mt2063.c
65.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
/*
* Driver for mt2063 Micronas tuner
*
* Copyright (c) 2011 Mauro Carvalho Chehab <mchehab@redhat.com>
*
* This driver came from a driver originally written by:
* Henry Wang <Henry.wang@AzureWave.com>
* Made publicly available by Terratec, at:
* http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
* The original driver's license is GPL, as declared with MODULE_LICENSE()
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation under version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/videodev2.h>
#include "mt2063.h"
static unsigned int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Set Verbosity level");
#define dprintk(level, fmt, arg...) do { \
if (debug >= level) \
printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg); \
} while (0)
/* positive error codes used internally */
/* Info: Unavoidable LO-related spur may be present in the output */
#define MT2063_SPUR_PRESENT_ERR (0x00800000)
/* Info: Mask of bits used for # of LO-related spurs that were avoided during tuning */
#define MT2063_SPUR_CNT_MASK (0x001f0000)
#define MT2063_SPUR_SHIFT (16)
/* Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */
#define MT2063_UPC_RANGE (0x04000000)
/* Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */
#define MT2063_DNC_RANGE (0x08000000)
/*
* Constant defining the version of the following structure
* and therefore the API for this code.
*
* When compiling the tuner driver, the preprocessor will
* check against this version number to make sure that
* it matches the version that the tuner driver knows about.
*/
/* DECT Frequency Avoidance */
#define MT2063_DECT_AVOID_US_FREQS 0x00000001
#define MT2063_DECT_AVOID_EURO_FREQS 0x00000002
#define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0)
#define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0)
enum MT2063_DECT_Avoid_Type {
MT2063_NO_DECT_AVOIDANCE = 0, /* Do not create DECT exclusion zones. */
MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS, /* Avoid US DECT frequencies. */
MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS, /* Avoid European DECT frequencies. */
MT2063_AVOID_BOTH /* Avoid both regions. Not typically used. */
};
#define MT2063_MAX_ZONES 48
struct MT2063_ExclZone_t {
u32 min_;
u32 max_;
struct MT2063_ExclZone_t *next_;
};
/*
* Structure of data needed for Spur Avoidance
*/
struct MT2063_AvoidSpursData_t {
u32 f_ref;
u32 f_in;
u32 f_LO1;
u32 f_if1_Center;
u32 f_if1_Request;
u32 f_if1_bw;
u32 f_LO2;
u32 f_out;
u32 f_out_bw;
u32 f_LO1_Step;
u32 f_LO2_Step;
u32 f_LO1_FracN_Avoid;
u32 f_LO2_FracN_Avoid;
u32 f_zif_bw;
u32 f_min_LO_Separation;
u32 maxH1;
u32 maxH2;
enum MT2063_DECT_Avoid_Type avoidDECT;
u32 bSpurPresent;
u32 bSpurAvoided;
u32 nSpursFound;
u32 nZones;
struct MT2063_ExclZone_t *freeZones;
struct MT2063_ExclZone_t *usedZones;
struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES];
};
/*
* Parameter for function MT2063_SetPowerMask that specifies the power down
* of various sections of the MT2063.
*/
enum MT2063_Mask_Bits {
MT2063_REG_SD = 0x0040, /* Shutdown regulator */
MT2063_SRO_SD = 0x0020, /* Shutdown SRO */
MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */
MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */
MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */
MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */
MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */
MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */
MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */
MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */
MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */
MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */
MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */
MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */
MT2063_NONE_SD = 0x0000 /* No shutdown bits */
};
/*
* Possible values for MT2063_DNC_OUTPUT
*/
enum MT2063_DNC_Output_Enable {
MT2063_DNC_NONE = 0,
MT2063_DNC_1,
MT2063_DNC_2,
MT2063_DNC_BOTH
};
/*
* Two-wire serial bus subaddresses of the tuner registers.
* Also known as the tuner's register addresses.
*/
enum MT2063_Register_Offsets {
MT2063_REG_PART_REV = 0, /* 0x00: Part/Rev Code */
MT2063_REG_LO1CQ_1, /* 0x01: LO1C Queued Byte 1 */
MT2063_REG_LO1CQ_2, /* 0x02: LO1C Queued Byte 2 */
MT2063_REG_LO2CQ_1, /* 0x03: LO2C Queued Byte 1 */
MT2063_REG_LO2CQ_2, /* 0x04: LO2C Queued Byte 2 */
MT2063_REG_LO2CQ_3, /* 0x05: LO2C Queued Byte 3 */
MT2063_REG_RSVD_06, /* 0x06: Reserved */
MT2063_REG_LO_STATUS, /* 0x07: LO Status */
MT2063_REG_FIFFC, /* 0x08: FIFF Center */
MT2063_REG_CLEARTUNE, /* 0x09: ClearTune Filter */
MT2063_REG_ADC_OUT, /* 0x0A: ADC_OUT */
MT2063_REG_LO1C_1, /* 0x0B: LO1C Byte 1 */
MT2063_REG_LO1C_2, /* 0x0C: LO1C Byte 2 */
MT2063_REG_LO2C_1, /* 0x0D: LO2C Byte 1 */
MT2063_REG_LO2C_2, /* 0x0E: LO2C Byte 2 */
MT2063_REG_LO2C_3, /* 0x0F: LO2C Byte 3 */
MT2063_REG_RSVD_10, /* 0x10: Reserved */
MT2063_REG_PWR_1, /* 0x11: PWR Byte 1 */
MT2063_REG_PWR_2, /* 0x12: PWR Byte 2 */
MT2063_REG_TEMP_STATUS, /* 0x13: Temp Status */
MT2063_REG_XO_STATUS, /* 0x14: Crystal Status */
MT2063_REG_RF_STATUS, /* 0x15: RF Attn Status */
MT2063_REG_FIF_STATUS, /* 0x16: FIF Attn Status */
MT2063_REG_LNA_OV, /* 0x17: LNA Attn Override */
MT2063_REG_RF_OV, /* 0x18: RF Attn Override */
MT2063_REG_FIF_OV, /* 0x19: FIF Attn Override */
MT2063_REG_LNA_TGT, /* 0x1A: Reserved */
MT2063_REG_PD1_TGT, /* 0x1B: Pwr Det 1 Target */
MT2063_REG_PD2_TGT, /* 0x1C: Pwr Det 2 Target */
MT2063_REG_RSVD_1D, /* 0x1D: Reserved */
MT2063_REG_RSVD_1E, /* 0x1E: Reserved */
MT2063_REG_RSVD_1F, /* 0x1F: Reserved */
MT2063_REG_RSVD_20, /* 0x20: Reserved */
MT2063_REG_BYP_CTRL, /* 0x21: Bypass Control */
MT2063_REG_RSVD_22, /* 0x22: Reserved */
MT2063_REG_RSVD_23, /* 0x23: Reserved */
MT2063_REG_RSVD_24, /* 0x24: Reserved */
MT2063_REG_RSVD_25, /* 0x25: Reserved */
MT2063_REG_RSVD_26, /* 0x26: Reserved */
MT2063_REG_RSVD_27, /* 0x27: Reserved */
MT2063_REG_FIFF_CTRL, /* 0x28: FIFF Control */
MT2063_REG_FIFF_OFFSET, /* 0x29: FIFF Offset */
MT2063_REG_CTUNE_CTRL, /* 0x2A: Reserved */
MT2063_REG_CTUNE_OV, /* 0x2B: Reserved */
MT2063_REG_CTRL_2C, /* 0x2C: Reserved */
MT2063_REG_FIFF_CTRL2, /* 0x2D: Fiff Control */
MT2063_REG_RSVD_2E, /* 0x2E: Reserved */
MT2063_REG_DNC_GAIN, /* 0x2F: DNC Control */
MT2063_REG_VGA_GAIN, /* 0x30: VGA Gain Ctrl */
MT2063_REG_RSVD_31, /* 0x31: Reserved */
MT2063_REG_TEMP_SEL, /* 0x32: Temperature Selection */
MT2063_REG_RSVD_33, /* 0x33: Reserved */
MT2063_REG_RSVD_34, /* 0x34: Reserved */
MT2063_REG_RSVD_35, /* 0x35: Reserved */
MT2063_REG_RSVD_36, /* 0x36: Reserved */
MT2063_REG_RSVD_37, /* 0x37: Reserved */
MT2063_REG_RSVD_38, /* 0x38: Reserved */
MT2063_REG_RSVD_39, /* 0x39: Reserved */
MT2063_REG_RSVD_3A, /* 0x3A: Reserved */
MT2063_REG_RSVD_3B, /* 0x3B: Reserved */
MT2063_REG_RSVD_3C, /* 0x3C: Reserved */
MT2063_REG_END_REGS
};
struct mt2063_state {
struct i2c_adapter *i2c;
bool init;
const struct mt2063_config *config;
struct dvb_tuner_ops ops;
struct dvb_frontend *frontend;
struct tuner_state status;
u32 frequency;
u32 srate;
u32 bandwidth;
u32 reference;
u32 tuner_id;
struct MT2063_AvoidSpursData_t AS_Data;
u32 f_IF1_actual;
u32 rcvr_mode;
u32 ctfilt_sw;
u32 CTFiltMax[31];
u32 num_regs;
u8 reg[MT2063_REG_END_REGS];
};
/*
* mt2063_write - Write data into the I2C bus
*/
static int mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len)
{
