hw-me.c 13.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
/*
 *
 * Intel Management Engine Interface (Intel MEI) Linux driver
 * Copyright (c) 2003-2012, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 */

#include <linux/pci.h>

#include <linux/kthread.h>
#include <linux/interrupt.h>

#include "mei_dev.h"
#include "hw-me.h"

#include "hbm.h"


/**
 * mei_me_reg_read - Reads 32bit data from the mei device
 *
 * @dev: the device structure
 * @offset: offset from which to read the data
 *
 * returns register value (u32)
 */
static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
			       unsigned long offset)
{
	return ioread32(hw->mem_addr + offset);
}


/**
 * mei_me_reg_write - Writes 32bit data to the mei device
 *
 * @dev: the device structure
 * @offset: offset from which to write the data
 * @value: register value to write (u32)
 */
static inline void mei_me_reg_write(const struct mei_me_hw *hw,
				 unsigned long offset, u32 value)
{
	iowrite32(value, hw->mem_addr + offset);
}

/**
 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
 *  read window register
 *
 * @dev: the device structure
 *
 * returns ME_CB_RW register value (u32)
 */
static u32 mei_me_mecbrw_read(const struct mei_device *dev)
{
	return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
}
/**
 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
 *
 * @dev: the device structure
 *
 * returns ME_CSR_HA register value (u32)
 */
static inline u32 mei_me_mecsr_read(const struct mei_me_hw *hw)
{
	return mei_me_reg_read(hw, ME_CSR_HA);
}

/**
 * mei_hcsr_read - Reads 32bit data from the host CSR
 *
 * @dev: the device structure
 *
 * returns H_CSR register value (u32)
 */
static inline u32 mei_hcsr_read(const struct mei_me_hw *hw)
{
	return mei_me_reg_read(hw, H_CSR);
}

/**
 * mei_hcsr_set - writes H_CSR register to the mei device,
 * and ignores the H_IS bit for it is write-one-to-zero.
 *
 * @dev: the device structure
 */
static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr)
{
	hcsr &= ~H_IS;
	mei_me_reg_write(hw, H_CSR, hcsr);
}


/**
 * mei_me_hw_config - configure hw dependent settings
 *
 * @dev: mei device
 */
static void mei_me_hw_config(struct mei_device *dev)
{
	u32 hcsr = mei_hcsr_read(to_me_hw(dev));
	/* Doesn't change in runtime */
	dev->hbuf_depth = (hcsr & H_CBD) >> 24;
}
/**
 * mei_clear_interrupts - clear and stop interrupts
 *
 * @dev: the device structure
 */
static void mei_me_intr_clear(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 hcsr = mei_hcsr_read(hw);
	if ((hcsr & H_IS) == H_IS)
		mei_me_reg_write(hw, H_CSR, hcsr);
}
/**
 * mei_me_intr_enable - enables mei device interrupts
 *
 * @dev: the device structure
 */
static void mei_me_intr_enable(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 hcsr = mei_hcsr_read(hw);
	hcsr |= H_IE;
	mei_hcsr_set(hw, hcsr);
}

/**
 * mei_disable_interrupts - disables mei device interrupts
 *
 * @dev: the device structure
 */
static void mei_me_intr_disable(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 hcsr = mei_hcsr_read(hw);
	hcsr  &= ~H_IE;
	mei_hcsr_set(hw, hcsr);
}

/**
 * mei_me_hw_reset_release - release device from the reset
 *
 * @dev: the device structure
 */
static void mei_me_hw_reset_release(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 hcsr = mei_hcsr_read(hw);

	hcsr |= H_IG;
	hcsr &= ~H_RST;
	mei_hcsr_set(hw, hcsr);

