pattern repeatedly until the ECC fails.
 *	    This method relies on the physics of NAND FLASH to eventually
 *	    generate '0' bits if '1' has been written sufficient times.
 *	    Depending on the NAND, the first bit errors will appear after
 *	    1000 or more writes and then will usually snowball, reaching the
 *	    limits of the ECC quickly.
 *
 *	    The test stops after 10000 cycles, should your FLASH be
 *	    exceptionally good and not generate bit errors before that. Try
 *	    a different page in that case.
 *
 * Please note that neither of these tests will significantly 'use up' any
 * FLASH endurance. Only a maximum of two erase operations will be performed.
 *
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; see the file COPYING. If not, write to the Free Software
 * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <linux/init.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mtd/mtd.h>
#include <linux/err.h>
#include <linux/mtd/nand.h>
#include <linux/slab.h>
#include "mtd_test.h"

static int dev;
module_param(dev, int, S_IRUGO);
MODULE_PARM_DESC(dev, "MTD device number to use");

static unsigned page_offset;
module_param(page_offset, uint, S_IRUGO);
MODULE_PARM_DESC(page_offset, "Page number relative to dev start");

static unsigned seed;
module_param(seed, uint, S_IRUGO);
MODULE_PARM_DESC(seed, "Random seed");

static int mode;
module_param(mode, int, S_IRUGO);
MODULE_PARM_DESC(mode, "0=incremental errors, 1=overwrite test");

static unsigned max_overwrite = 10000;

static loff_t   offset;     /* Offset of the page we're using. */
static unsigned eraseblock; /* Eraseblock number for our page. */

/* We assume that the ECC can correct up to a certain number
 * of biterrors per subpage. */
static unsigned subsize;  /* Size of subpages */
static unsigned subcount; /* Number of subpages per page */

static struct mtd_info *mtd;   /* MTD device */

static uint8_t *wbuffer; /* One page write / compare buffer */
static uint8_t *rbuffer; /* One page read buffer */

/* 'random' bytes from known offsets */
static uint8_t hash(unsigned offset)
{
	unsigned v = offset;
	unsigned char c;
	v ^= 0x7f7edfd3;
	v = v ^ (v >> 3);
	v = v ^ (v >> 5);
	v = v ^ (v >> 13);
	c = v & 0xFF;
	/* Reverse bits of result. */
	c = (c & 0x0F) << 4 | (c & 0xF0) >> 4;
	c = (c & 0x33) << 2 | (c & 0xCC) >> 2;
	c = (c & 0x55) << 1 | (c & 0xAA) >> 1;
	return c;
}

/* Writes wbuffer to page */
static int write_page(int log)
{
	if (log)
		pr_info("write_page\n");

	return mtdtest_write(mtd, offset, mtd->writesize, wbuffer);
}

/* Re-writes the data area while leaving the OOB alone. */
static int rewrite_page(int log)
{
	int err = 0;
	struct mtd_oob_ops ops;

	if (log)
		pr_info("rewrite page\n");

	ops.mode      = MTD_OPS_RAW; /* No ECC */
	ops.len       = mtd->writesize;
	ops.retlen    = 0;
	ops.ooblen    = 0;
	ops.oobretlen = 0;
	ops.ooboffs   = 0;
	ops.datbuf    = wbuffer;
	ops.oobbuf    = NULL;

	err = mtd_write_oob(mtd, offset, &ops);
	if (err || ops.retlen != mtd->writesize) {
		pr_err("error: write_oob failed (%d)\n", err);
		if (!err)
			err = -EIO;
	}

	return err;
}

/* Reads page into rbuffer. Returns number of corrected bit errors (>=0)
 * or error (<0) */
static int read_page(int log)
{
	int err = 0;
	size_t read;
	struct mtd_ecc_stats oldstats;

	if (log)
		pr_info("read_page\n");

	/* Saving last mtd stats */
	memcpy(&oldstats, &mtd->ecc_stats, sizeof(oldstats));

	err = mtd_read(mtd, offset, mtd->writesize, &read, rbuffer);
	if (err == -EUCLEAN)
		err = mtd->ecc_stats.corrected - oldstats.corrected;

	if (err < 0 || read != mtd->writesize) {
		pr_err("error: read failed at %#llx\n", (long long)offset);
		if (err >= 0)
			err = -EIO;
	}

	return err;
}

/* Verifies rbuffer against random sequence */
static int verify_page(int log)
{
	unsigned i, errs = 0;

	if (log)
		pr_info("verify_page\n");

	for (i = 0; i < mtd->writesize; i++) {
		if (rbuffer[i] != hash(i+seed)) {
			pr_err("Error: page offset %u, expected %02x, got %02x\n",
				i, hash(i+seed), rbuffer[i]);
			errs++;
		}
	}

	if (errs)
		return -EIO;
	else
		return 0;
}

#define CBIT(v, n) ((v) & (1 << (n)))
#define BCLR(v, n) ((v) = (v) & ~(1 << (n)))

/* Finds the first '1' bit in wbuffer starting at offset 'byte'
 * and sets it to '0'. */
static int insert_biterror(unsigned byte)
{
	int bit;

	while (byte < mtd->writesize) {
		for (bit = 7; bit >= 0; bit--) {
			if (CBIT(wbuffer[byte], bit)) {
				BCLR(wbuffer[byte], bit);
				pr_info("Inserted biterror @ %u/%u\n", byte, bit);
				return 0;
			}
		}
		byte++;
	}
	pr_err("biterror: Failed to find a '1' bit\n");
	return -EIO;
}