struct dvb_frontend *fe = state->frontend;
int ret;
u8 buf[60];
struct i2c_msg msg = {
.addr = state->config->tuner_address,
.flags = 0,
.buf = buf,
.len = len + 1
};
dprintk(2, "\n");
msg.buf[0] = reg;
memcpy(msg.buf + 1, data, len);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
ret = i2c_transfer(state->i2c, &msg, 1);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
if (ret < 0)
printk(KERN_ERR "%s error ret=%d\n", __func__, ret);
return ret;
}
/*
* mt2063_write - Write register data into the I2C bus, caching the value
*/
static int mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val)
{
int status;
dprintk(2, "\n");
if (reg >= MT2063_REG_END_REGS)
return -ERANGE;
status = mt2063_write(state, reg, &val, 1);
if (status < 0)
return status;
state->reg[reg] = val;
return 0;
}
/*
* mt2063_read - Read data from the I2C bus
*/
static int mt2063_read(struct mt2063_state *state,
u8 subAddress, u8 *pData, u32 cnt)
{
int status = 0; /* Status to be returned */
struct dvb_frontend *fe = state->frontend;
u32 i = 0;
dprintk(2, "addr 0x%02x, cnt %d\n", subAddress, cnt);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
for (i = 0; i < cnt; i++) {
u8 b0[] = { subAddress + i };
struct i2c_msg msg[] = {
{
.addr = state->config->tuner_address,
.flags = 0,
.buf = b0,
.len = 1
}, {
.addr = state->config->tuner_address,
.flags = I2C_M_RD,
.buf = pData + i,
.len = 1
}
};
status = i2c_transfer(state->i2c, msg, 2);
dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n",
subAddress + i, status, *(pData + i));
if (status < 0)
break;
}
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
if (status < 0)
printk(KERN_ERR "Can't read from address 0x%02x,\n",
subAddress + i);
return status;
}
/*
* FIXME: Is this really needed?
*/
static int MT2063_Sleep(struct dvb_frontend *fe)
{
/*
* ToDo: Add code here to implement a OS blocking
*/
msleep(100);
return 0;
}
/*
* Microtune spur avoidance
*/
/* Implement ceiling, floor functions. */
#define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0))
#define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d))
struct MT2063_FIFZone_t {
s32 min_;
s32 max_;
};
static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t
*pAS_Info,
struct MT2063_ExclZone_t *pPrevNode)
{
struct MT2063_ExclZone_t *pNode;
dprintk(2, "\n");
/* Check for a node in the free list */
if (pAS_Info->freeZones != NULL) {
/* Use one from the free list */
pNode = pAS_Info->freeZones;
pAS_Info->freeZones = pNode->next_;
} else {
/* Grab a node from the array */
pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones];
}
if (pPrevNode != NULL) {
pNode->next_ = pPrevNode->next_;
pPrevNode->next_ = pNode;
} else { /* insert at the beginning of the list */
pNode->next_ = pAS_Info->usedZones;
pAS_Info->usedZones = pNode;
}
pAS_Info->nZones++;
return pNode;
}
static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t
*pAS_Info,
struct MT2063_ExclZone_t *pPrevNode,
struct MT2063_ExclZone_t
*pNodeToRemove)
{
struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_;
dprintk(2, "\n");
/* Make previous node point to the subsequent node */
if (pPrevNode != NULL)
pPrevNode->next_ = pNext;
/* Add pNodeToRemove to the beginning of the freeZones */
pNodeToRemove->next_ = pAS_Info->freeZones;
pAS_Info->freeZones = pNodeToRemove;
/* Decrement node count */
pAS_Info->nZones--;
return pNext;
}
/*
* MT_AddExclZone()
*
* Add (and merge) an exclusion zone into the list.
* If the range (f_min, f_max) is totally outside the
* 1st IF BW, ignore the entry.
* If the range (f_min, f_max) is negative, ignore the entry.
*/
static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info,
u32 f_min, u32 f_max)
{
struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
struct MT2063_ExclZone_t *pPrev = NULL;
struct MT2063_ExclZone_t *pNext = NULL;
dprintk(2, "\n");
/* Check to see if this overlaps the 1st IF filter */
if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2)))
&& (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2)))
&& (f_min < f_max)) {
/*
* 1 2 3 4 5 6
*
* New entry: |---| |--| |--| |-| |---| |--|
* or or or or or
* Existing: |--| |--| |--| |---| |-| |--|
*/
/* Check for our place in the list */
while ((pNode != NULL) && (pNode->max_ < f_min)) {
pPrev = pNode;
pNode = pNode->next_;
}
if ((pNode != NULL) && (pNode->min_ < f_max)) {
/* Combine me with pNode */
if (f_min < pNode->min_)
pNode->min_ = f_min;
if (f_max > pNode->max_)
pNode->max_ = f_max;
} else {
pNode = InsertNode(pAS_Info, pPrev);
pNode->min_ = f_min;
pNode->max_ = f_max;
}
/* Look for merging possibilities */
pNext = pNode->next_;
while ((pNext != NULL) && (pNext->min_ < pNode->max_)) {
if (pNext->max_ > pNode->max_)
pNode->max_ = pNext->max_;
/* Remove pNext, return ptr to pNext->next */
pNext = RemoveNode(pAS_Info, pNode, pNext);
}
}
}
/*
* Reset all exclusion zones.
* Add zones to protect the PLL FracN regions near zero
*/
static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info)
{
u32 center;
dprintk(2, "\n");
pAS_Info->nZones = 0; /* this clears the used list */
pAS_Info->usedZones = NULL; /* reset ptr */
pAS_Info->freeZones = NULL; /* reset ptr */
center =
pAS_Info->f_ref *
((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 +
pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in;
while (center <
pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
pAS_Info->f_LO1_FracN_Avoid) {
/* Exclude LO1 FracN */
MT2063_AddExclZone(pAS_Info,
center - pAS_Info->f_LO1_FracN_Avoid,
center - 1);
MT2063_AddExclZone(pAS_Info, center + 1,
center + pAS_Info->f_LO1_FracN_Avoid);
center += pAS_Info->f_ref;
}
center =
pAS_Info->f_ref *
((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 -
pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out;
while (center <
pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
pAS_Info->f_LO2_FracN_Avoid) {
/* Exclude LO2 FracN */
MT2063_AddExclZone(pAS_Info,
center - pAS_Info->f_LO2_FracN_Avoid,
center - 1);
MT2063_AddExclZone(pAS_Info, center + 1,
center + pAS_Info->f_LO2_FracN_Avoid);
center += pAS_Info->f_ref;
}
if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
/* Exclude LO1 values that conflict with DECT channels */
MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in); /* Ctr = 1921.536 */
MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in); /* Ctr = 1923.264 */
MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in); /* Ctr = 1924.992 */
MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in); /* Ctr = 1926.720 */
MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in); /* Ctr = 1928.448 */
}
if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in); /* Ctr = 1897.344 */
MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in); /* Ctr = 1895.616 */
MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in); /* Ctr = 1893.888 */
MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in); /* Ctr = 1892.16 */
MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in); /* Ctr = 1890.432 */
MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in); /* Ctr = 1888.704 */
MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in); /* Ctr = 1886.976 */
MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in); /* Ctr = 1885.248 */
MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in); /* Ctr = 1883.52 */
MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in); /* Ctr = 1881.792 */
}
}
/*
* MT_ChooseFirstIF - Choose the best available 1st IF
* If f_Desired is not excluded, choose that first.