	/* complete this write before we set host ready on another CPU */
	mmiowb();
}
/**
 * mei_me_hw_reset - resets fw via mei csr register.
 *
 * @dev: the device structure
 * @intr_enable: if interrupt should be enabled after reset.
 */
static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 hcsr = mei_hcsr_read(hw);

	hcsr |= H_RST | H_IG | H_IS;

	if (intr_enable)
		hcsr |= H_IE;
	else
		hcsr &= ~H_IE;

	dev->recvd_hw_ready = false;
	mei_me_reg_write(hw, H_CSR, hcsr);

	/*
	 * Host reads the H_CSR once to ensure that the
	 * posted write to H_CSR completes.
	 */
	hcsr = mei_hcsr_read(hw);

	if ((hcsr & H_RST) == 0)
		dev_warn(&dev->pdev->dev, "H_RST is not set = 0x%08X", hcsr);

	if ((hcsr & H_RDY) == H_RDY)
		dev_warn(&dev->pdev->dev, "H_RDY is not cleared 0x%08X", hcsr);

	if (intr_enable == false)
		mei_me_hw_reset_release(dev);

	return 0;
}

/**
 * mei_me_host_set_ready - enable device
 *
 * @dev - mei device
 * returns bool
 */

static void mei_me_host_set_ready(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	hw->host_hw_state = mei_hcsr_read(hw);
	hw->host_hw_state |= H_IE | H_IG | H_RDY;
	mei_hcsr_set(hw, hw->host_hw_state);
}
/**
 * mei_me_host_is_ready - check whether the host has turned ready
 *
 * @dev - mei device
 * returns bool
 */
static bool mei_me_host_is_ready(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	hw->host_hw_state = mei_hcsr_read(hw);
	return (hw->host_hw_state & H_RDY) == H_RDY;
}

/**
 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
 *
 * @dev - mei device
 * returns bool
 */
static bool mei_me_hw_is_ready(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	hw->me_hw_state = mei_me_mecsr_read(hw);
	return (hw->me_hw_state & ME_RDY_HRA) == ME_RDY_HRA;
}

static int mei_me_hw_ready_wait(struct mei_device *dev)
{
	int err;

	mutex_unlock(&dev->device_lock);
	err = wait_event_interruptible_timeout(dev->wait_hw_ready,
			dev->recvd_hw_ready,
			mei_secs_to_jiffies(MEI_INTEROP_TIMEOUT));
	mutex_lock(&dev->device_lock);
	if (!err && !dev->recvd_hw_ready) {
		if (!err)
			err = -ETIMEDOUT;
		dev_err(&dev->pdev->dev,
			"wait hw ready failed. status = %d\n", err);
		return err;
	}

	dev->recvd_hw_ready = false;
	return 0;
}

static int mei_me_hw_start(struct mei_device *dev)
{
	int ret = mei_me_hw_ready_wait(dev);
	if (ret)
		return ret;
	dev_dbg(&dev->pdev->dev, "hw is ready\n");

	mei_me_host_set_ready(dev);
	return ret;
}


/**
 * mei_hbuf_filled_slots - gets number of device filled buffer slots
 *
 * @dev: the device structure
 *
 * returns number of filled slots
 */
static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	char read_ptr, write_ptr;

	hw->host_hw_state = mei_hcsr_read(hw);

	read_ptr = (char) ((hw->host_hw_state & H_CBRP) >> 8);
	write_ptr = (char) ((hw->host_hw_state & H_CBWP) >> 16);

	return (unsigned char) (write_ptr - read_ptr);
}

/**
 * mei_me_hbuf_is_empty - checks if host buffer is empty.
 *
 * @dev: the device structure
 *
 * returns true if empty, false - otherwise.
 */
static bool mei_me_hbuf_is_empty(struct mei_device *dev)
{
	return mei_hbuf_filled_slots(dev) == 0;
}

/**
 * mei_me_hbuf_empty_slots - counts write empty slots.
 *
 * @dev: the device structure
 *
 * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise empty slots count
 */
static int mei_me_hbuf_empty_slots(struct mei_device *dev)
{
	unsigned char filled_slots, empty_slots;

	filled_slots = mei_hbuf_filled_slots(dev);
	empty_slots = dev->hbuf_depth - filled_slots;