/* Writes 'random' data to page and then introduces deliberate bit
 * errors into the page, while verifying each step. */
static int incremental_errors_test(void)
{
	int err = 0;
	unsigned i;
	unsigned errs_per_subpage = 0;

	pr_info("incremental biterrors test\n");

	for (i = 0; i < mtd->writesize; i++)
		wbuffer[i] = hash(i+seed);

	err = write_page(1);
	if (err)
		goto exit;

	while (1) {

		err = rewrite_page(1);
		if (err)
			goto exit;

		err = read_page(1);
		if (err > 0)
			pr_info("Read reported %d corrected bit errors\n", err);
		if (err < 0) {
			pr_err("After %d biterrors per subpage, read reported error %d\n",
				errs_per_subpage, err);
			err = 0;
			goto exit;
		}

		err = verify_page(1);
		if (err) {
			pr_err("ECC failure, read data is incorrect despite read success\n");
			goto exit;
		}

		pr_info("Successfully corrected %d bit errors per subpage\n",
			errs_per_subpage);

		for (i = 0; i < subcount; i++) {
			err = insert_biterror(i * subsize);
			if (err < 0)
				goto exit;
		}
		errs_per_subpage++;
	}

exit:
	return err;
}


/* Writes 'random' data to page and then re-writes that same data repeatedly.
   This eventually develops bit errors (bits written as '1' will slowly become
   '0'), which are corrected as far as the ECC is capable of. */
static int overwrite_test(void)
{
	int err = 0;
	unsigned i;
	unsigned max_corrected = 0;
	unsigned opno = 0;
	/* We don't expect more than this many correctable bit errors per
	 * page. */
	#define MAXBITS 512
	static unsigned bitstats[MAXBITS]; /* bit error histogram. */

	memset(bitstats, 0, sizeof(bitstats));

	pr_info("overwrite biterrors test\n");

	for (i = 0; i < mtd->writesize; i++)
		wbuffer[i] = hash(i+seed);

	err = write_page(1);
	if (err)
		goto exit;

	while (opno < max_overwrite) {

		err = rewrite_page(0);
		if (err)
			break;

		err = read_page(0);
		if (err >= 0) {
			if (err >= MAXBITS) {
				pr_info("Implausible number of bit errors corrected\n");
				err = -EIO;
				break;
			}
			bitstats[err]++;
			if (err > max_corrected) {
				max_corrected = err;
				pr_info("Read reported %d corrected bit errors\n",
					err);
			}
		} else { /* err < 0 */
			pr_info("Read reported error %d\n", err);
			err = 0;
			break;
		}

		err = verify_page(0);
		if (err) {
			bitstats[max_corrected] = opno;
			pr_info("ECC failure, read data is incorrect despite read success\n");
			break;
		}

		opno++;
	}

	/* At this point bitstats[0] contains the number of ops with no bit
	 * errors, bitstats[1] the number of ops with 1 bit error, etc. */
	pr_info("Bit error histogram (%d operations total):\n", opno);
	for (i = 0; i < max_corrected; i++)
		pr_info("Page reads with %3d corrected bit errors: %d\n",
			i, bitstats[i]);

exit:
	return err;
}

static int __init mtd_nandbiterrs_init(void)
{
	int err = 0;

	printk("\n");
	printk(KERN_INFO "==================================================\n");
	pr_info("MTD device: %d\n", dev);

	mtd = get_mtd_device(NULL, dev);
	if (IS_ERR(mtd)) {
		err = PTR_ERR(mtd);
		pr_err("error: cannot get MTD device\n");
		goto exit_mtddev;
	}

	if (!mtd_type_is_nand(mtd)) {
		pr_info("this test requires NAND flash\n");
		err = -ENODEV;
		goto exit_nand;
	}

	pr_info("MTD device size %llu, eraseblock=%u, page=%u, oob=%u\n",
		(unsigned long long)mtd->size, mtd->erasesize,
		mtd->writesize, mtd->oobsize);

	subsize  = mtd->writesize >> mtd->subpage_sft;
	subcount = mtd->writesize / subsize;

	pr_info("Device uses %d subpages of %d bytes\n", subcount, subsize);

	offset     = page_offset * mtd->writesize;
	eraseblock = mtd_div_by_eb(offset, mtd);

	pr_info("Using page=%u, offset=%llu, eraseblock=%u\n",
		page_offset, offset, eraseblock);

	wbuffer = kmalloc(mtd->writesize, GFP_KERNEL);
	if (!wbuffer) {
		err = -ENOMEM;
		goto exit_wbuffer;
	}

	rbuffer = kmalloc(mtd->writesize, GFP_KERNEL);
	if (!rbuffer) {
		err = -ENOMEM;
		goto exit_rbuffer;
	}

	err = mtdtest_erase_eraseblock(mtd, eraseblock);
	if (err)
		goto exit_error;

	if (mode == 0)
		err = incremental_errors_test();
	else
		err = overwrite_test();

	if (err)
		goto exit_error;

	/* We leave the block un-erased in case of test failure. */
	err = mtdtest_erase_eraseblock(mtd, eraseblock);
	if (err)
		goto exit_error;

	err = -EIO;
	pr_info("finished successfully.\n");
	printk(KERN_INFO "==================================================\n");

exit_error:
	kfree(rbuffer);
exit_rbuffer:
	kfree(wbuffer);
exit_wbuffer:
	/* Nothing */
exit_nand:
	put_mtd_device(mtd);
exit_mtddev:
	return err;
}

static void __exit mtd_nandbiterrs_exit(void)
{
	return;
}

module_init(mtd_nandbiterrs_init);
module_exit(mtd_nandbiterrs_exit);

MODULE_DESCRIPTION("NAND bit error recovery test");
MODULE_AUTHOR("Iwo Mergler");
MODULE_LICENSE("GPL");