* Otherwise, return the value closest to f_Center that is
* not excluded
*/
static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info)
{
/*
* Update "f_Desired" to be the nearest "combinational-multiple" of
* "f_LO1_Step".
* The resulting number, F_LO1 must be a multiple of f_LO1_Step.
* And F_LO1 is the arithmetic sum of f_in + f_Center.
* Neither f_in, nor f_Center must be a multiple of f_LO1_Step.
* However, the sum must be.
*/
const u32 f_Desired =
pAS_Info->f_LO1_Step *
((pAS_Info->f_if1_Request + pAS_Info->f_in +
pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) -
pAS_Info->f_in;
const u32 f_Step =
(pAS_Info->f_LO1_Step >
pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info->
f_LO2_Step;
u32 f_Center;
s32 i;
s32 j = 0;
u32 bDesiredExcluded = 0;
u32 bZeroExcluded = 0;
s32 tmpMin, tmpMax;
s32 bestDiff;
struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES];
dprintk(2, "\n");
if (pAS_Info->nZones == 0)
return f_Desired;
/*
* f_Center needs to be an integer multiple of f_Step away
* from f_Desired
*/
if (pAS_Info->f_if1_Center > f_Desired)
f_Center =
f_Desired +
f_Step *
((pAS_Info->f_if1_Center - f_Desired +
f_Step / 2) / f_Step);
else
f_Center =
f_Desired -
f_Step *
((f_Desired - pAS_Info->f_if1_Center +
f_Step / 2) / f_Step);
/*
* Take MT_ExclZones, center around f_Center and change the
* resolution to f_Step
*/
while (pNode != NULL) {
/* floor function */
tmpMin =
floor((s32) (pNode->min_ - f_Center), (s32) f_Step);
/* ceil function */
tmpMax =
ceil((s32) (pNode->max_ - f_Center), (s32) f_Step);
if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired))
bDesiredExcluded = 1;
if ((tmpMin < 0) && (tmpMax > 0))
bZeroExcluded = 1;
/* See if this zone overlaps the previous */
if ((j > 0) && (tmpMin < zones[j - 1].max_))
zones[j - 1].max_ = tmpMax;
else {
/* Add new zone */
zones[j].min_ = tmpMin;
zones[j].max_ = tmpMax;
j++;
}
pNode = pNode->next_;
}
/*
* If the desired is okay, return with it
*/
if (bDesiredExcluded == 0)
return f_Desired;
/*
* If the desired is excluded and the center is okay, return with it
*/
if (bZeroExcluded == 0)
return f_Center;
/* Find the value closest to 0 (f_Center) */
bestDiff = zones[0].min_;
for (i = 0; i < j; i++) {
if (abs(zones[i].min_) < abs(bestDiff))
bestDiff = zones[i].min_;
if (abs(zones[i].max_) < abs(bestDiff))
bestDiff = zones[i].max_;
}
if (bestDiff < 0)
return f_Center - ((u32) (-bestDiff) * f_Step);
return f_Center + (bestDiff * f_Step);
}
/**
* gcd() - Uses Euclid's algorithm
*
* @u, @v: Unsigned values whose GCD is desired.
*
* Returns THE greatest common divisor of u and v, if either value is 0,
* the other value is returned as the result.
*/
static u32 MT2063_gcd(u32 u, u32 v)
{
u32 r;
while (v != 0) {
r = u % v;
u = v;
v = r;
}
return u;
}
/**
* IsSpurInBand() - Checks to see if a spur will be present within the IF's
* bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW)
*
* ma mb mc md
* <--+-+-+-------------------+-------------------+-+-+-->
* | ^ 0 ^ |
* ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^
* a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2
*
* Note that some equations are doubled to prevent round-off
* problems when calculating fIFBW/2
*
* @pAS_Info: Avoid Spurs information block
* @fm: If spur, amount f_IF1 has to move negative
* @fp: If spur, amount f_IF1 has to move positive
*
* Returns 1 if an LO spur would be present, otherwise 0.
*/
static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info,
u32 *fm, u32 * fp)
{
/*
** Calculate LO frequency settings.
*/
u32 n, n0;
const u32 f_LO1 = pAS_Info->f_LO1;
const u32 f_LO2 = pAS_Info->f_LO2;
const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2;
const u32 c = d - pAS_Info->f_out_bw;
const u32 f = pAS_Info->f_zif_bw / 2;
const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1;
s32 f_nsLO1, f_nsLO2;
s32 f_Spur;
u32 ma, mb, mc, md, me, mf;
u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs;
dprintk(2, "\n");
*fm = 0;
/*
** For each edge (d, c & f), calculate a scale, based on the gcd
** of f_LO1, f_LO2 and the edge value. Use the larger of this
** gcd-based scale factor or f_Scale.
*/
lo_gcd = MT2063_gcd(f_LO1, f_LO2);
gd_Scale = max((u32) MT2063_gcd(lo_gcd, d), f_Scale);
hgds = gd_Scale / 2;
gc_Scale = max((u32) MT2063_gcd(lo_gcd, c), f_Scale);
hgcs = gc_Scale / 2;
gf_Scale = max((u32) MT2063_gcd(lo_gcd, f), f_Scale);
hgfs = gf_Scale / 2;
n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2);
/* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */
for (n = n0; n <= pAS_Info->maxH1; ++n) {
md = (n * ((f_LO1 + hgds) / gd_Scale) -
((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
/* If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present */
if (md >= pAS_Info->maxH1)
break;
ma = (n * ((f_LO1 + hgds) / gd_Scale) +
((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
/* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */
if (md == ma)
continue;
mc = (n * ((f_LO1 + hgcs) / gc_Scale) -
((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
if (mc != md) {
f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale));
f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale));
f_Spur =
(gc_Scale * (f_nsLO1 - f_nsLO2)) +
n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale);
*fp = ((f_Spur - (s32) c) / (mc - n)) + 1;
*fm = (((s32) d - f_Spur) / (mc - n)) + 1;
return 1;
}
/* Location of Zero-IF-spur to be checked */
me = (n * ((f_LO1 + hgfs) / gf_Scale) +
((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
mf = (n * ((f_LO1 + hgfs) / gf_Scale) -
((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
if (me != mf) {
f_nsLO1 = n * (f_LO1 / gf_Scale);
f_nsLO2 = me * (f_LO2 / gf_Scale);
f_Spur =
(gf_Scale * (f_nsLO1 - f_nsLO2)) +
n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale);
*fp = ((f_Spur + (s32) f) / (me - n)) + 1;
*fm = (((s32) f - f_Spur) / (me - n)) + 1;
return 1;
}
mb = (n * ((f_LO1 + hgcs) / gc_Scale) +
((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
if (ma != mb) {
f_nsLO1 = n * (f_LO1 / gc_Scale);
f_nsLO2 = ma * (f_LO2 / gc_Scale);
f_Spur =
(gc_Scale * (f_nsLO1 - f_nsLO2)) +
n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale);
*fp = (((s32) d + f_Spur) / (ma - n)) + 1;
*fm = (-(f_Spur + (s32) c) / (ma - n)) + 1;
return 1;
}
}
/* No spurs found */
return 0;
}
/*
* MT_AvoidSpurs() - Main entry point to avoid spurs.
* Checks for existing spurs in present LO1, LO2 freqs
* and if present, chooses spur-free LO1, LO2 combination
* that tunes the same input/output frequencies.
*/
static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info)
{
int status = 0;
u32 fm, fp; /* restricted range on LO's */
pAS_Info->bSpurAvoided = 0;
pAS_Info->nSpursFound = 0;
dprintk(2, "\n");
if (pAS_Info->maxH1 == 0)
return 0;
/*
* Avoid LO Generated Spurs
*
* Make sure that have no LO-related spurs within the IF output
* bandwidth.