	/* check for overflow */
	if (filled_slots > dev->hbuf_depth)
		return -EOVERFLOW;

	return empty_slots;
}

static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
{
	return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
}


/**
 * mei_write_message - writes a message to mei device.
 *
 * @dev: the device structure
 * @header: mei HECI header of message
 * @buf: message payload will be written
 *
 * This function returns -EIO if write has failed
 */
static int mei_me_write_message(struct mei_device *dev,
			struct mei_msg_hdr *header,
			unsigned char *buf)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	unsigned long rem;
	unsigned long length = header->length;
	u32 *reg_buf = (u32 *)buf;
	u32 hcsr;
	u32 dw_cnt;
	int i;
	int empty_slots;

	dev_dbg(&dev->pdev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));

	empty_slots = mei_hbuf_empty_slots(dev);
	dev_dbg(&dev->pdev->dev, "empty slots = %hu.\n", empty_slots);

	dw_cnt = mei_data2slots(length);
	if (empty_slots < 0 || dw_cnt > empty_slots)
		return -EIO;

	mei_me_reg_write(hw, H_CB_WW, *((u32 *) header));

	for (i = 0; i < length / 4; i++)
		mei_me_reg_write(hw, H_CB_WW, reg_buf[i]);

	rem = length & 0x3;
	if (rem > 0) {
		u32 reg = 0;
		memcpy(&reg, &buf[length - rem], rem);
		mei_me_reg_write(hw, H_CB_WW, reg);
	}

	hcsr = mei_hcsr_read(hw) | H_IG;
	mei_hcsr_set(hw, hcsr);
	if (!mei_me_hw_is_ready(dev))
		return -EIO;

	return 0;
}

/**
 * mei_me_count_full_read_slots - counts read full slots.
 *
 * @dev: the device structure
 *
 * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise filled slots count
 */
static int mei_me_count_full_read_slots(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	char read_ptr, write_ptr;
	unsigned char buffer_depth, filled_slots;

	hw->me_hw_state = mei_me_mecsr_read(hw);
	buffer_depth = (unsigned char)((hw->me_hw_state & ME_CBD_HRA) >> 24);
	read_ptr = (char) ((hw->me_hw_state & ME_CBRP_HRA) >> 8);
	write_ptr = (char) ((hw->me_hw_state & ME_CBWP_HRA) >> 16);
	filled_slots = (unsigned char) (write_ptr - read_ptr);

	/* check for overflow */
	if (filled_slots > buffer_depth)
		return -EOVERFLOW;

	dev_dbg(&dev->pdev->dev, "filled_slots =%08x\n", filled_slots);
	return (int)filled_slots;
}

/**
 * mei_me_read_slots - reads a message from mei device.
 *
 * @dev: the device structure
 * @buffer: message buffer will be written
 * @buffer_length: message size will be read
 */
static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
		    unsigned long buffer_length)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 *reg_buf = (u32 *)buffer;
	u32 hcsr;

	for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
		*reg_buf++ = mei_me_mecbrw_read(dev);

	if (buffer_length > 0) {
		u32 reg = mei_me_mecbrw_read(dev);
		memcpy(reg_buf, &reg, buffer_length);
	}

	hcsr = mei_hcsr_read(hw) | H_IG;
	mei_hcsr_set(hw, hcsr);
	return 0;
}

/**
 * mei_me_irq_quick_handler - The ISR of the MEI device
 *
 * @irq: The irq number
 * @dev_id: pointer to the device structure
 *
 * returns irqreturn_t
 */

irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
{
	struct mei_device *dev = (struct mei_device *) dev_id;
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 csr_reg = mei_hcsr_read(hw);

	if ((csr_reg & H_IS) != H_IS)
		return IRQ_NONE;

	/* clear H_IS bit in H_CSR */
	mei_me_reg_write(hw, H_CSR, csr_reg);

	return IRQ_WAKE_THREAD;
}

/**
 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
 * processing.
 *
 * @irq: The irq number
 * @dev_id: pointer to the device structure
 *
 * returns irqreturn_t
 *
 */
irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
{
	struct mei_device *dev = (struct mei_device *) dev_id;
	struct mei_cl_cb complete_list;
	s32 slots;
	int rets = 0;

	dev_dbg(&dev->pdev->dev, "function called after ISR to handle the interrupt processing.\n");
	/* initialize our complete list */
	mutex_lock(&dev->device_lock);
	mei_io_list_init(&complete_list);

	/* Ack the interrupt here
	 * In case of MSI we don't go through the quick handler */
	if (pci_dev_msi_enabled(dev->pdev))
		mei_clear_interrupts(dev);

	/* check if ME wants a reset */
	if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
		dev_warn(&dev->pdev->dev, "FW not ready: resetting.\n");
		schedule_work(&dev->reset_work);
		goto end;
	}

	/*  check if we need to start the dev */
	if (!mei_host_is_ready(dev)) {
		if (mei_hw_is_ready(dev)) {
			mei_me_hw_reset_release(dev);
			dev_dbg(&dev->pdev->dev, "we need to start the dev.\n");

			dev->recvd_hw_ready = true;
			wake_up_interruptible(&dev->wait_hw_ready);
		} else {
			dev_dbg(&dev->pdev->dev, "Spurious Interrupt\n");
		}
		goto end;
	}
	/* check slots available for reading */
	slots = mei_count_full_read_slots(dev);
	while (slots > 0) {
		/* we have urgent data to send so break the read */
		if (dev->wr_ext_msg.hdr.length)
			break;
		dev_dbg(&dev->pdev->dev, "slots to read = %08x\n", slots);
		rets = mei_irq_read_handler(dev, &complete_list, &slots);
		if (rets && dev->dev_state != MEI_DEV_RESETTING) {
			schedule_work(&dev->reset_work);
			goto end;
		}
	}

	rets = mei_irq_write_handler(dev, &complete_list);

	dev->hbuf_is_ready = mei_hbuf_is_ready(dev);

	mei_irq_compl_handler(dev, &complete_list);

end:
	dev_dbg(&dev->pdev->dev, "interrupt thread end ret = %d\n", rets);
	mutex_unlock(&dev->device_lock);
	return IRQ_HANDLED;
}
static const struct mei_hw_ops mei_me_hw_ops = {

	.host_is_ready = mei_me_host_is_ready,

	.hw_is_ready = mei_me_hw_is_ready,
	.hw_reset = mei_me_hw_reset,
	.hw_config = mei_me_hw_config,
	.hw_start = mei_me_hw_start,

	.intr_clear = mei_me_intr_clear,
	.intr_enable = mei_me_intr_enable,
	.intr_disable = mei_me_intr_disable,

	.hbuf_free_slots = mei_me_hbuf_empty_slots,
	.hbuf_is_ready = mei_me_hbuf_is_empty,
	.hbuf_max_len = mei_me_hbuf_max_len,

	.write = mei_me_write_message,

	.rdbuf_full_slots = mei_me_count_full_read_slots,
	.read_hdr = mei_me_mecbrw_read,
	.read = mei_me_read_slots
};

/**
 * mei_me_dev_init - allocates and initializes the mei device structure
 *
 * @pdev: The pci device structure
 *
 * returns The mei_device_device pointer on success, NULL on failure.
 */
struct mei_device *mei_me_dev_init(struct pci_dev *pdev)
{
	struct mei_device *dev;

	dev = kzalloc(sizeof(struct mei_device) +
			 sizeof(struct mei_me_hw), GFP_KERNEL);
	if (!dev)
		return NULL;

	mei_device_init(dev);

	dev->ops = &mei_me_hw_ops;

	dev->pdev = pdev;
	return dev;
}