*
* If there is an LO spur in this band, start at the current IF1 frequency
* and work out until we find a spur-free frequency or run up against the
* 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they
* will be unchanged if a spur-free setting is not found.
*/
pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
if (pAS_Info->bSpurPresent) {
u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in; /* current attempt at a 1st IF */
u32 zfLO1 = pAS_Info->f_LO1; /* current attempt at an LO1 freq */
u32 zfLO2 = pAS_Info->f_LO2; /* current attempt at an LO2 freq */
u32 delta_IF1;
u32 new_IF1;
/*
** Spur was found, attempt to find a spur-free 1st IF
*/
do {
pAS_Info->nSpursFound++;
/* Raise f_IF1_upper, if needed */
MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp);
/* Choose next IF1 that is closest to f_IF1_CENTER */
new_IF1 = MT2063_ChooseFirstIF(pAS_Info);
if (new_IF1 > zfIF1) {
pAS_Info->f_LO1 += (new_IF1 - zfIF1);
pAS_Info->f_LO2 += (new_IF1 - zfIF1);
} else {
pAS_Info->f_LO1 -= (zfIF1 - new_IF1);
pAS_Info->f_LO2 -= (zfIF1 - new_IF1);
}
zfIF1 = new_IF1;
if (zfIF1 > pAS_Info->f_if1_Center)
delta_IF1 = zfIF1 - pAS_Info->f_if1_Center;
else
delta_IF1 = pAS_Info->f_if1_Center - zfIF1;
pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
/*
* Continue while the new 1st IF is still within the 1st IF bandwidth
* and there is a spur in the band (again)
*/
} while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && pAS_Info->bSpurPresent);
/*
* Use the LO-spur free values found. If the search went all
* the way to the 1st IF band edge and always found spurs, just
* leave the original choice. It's as "good" as any other.
*/
if (pAS_Info->bSpurPresent == 1) {
status |= MT2063_SPUR_PRESENT_ERR;
pAS_Info->f_LO1 = zfLO1;
pAS_Info->f_LO2 = zfLO2;
} else
pAS_Info->bSpurAvoided = 1;
}
status |=
((pAS_Info->
nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK);
return status;
}
/*
* Constants used by the tuning algorithm
*/
#define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */
#define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */
#define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */
#define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */
#define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */
#define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */
#define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */
#define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */
#define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */
#define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */
#define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */
#define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */
#define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */
#define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */
#define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */
#define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */
#define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */
#define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */
/*
* Define the supported Part/Rev codes for the MT2063
*/
#define MT2063_B0 (0x9B)
#define MT2063_B1 (0x9C)
#define MT2063_B2 (0x9D)
#define MT2063_B3 (0x9E)
/**
* mt2063_lockStatus - Checks to see if LO1 and LO2 are locked
*
* @state: struct mt2063_state pointer
*
* This function returns 0, if no lock, 1 if locked and a value < 1 if error
*/
static int mt2063_lockStatus(struct mt2063_state *state)
{
const u32 nMaxWait = 100; /* wait a maximum of 100 msec */
const u32 nPollRate = 2; /* poll status bits every 2 ms */
const u32 nMaxLoops = nMaxWait / nPollRate;
const u8 LO1LK = 0x80;
u8 LO2LK = 0x08;
int status;
u32 nDelays = 0;
dprintk(2, "\n");
/* LO2 Lock bit was in a different place for B0 version */
if (state->tuner_id == MT2063_B0)
LO2LK = 0x40;
do {
status = mt2063_read(state, MT2063_REG_LO_STATUS,
&state->reg[MT2063_REG_LO_STATUS], 1);
if (status < 0)
return status;
if ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) ==
(LO1LK | LO2LK)) {
return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO;
}
msleep(nPollRate); /* Wait between retries */
} while (++nDelays < nMaxLoops);
/*
* Got no lock or partial lock
*/
return 0;
}
/*
* Constants for setting receiver modes.
* (6 modes defined at this time, enumerated by mt2063_delivery_sys)
* (DNC1GC & DNC2GC are the values, which are used, when the specific
* DNC Output is selected, the other is always off)
*
* enum mt2063_delivery_sys
* -------------+----------------------------------------------
* Mode 0 : | MT2063_CABLE_QAM
* Mode 1 : | MT2063_CABLE_ANALOG
* Mode 2 : | MT2063_OFFAIR_COFDM
* Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS
* Mode 4 : | MT2063_OFFAIR_ANALOG
* Mode 5 : | MT2063_OFFAIR_8VSB
* --------------+----------------------------------------------
*
* |<---------- Mode -------------->|
* Reg Field | 0 | 1 | 2 | 3 | 4 | 5 |
* ------------+-----+-----+-----+-----+-----+-----+
* RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF
* LNARin | 0 | 0 | 3 | 3 | 3 | 3
* FIFFQen | 1 | 1 | 1 | 1 | 1 | 1
* FIFFq | 0 | 0 | 0 | 0 | 0 | 0
* DNC1gc | 0 | 0 | 0 | 0 | 0 | 0
* DNC2gc | 0 | 0 | 0 | 0 | 0 | 0
* GCU Auto | 1 | 1 | 1 | 1 | 1 | 1
* LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31
* LNA Target | 44 | 43 | 43 | 43 | 43 | 43
* ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0
* RF max Atn | 31 | 31 | 31 | 31 | 31 | 31
* PD1 Target | 36 | 36 | 38 | 38 | 36 | 38
* ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0
* FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5
* PD2 Target | 40 | 33 | 42 | 42 | 33 | 42
*/
enum mt2063_delivery_sys {
MT2063_CABLE_QAM = 0,
MT2063_CABLE_ANALOG,
MT2063_OFFAIR_COFDM,
MT2063_OFFAIR_COFDM_SAWLESS,
MT2063_OFFAIR_ANALOG,
MT2063_OFFAIR_8VSB,
MT2063_NUM_RCVR_MODES
};
static const char *mt2063_mode_name[] = {
[MT2063_CABLE_QAM] = "digital cable",
[MT2063_CABLE_ANALOG] = "analog cable",
[MT2063_OFFAIR_COFDM] = "digital offair",
[MT2063_OFFAIR_COFDM_SAWLESS] = "digital offair without SAW",
[MT2063_OFFAIR_ANALOG] = "analog offair",
[MT2063_OFFAIR_8VSB] = "analog offair 8vsb",
};
static const u8 RFAGCEN[] = { 0, 0, 0, 0, 0, 0 };
static const u8 LNARIN[] = { 0, 0, 3, 3, 3, 3 };
static const u8 FIFFQEN[] = { 1, 1, 1, 1, 1, 1 };
static const u8 FIFFQ[] = { 0, 0, 0, 0, 0, 0 };
static const u8 DNC1GC[] = { 0, 0, 0, 0, 0, 0 };
static const u8 DNC2GC[] = { 0, 0, 0, 0, 0, 0 };
static const u8 ACLNAMAX[] = { 31, 31, 31, 31, 31, 31 };
static const u8 LNATGT[] = { 44, 43, 43, 43, 43, 43 };
static const u8 RFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
static const u8 ACRFMAX[] = { 31, 31, 31, 31, 31, 31 };
static const u8 PD1TGT[] = { 36, 36, 38, 38, 36, 38 };
static const u8 FIFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
static const u8 ACFIFMAX[] = { 29, 29, 29, 29, 29, 29 };
static const u8 PD2TGT[] = { 40, 33, 38, 42, 30, 38 };
/*
* mt2063_set_dnc_output_enable()
*/
static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state,
enum MT2063_DNC_Output_Enable *pValue)
{
dprintk(2, "\n");
if ((state->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) { /* if DNC1 is off */
if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */
*pValue = MT2063_DNC_NONE;
else
*pValue = MT2063_DNC_2;
} else { /* DNC1 is on */
if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */
*pValue = MT2063_DNC_1;
else
*pValue = MT2063_DNC_BOTH;
}
return 0;
}
/*
* mt2063_set_dnc_output_enable()
*/
static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state,
enum MT2063_DNC_Output_Enable nValue)
{
int status = 0; /* Status to be returned */
u8 val = 0;
dprintk(2, "\n");
/* selects, which DNC output is used */
switch (nValue) {
case MT2063_DNC_NONE:
val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */
if (state->reg[MT2063_REG_DNC_GAIN] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_DNC_GAIN,
val);
val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */
if (state->reg[MT2063_REG_VGA_GAIN] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_VGA_GAIN,
val);
val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */
if (state->reg[MT2063_REG_RSVD_20] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_RSVD_20,
val);
break;
case MT2063_DNC_1:
val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */
if (state->reg[MT2063_REG_DNC_GAIN] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_DNC_GAIN,
val);
val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */
if (state->reg[MT2063_REG_VGA_GAIN] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_VGA_GAIN,
val);
val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */
if (state->reg[MT2063_REG_RSVD_20] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_RSVD_20,
val);
break;
case MT2063_DNC_2:
val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */
if (state->reg[MT2063_REG_DNC_GAIN] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_DNC_GAIN,
val);
val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */
if (state->reg[MT2063_REG_VGA_GAIN] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_VGA_GAIN,
val);
val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */
if (state->reg[MT2063_REG_RSVD_20] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_RSVD_20,
val);
break;
case MT2063_DNC_BOTH:
val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */
if (state->reg[MT2063_REG_DNC_GAIN] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_DNC_GAIN,
val);
val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */
if (state->reg[MT2063_REG_VGA_GAIN] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_VGA_GAIN,
val);
val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */
if (state->reg[MT2063_REG_RSVD_20] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_RSVD_20,
val);
break;
default:
break;
}
return status;
}
/*
* MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with
* the selected enum mt2063_delivery_sys type.
*
* (DNC1GC & DNC2GC are the values, which are used, when the specific
* DNC Output is selected, the other is always off)
*
* @state: ptr to mt2063_state structure
* @Mode: desired receiver delivery system
*
* Note: Register cache must be valid for it to work
*/
static u32 MT2063_SetReceiverMode(struct mt2063_state *state,
enum mt2063_delivery_sys Mode)
{
int status = 0; /* Status to be returned */
u8 val;
u32 longval;
dprintk(2, "\n");
if (Mode >= MT2063_NUM_RCVR_MODES)
status = -ERANGE;
/* RFAGCen */
if (status >= 0) {
val =
(state->
reg[MT2063_REG_PD1_TGT] & (u8) ~0x40) | (RFAGCEN[Mode]
? 0x40 :
0x00);
if (state->reg[MT2063_REG_PD1_TGT] != val)
status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
}
/* LNARin */
if (status >= 0) {
u8 val = (state->reg[MT2063_REG_CTRL_2C] & (u8) ~0x03) |
(LNARIN[Mode] & 0x03);
if (state->reg[MT2063_REG_CTRL_2C] != val)
status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val);
}
/* FIFFQEN and FIFFQ */
if (status >= 0) {
val =
(state->
reg[MT2063_REG_FIFF_CTRL2] & (u8) ~0xF0) |
(FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4);
if (state->reg[MT2063_REG_FIFF_CTRL2] != val) {
status |=
mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val);
/* trigger FIFF calibration, needed after changing FIFFQ */
val =
(state->reg[MT2063_REG_FIFF_CTRL] | (u8) 0x01);
status |=
mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
val =
(state->
reg[MT2063_REG_FIFF_CTRL] & (u8) ~0x01);
status |=
mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
}
}
/* DNC1GC & DNC2GC */
status |= mt2063_get_dnc_output_enable(state, &longval);
status |= mt2063_set_dnc_output_enable(state, longval);
/* acLNAmax */
if (status >= 0) {
u8 val = (state->reg[MT2063_REG_LNA_OV] & (u8) ~0x1F) |
(ACLNAMAX[Mode] & 0x1F);
if (state->reg[MT2063_REG_LNA_OV] != val)
status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val);
}
/* LNATGT */
if (status >= 0) {
u8 val = (state->reg[MT2063_REG_LNA_TGT] & (u8) ~0x3F) |
(LNATGT[Mode] & 0x3F);
if (state->reg[MT2063_REG_LNA_TGT] != val)
status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
}
/* ACRF */
if (status >= 0) {
u8 val = (state->reg[MT2063_REG_RF_OV] & (u8) ~0x1F) |
(ACRFMAX[Mode] & 0x1F);
if (state->reg[MT2063_REG_RF_OV] != val)
status |= mt2063_setreg(state, MT2063_REG_RF_OV, val);
}
/* PD1TGT */
if (status >= 0) {
u8 val = (state->reg[MT2063_REG_PD1_TGT] & (u8) ~0x3F) |
(PD1TGT[Mode] & 0x3F);
if (state->reg[MT2063_REG_PD1_TGT] != val)
status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
}
/* FIFATN */
if (status >= 0) {
u8 val = ACFIFMAX[Mode];
if (state->reg[MT2063_REG_PART_REV] != MT2063_B3 && val > 5)
val = 5;
val = (state->reg[MT2063_REG_FIF_OV] & (u8) ~0x1F) |
(val & 0x1F);
if (state->reg[MT2063_REG_FIF_OV] != val)
status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val);
}
/* PD2TGT */
if (status >= 0) {
u8 val = (state->reg[MT2063_REG_PD2_TGT] & (u8) ~0x3F) |
(PD2TGT[Mode] & 0x3F);
if (state->reg[MT2063_REG_PD2_TGT] != val)
status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val);
}
/* Ignore ATN Overload */
if (status >= 0) {
val = (state->reg[MT2063_REG_LNA_TGT] & (u8) ~0x80) |
(RFOVDIS[Mode] ? 0x80 : 0x00);
if (state->reg[MT2063_REG_LNA_TGT] != val)
status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
}
/* Ignore FIF Overload */
if (status >= 0) {
val = (state->reg[MT2063_REG_PD1_TGT] & (u8) ~0x80) |
(FIFOVDIS[Mode] ? 0x80 : 0x00);
if (state->reg[MT2063_REG_PD1_TGT] != val)
status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
}
if (status >= 0) {
state->rcvr_mode = Mode;
dprintk(1, "mt2063 mode changed to %s\n",
mt2063_mode_name[state->rcvr_mode]);
}
return status;
}
/*
* MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various
* sections of the MT2063
*
* @Bits: Mask bits to be cleared.
*
* See definition of MT2063_Mask_Bits type for description
* of each of the power bits.
*/
static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state,
enum MT2063_Mask_Bits Bits)
{
int status = 0;
dprintk(2, "\n");
Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD); /* Only valid bits for this tuner */
if ((Bits & 0xFF00) != 0) {
state->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8);
status |=
mt2063_write(state,
MT2063_REG_PWR_2,
&state->reg[MT2063_REG_PWR_2], 1);
}
if ((Bits & 0xFF) != 0) {
state->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF);
status |=
mt2063_write(state,
MT2063_REG_PWR_1,
&state->reg[MT2063_REG_PWR_1], 1);
}
return status;
}
/*
* MT2063_SoftwareShutdown() - Enables or disables software shutdown function.
* When Shutdown is 1, any section whose power
* mask is set will be shutdown.
*/
static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown)
{
int status;
dprintk(2, "\n");
if (Shutdown == 1)
state->reg[MT2063_REG_PWR_1] |= 0x04;
else
state->reg[MT2063_REG_PWR_1] &= ~0x04;
status = mt2063_write(state,
MT2063_REG_PWR_1,
&state->reg[MT2063_REG_PWR_1], 1);
if (Shutdown != 1) {
state->reg[MT2063_REG_BYP_CTRL] =
(state->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40;
status |=
mt2063_write(state,
MT2063_REG_BYP_CTRL,
&state->reg[MT2063_REG_BYP_CTRL],
1);
state->reg[MT2063_REG_BYP_CTRL] =
(state->reg[MT2063_REG_BYP_CTRL] & 0x9F);
status |=
mt2063_write(state,
MT2063_REG_BYP_CTRL,
&state->reg[MT2063_REG_BYP_CTRL],
1);
}
return status;
}
static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref)
{
return f_ref * (f_LO / f_ref)
+ f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step);
}
/**
* fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom.
* This function preserves maximum precision without
* risk of overflow. It accurately calculates
* f_ref * num / denom to within 1 HZ with fixed math.
*
* @num : Fractional portion of the multiplier
* @denom: denominator portion of the ratio
* @f_Ref: SRO frequency.
*
* This calculation handles f_ref as two separate 14-bit fields.
* Therefore, a maximum value of 2^28-1 may safely be used for f_ref.
* This is the genesis of the magic number "14" and the magic mask value of
* 0x03FFF.
*
* This routine successfully handles denom values up to and including 2^18.
* Returns: f_ref * num / denom
*/
static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom)
{
u32 t1 = (f_ref >> 14) * num;
u32 term1 = t1 / denom;
u32 loss = t1 % denom;
u32 term2 =
(((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom;
return (term1 << 14) + term2;
}
/*
* CalcLO1Mult()- Calculates Integer divider value and the numerator
* value for a FracN PLL.
*
* This function assumes that the f_LO and f_Ref are
* evenly divisible by f_LO_Step.
*
* @Div: OUTPUT: Whole number portion of the multiplier
* @FracN: OUTPUT: Fractional portion of the multiplier
* @f_LO: desired LO frequency.
* @f_LO_Step: Minimum step size for the LO (in Hz).
* @f_Ref: SRO frequency.
* @f_Avoid: Range of PLL frequencies to avoid near integer multiples
* of f_Ref (in Hz).
*
* Returns: Recalculated LO frequency.
*/
static u32 MT2063_CalcLO1Mult(u32 *Div,
u32 *FracN,
u32 f_LO,
u32 f_LO_Step, u32 f_Ref)
{
/* Calculate the whole number portion of the divider */
*Div = f_LO / f_Ref;
/* Calculate the numerator value (round to nearest f_LO_Step) */
*FracN =
(64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
(f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64);
}
/**
* CalcLO2Mult() - Calculates Integer divider value and the numerator
* value for a FracN PLL.
*
* This function assumes that the f_LO and f_Ref are
* evenly divisible by f_LO_Step.
*
* @Div: OUTPUT: Whole number portion of the multiplier
* @FracN: OUTPUT: Fractional portion of the multiplier
* @f_LO: desired LO frequency.
* @f_LO_Step: Minimum step size for the LO (in Hz).
* @f_Ref: SRO frequency.
* @f_Avoid: Range of PLL frequencies to avoid near
* integer multiples of f_Ref (in Hz).
*
* Returns: Recalculated LO frequency.
*/
static u32 MT2063_CalcLO2Mult(u32 *Div,
u32 *FracN,
u32 f_LO,
u32 f_LO_Step, u32 f_Ref)
{
/* Calculate the whole number portion of the divider */
*Div = f_LO / f_Ref;
/* Calculate the numerator value (round to nearest f_LO_Step) */
*FracN =
(8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
(f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN,
8191);
}
/*
* FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be
* used for a given input frequency.
*
* @state: ptr to tuner data structure
* @f_in: RF input center frequency (in Hz).
*
* Returns: ClearTune filter number (0-31)
*/
static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in)
{
u32 RFBand;
u32 idx; /* index loop */
/*
** Find RF Band setting
*/
RFBand = 31; /* def when f_in > all */
for (idx = 0; idx < 31; ++idx) {
if (state->CTFiltMax[idx] >= f_in) {
RFBand = idx;
break;
}
}
return RFBand;
}
/*
* MT2063_Tune() - Change the tuner's tuned frequency to RFin.
*/
static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in)
{ /* RF input center frequency */
int status = 0;
u32 LO1; /* 1st LO register value */
u32 Num1; /* Numerator for LO1 reg. value */
u32 f_IF1; /* 1st IF requested */
u32 LO2; /* 2nd LO register value */
u32 Num2; /* Numerator for LO2 reg. value */
u32 ofLO1, ofLO2; /* last time's LO frequencies */
u8 fiffc = 0x80; /* FIFF center freq from tuner */
u32 fiffof; /* Offset from FIFF center freq */
const u8 LO1LK = 0x80; /* Mask for LO1 Lock bit */
u8 LO2LK = 0x08; /* Mask for LO2 Lock bit */
u8 val;
u32 RFBand;
dprintk(2, "\n");
/* Check the input and output frequency ranges */
if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ))
return -EINVAL;
if ((state->AS_Data.f_out < MT2063_MIN_FOUT_FREQ)
|| (state->AS_Data.f_out > MT2063_MAX_FOUT_FREQ))
return -EINVAL;
/*
* Save original LO1 and LO2 register values
*/
ofLO1 = state->AS_Data.f_LO1;
ofLO2 = state->AS_Data.f_LO2;
/*
* Find and set RF Band setting
*/
if (state->ctfilt_sw == 1) {
val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08);
if (state->reg[MT2063_REG_CTUNE_CTRL] != val) {
status |=
mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val);
}
val = state->reg[MT2063_REG_CTUNE_OV];
RFBand = FindClearTuneFilter(state, f_in);
state->reg[MT2063_REG_CTUNE_OV] =
(u8) ((state->reg[MT2063_REG_CTUNE_OV] & ~0x1F)
| RFBand);
if (state->reg[MT2063_REG_CTUNE_OV] != val) {
status |=
mt2063_setreg(state, MT2063_REG_CTUNE_OV, val);
}
}
/*
* Read the FIFF Center Frequency from the tuner
*/
if (status >= 0) {
status |=
mt2063_read(state,
MT2063_REG_FIFFC,
&state->reg[MT2063_REG_FIFFC], 1);
fiffc = state->reg[MT2063_REG_FIFFC];
}
/*
* Assign in the requested values
*/
state->AS_Data.f_in = f_in;
/* Request a 1st IF such that LO1 is on a step size */
state->AS_Data.f_if1_Request =
MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in,
state->AS_Data.f_LO1_Step,
state->AS_Data.f_ref) - f_in;
/*
* Calculate frequency settings. f_IF1_FREQ + f_in is the
* desired LO1 frequency
*/
MT2063_ResetExclZones(&state->AS_Data);
f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data);
state->AS_Data.f_LO1 =
MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step,
state->AS_Data.f_ref);
state->AS_Data.f_LO2 =
MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
/*
* Check for any LO spurs in the output bandwidth and adjust
* the LO settings to avoid them if needed
*/
status |= MT2063_AvoidSpurs(&state->AS_Data);
/*
* MT_AvoidSpurs spurs may have changed the LO1 & LO2 values.
* Recalculate the LO frequencies and the values to be placed
* in the tuning registers.
*/
state->AS_Data.f_LO1 =
MT2063_CalcLO1Mult(&LO1, &Num1, state->AS_Data.f_LO1,
state->AS_Data.f_LO1_Step, state->AS_Data.f_ref);
state->AS_Data.f_LO2 =
MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
state->AS_Data.f_LO2 =
MT2063_CalcLO2Mult(&LO2, &Num2, state->AS_Data.f_LO2,
state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
/*
* Check the upconverter and downconverter frequency ranges
*/
if ((state->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ)
|| (state->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ))
status |= MT2063_UPC_RANGE;
if ((state->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ)
|| (state->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ))
status |= MT2063_DNC_RANGE;
/* LO2 Lock bit was in a different place for B0 version */
if (state->tuner_id == MT2063_B0)
LO2LK = 0x40;
/*
* If we have the same LO frequencies and we're already locked,
* then skip re-programming the LO registers.
*/
if ((ofLO1 != state->AS_Data.f_LO1)
|| (ofLO2 != state->AS_Data.f_LO2)
|| ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) !=
(LO1LK | LO2LK))) {
/*
* Calculate the FIFFOF register value
*
* IF1_Actual
* FIFFOF = ------------ - 8 * FIFFC - 4992
* f_ref/64
*/
fiffof =
(state->AS_Data.f_LO1 -
f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc -
4992;
if (fiffof > 0xFF)
fiffof = 0xFF;
/*
* Place all of the calculated values into the local tuner
* register fields.
*/
if (status >= 0) {
state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF); /* DIV1q */
state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F); /* NUM1q */
state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1) /* DIV2q */
|(Num2 >> 12)); /* NUM2q (hi) */
state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4); /* NUM2q (mid) */
state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F)); /* NUM2q (lo) */
/*
* Now write out the computed register values
* IMPORTANT: There is a required order for writing
* (0x05 must follow all the others).
*/
status |= mt2063_write(state, MT2063_REG_LO1CQ_1, &state->reg[MT2063_REG_LO1CQ_1], 5); /* 0x01 - 0x05 */
if (state->tuner_id == MT2063_B0) {
/* Re-write the one-shot bits to trigger the tune operation */
status |= mt2063_write(state, MT2063_REG_LO2CQ_3, &state->reg[MT2063_REG_LO2CQ_3], 1); /* 0x05 */
}
/* Write out the FIFF offset only if it's changing */
if (state->reg[MT2063_REG_FIFF_OFFSET] !=
(u8) fiffof) {
state->reg[MT2063_REG_FIFF_OFFSET] =
(u8) fiffof;
status |=
mt2063_write(state,
MT2063_REG_FIFF_OFFSET,
&state->
reg[MT2063_REG_FIFF_OFFSET],
1);
}
}
/*
* Check for LO's locking
*/
if (status < 0)
return status;
status = mt2063_lockStatus(state);
if (status < 0)
return status;
if (!status)
return -EINVAL; /* Couldn't lock */
/*
* If we locked OK, assign calculated data to mt2063_state structure
*/
state->f_IF1_actual = state->AS_Data.f_LO1 - f_in;
}
return status;
}
static const u8 MT2063B0_defaults[] = {
/* Reg, Value */
0x19, 0x05,
0x1B, 0x1D,
0x1C, 0x1F,
0x1D, 0x0F,
0x1E, 0x3F,
0x1F, 0x0F,
0x20, 0x3F,
0x22, 0x21,
0x23, 0x3F,
0x24, 0x20,
0x25, 0x3F,
0x27, 0xEE,
0x2C, 0x27, /* bit at 0x20 is cleared below */
0x30, 0x03,
0x2C, 0x07, /* bit at 0x20 is cleared here */
0x2D, 0x87,
0x2E, 0xAA,
0x28, 0xE1, /* Set the FIFCrst bit here */
0x28, 0xE0, /* Clear the FIFCrst bit here */
0x00
};
/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
static const u8 MT2063B1_defaults[] = {
/* Reg, Value */
0x05, 0xF0,
0x11, 0x10, /* New Enable AFCsd */
0x19, 0x05,
0x1A, 0x6C,
0x1B, 0x24,
0x1C, 0x28,
0x1D, 0x8F,
0x1E, 0x14,
0x1F, 0x8F,
0x20, 0x57,
0x22, 0x21, /* New - ver 1.03 */
0x23, 0x3C, /* New - ver 1.10 */
0x24, 0x20, /* New - ver 1.03 */
0x2C, 0x24, /* bit at 0x20 is cleared below */
0x2D, 0x87, /* FIFFQ=0 */
0x2F, 0xF3,
0x30, 0x0C, /* New - ver 1.11 */
0x31, 0x1B, /* New - ver 1.11 */
0x2C, 0x04, /* bit at 0x20 is cleared here */
0x28, 0xE1, /* Set the FIFCrst bit here */
0x28, 0xE0, /* Clear the FIFCrst bit here */
0x00
};
/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
static const u8 MT2063B3_defaults[] = {
/* Reg, Value */
0x05, 0xF0,
0x19, 0x3D,
0x2C, 0x24, /* bit at 0x20 is cleared below */
0x2C, 0x04, /* bit at 0x20 is cleared here */
0x28, 0xE1, /* Set the FIFCrst bit here */
0x28, 0xE0, /* Clear the FIFCrst bit here */
0x00
};
static int mt2063_init(struct dvb_frontend *fe)
{
int status;
struct mt2063_state *state = fe->tuner_priv;
u8 all_resets = 0xF0; /* reset/load bits */
const u8 *def = NULL;
char *step;
u32 FCRUN;
s32 maxReads;
u32 fcu_osc;
u32 i;
dprintk(2, "\n");
state->rcvr_mode = MT2063_CABLE_QAM;
/* Read the Part/Rev code from the tuner */
status = mt2063_read(state, MT2063_REG_PART_REV,
&state->reg[MT2063_REG_PART_REV], 1);
if (status < 0) {
printk(KERN_ERR "Can't read mt2063 part ID\n");
return status;
}
/* Check the part/rev code */
switch (state->reg[MT2063_REG_PART_REV]) {
case MT2063_B0:
step = "B0";
break;
case MT2063_B1:
step = "B1";
break;
case MT2063_B2:
step = "B2";
break;
case MT2063_B3:
step = "B3";
break;
default:
printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n",
state->reg[MT2063_REG_PART_REV]);
return -ENODEV; /* Wrong tuner Part/Rev code */
}
/* Check the 2nd byte of the Part/Rev code from the tuner */
status = mt2063_read(state, MT2063_REG_RSVD_3B,
&state->reg[MT2063_REG_RSVD_3B], 1);
/* b7 != 0 ==> NOT MT2063 */
if (status < 0 || ((state->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) {
printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n",
state->reg[MT2063_REG_PART_REV],
state->reg[MT2063_REG_RSVD_3B]);
return -ENODEV; /* Wrong tuner Part/Rev code */
}
printk(KERN_INFO "mt2063: detected a mt2063 %s\n", step);
/* Reset the tuner */
status = mt2063_write(state, MT2063_REG_LO2CQ_3, &all_resets, 1);
if (status < 0)
return status;
/* change all of the default values that vary from the HW reset values */
/* def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */
switch (state->reg[MT2063_REG_PART_REV]) {
case MT2063_B3:
def = MT2063B3_defaults;
break;
case MT2063_B1:
def = MT2063B1_defaults;
break;
case MT2063_B0:
def = MT2063B0_defaults;
break;
default:
return -ENODEV;
break;
}
while (status >= 0 && *def) {
u8 reg = *def++;
u8 val = *def++;
status = mt2063_write(state, reg, &val, 1);
}
if (status < 0)
return status;
/* Wait for FIFF location to complete. */
FCRUN = 1;
maxReads = 10;
while (status >= 0 && (FCRUN != 0) && (maxReads-- > 0)) {
msleep(2);
status = mt2063_read(state,
MT2063_REG_XO_STATUS,
&state->
reg[MT2063_REG_XO_STATUS], 1);
FCRUN = (state->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6;
}
if (FCRUN != 0 || status < 0)
return -ENODEV;
status = mt2063_read(state,
MT2063_REG_FIFFC,
&state->reg[MT2063_REG_FIFFC], 1);
if (status < 0)
return status;
/* Read back all the registers from the tuner */
status = mt2063_read(state,
MT2063_REG_PART_REV,
state->reg, MT2063_REG_END_REGS);
if (status < 0)
return status;
/* Initialize the tuner state. */
state->tuner_id = state->reg[MT2063_REG_PART_REV];
state->AS_Data.f_ref = MT2063_REF_FREQ;
state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) *
((u32) state->reg[MT2063_REG_FIFFC] + 640);
state->AS_Data.f_if1_bw = MT2063_IF1_BW;
state->AS_Data.f_out = 43750000UL;
state->AS_Data.f_out_bw = 6750000UL;
state->AS_Data.f_zif_bw = MT2063_ZIF_BW;
state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64;
state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE;
state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1;
state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2;
state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP;
state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center;
state->AS_Data.f_LO1 = 2181000000UL;
state->AS_Data.f_LO2 = 1486249786UL;
state->f_IF1_actual = state->AS_Data.f_if1_Center;
state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual;
state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID;
state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID;
state->num_regs = MT2063_REG_END_REGS;
state->AS_Data.avoidDECT = MT2063_AVOID_BOTH;
state->ctfilt_sw = 0;
state->CTFiltMax[0] = 69230000;
state->CTFiltMax[1] = 105770000;
state->CTFiltMax[2] = 140350000;
state->CTFiltMax[3] = 177110000;
state->CTFiltMax[4] = 212860000;
state->CTFiltMax[5] = 241130000;
state->CTFiltMax[6] = 274370000;
state->CTFiltMax[7] = 309820000;
state->CTFiltMax[8] = 342450000;
state->CTFiltMax[9] = 378870000;
state->CTFiltMax[10] = 416210000;
state->CTFiltMax[11] = 456500000;
state->CTFiltMax[12] = 495790000;
state->CTFiltMax[13] = 534530000;
state->CTFiltMax[14] = 572610000;
state->CTFiltMax[15] = 598970000;
state->CTFiltMax[16] = 635910000;
state->CTFiltMax[17] = 672130000;
state->CTFiltMax[18] = 714840000;
state->CTFiltMax[19] = 739660000;
state->CTFiltMax[20] = 770410000;
state->CTFiltMax[21] = 814660000;
state->CTFiltMax[22] = 846950000;
state->CTFiltMax[23] = 867820000;
state->CTFiltMax[24] = 915980000;
state->CTFiltMax[25] = 947450000;
state->CTFiltMax[26] = 983110000;
state->CTFiltMax[27] = 1021630000;
state->CTFiltMax[28] = 1061870000;
state->CTFiltMax[29] = 1098330000;
state->CTFiltMax[30] = 1138990000;
/*
** Fetch the FCU osc value and use it and the fRef value to
** scale all of the Band Max values
*/
state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A;
status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
&state->reg[MT2063_REG_CTUNE_CTRL], 1);
if (status < 0)
return status;
/* Read the ClearTune filter calibration value */
status = mt2063_read(state, MT2063_REG_FIFFC,
&state->reg[MT2063_REG_FIFFC], 1);
if (status < 0)
return status;
fcu_osc = state->reg[MT2063_REG_FIFFC];
state->reg[MT2063_REG_CTUNE_CTRL] = 0x00;
status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
&state->reg[MT2063_REG_CTUNE_CTRL], 1);
if (status < 0)
return status;
/* Adjust each of the values in the ClearTune filter cross-over table */
for (i = 0; i < 31; i++)
state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640);
status = MT2063_SoftwareShutdown(state, 1);
if (status < 0)
return status;
status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
if (status < 0)
return status;
state->init = true;
return 0;
}
static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status)
{
struct mt2063_state *state = fe->tuner_priv;
int status;
dprintk(2, "\n");
if (!state->init)
return -ENODEV;
*tuner_status = 0;
status = mt2063_lockStatus(state);
if (status < 0)
return status;
if (status)
*tuner_status = TUNER_STATUS_LOCKED;
dprintk(1, "Tuner status: %d", *tuner_status);
return 0;
}
static int mt2063_release(struct dvb_frontend *fe)
{
struct mt2063_state *state = fe->tuner_priv;
dprintk(2, "\n");
fe->tuner_priv = NULL;
kfree(state);
return 0;
}
static int mt2063_set_analog_params(struct dvb_frontend *fe,
struct analog_parameters *params)
{
struct mt2063_state *state = fe->tuner_priv;
s32 pict_car;
s32 pict2chanb_vsb;
s32 ch_bw;
s32 if_mid;
s32 rcvr_mode;
int status;
dprintk(2, "\n");
if (!state->init) {
status = mt2063_init(fe);
if (status < 0)
return status;
}
switch (params->mode) {
case V4L2_TUNER_RADIO:
pict_car = 38900000;
ch_bw = 8000000;
pict2chanb_vsb = -(ch_bw / 2);
rcvr_mode = MT2063_OFFAIR_ANALOG;
break;
case V4L2_TUNER_ANALOG_TV:
rcvr_mode = MT2063_CABLE_ANALOG;
if (params->std & ~V4L2_STD_MN) {
pict_car = 38900000;
ch_bw = 6000000;
pict2chanb_vsb = -1250000;
} else if (params->std & V4L2_STD_PAL_G) {
pict_car = 38900000;
ch_bw = 7000000;
pict2chanb_vsb = -1250000;
} else { /* PAL/SECAM standards */
pict_car = 38900000;
ch_bw = 8000000;
pict2chanb_vsb = -1250000;
}
break;
default:
return -EINVAL;
}
if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */
state->AS_Data.f_out = if_mid;
state->AS_Data.f_out_bw = ch_bw + 750000;
status = MT2063_SetReceiverMode(state, rcvr_mode);
if (status < 0)
return status;
dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
params->frequency, ch_bw, pict2chanb_vsb);
status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2))));
if (status < 0)
return status;
state->frequency = params->frequency;
return 0;
}
/*
* As defined on EN 300 429, the DVB-C roll-off factor is 0.15.
* So, the amount of the needed bandwidth is given by:
* Bw = Symbol_rate * (1 + 0.15)
* As such, the maximum symbol rate supported by 6 MHz is given by:
* max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds
*/
#define MAX_SYMBOL_RATE_6MHz 5217391
static int mt2063_set_params(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct mt2063_state *state = fe->tuner_priv;
int status;
s32 pict_car;
s32 pict2chanb_vsb;
s32 ch_bw;
s32 if_mid;
s32 rcvr_mode;
if (!state->init) {
status = mt2063_init(fe);
if (status < 0)
return status;
}
dprintk(2, "\n");
if (c->bandwidth_hz == 0)
return -EINVAL;
if (c->bandwidth_hz <= 6000000)
ch_bw = 6000000;
else if (c->bandwidth_hz <= 7000000)
ch_bw = 7000000;
else
ch_bw = 8000000;
switch (c->delivery_system) {
case SYS_DVBT:
rcvr_mode = MT2063_OFFAIR_COFDM;
pict_car = 36125000;
pict2chanb_vsb = -(ch_bw / 2);
break;
case SYS_DVBC_ANNEX_A:
case SYS_DVBC_ANNEX_C:
rcvr_mode = MT2063_CABLE_QAM;
pict_car = 36125000;
pict2chanb_vsb = -(ch_bw / 2);
break;
default:
return -EINVAL;
}
if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */
state->AS_Data.f_out = if_mid;
state->AS_Data.f_out_bw = ch_bw + 750000;
status = MT2063_SetReceiverMode(state, rcvr_mode);
if (status < 0)
return status;
dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
c->frequency, ch_bw, pict2chanb_vsb);
status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2))));
if (status < 0)
return status;
state->frequency = c->frequency;
return 0;
}
static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
{
struct mt2063_state *state = fe->tuner_priv;
dprintk(2, "\n");
if (!state->init)
return -ENODEV;
*freq = state->AS_Data.f_out;
dprintk(1, "IF frequency: %d\n", *freq);
return 0;
}
static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
{
struct mt2063_state *state = fe->tuner_priv;
dprintk(2, "\n");
if (!state->init)
return -ENODEV;
*bw = state->AS_Data.f_out_bw - 750000;
dprintk(1, "bandwidth: %d\n", *bw);
return 0;
}
static struct dvb_tuner_ops mt2063_ops = {
.info = {
.name = "MT2063 Silicon Tuner",
.frequency_min = 45000000,
.frequency_max = 865000000,
.frequency_step = 0,
},
.init = mt2063_init,
.sleep = MT2063_Sleep,
.get_status = mt2063_get_status,
.set_analog_params = mt2063_set_analog_params,
.set_params = mt2063_set_params,
.get_if_frequency = mt2063_get_if_frequency,
.get_bandwidth = mt2063_get_bandwidth,
.release = mt2063_release,
};
struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
struct mt2063_config *config,
struct i2c_adapter *i2c)
{
struct mt2063_state *state = NULL;
dprintk(2, "\n");
state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL);
if (!state)
return NULL;
state->config = config;
state->i2c = i2c;
state->frontend = fe;
state->reference = config->refclock / 1000; /* kHz */
fe->tuner_priv = state;
fe->ops.tuner_ops = mt2063_ops;
printk(KERN_INFO "%s: Attaching MT2063\n", __func__);
return fe;
}
EXPORT_SYMBOL_GPL(mt2063_attach);
#if 0
/*
* Ancillary routines visible outside mt2063
* FIXME: Remove them in favor of using standard tuner callbacks
*/
static int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe)
{
struct mt2063_state *state = fe->tuner_priv;
int err = 0;
dprintk(2, "\n");
err = MT2063_SoftwareShutdown(state, 1);
if (err < 0)
printk(KERN_ERR "%s: Couldn't shutdown\n", __func__);
return err;
}
static int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe)
{
struct mt2063_state *state = fe->tuner_priv;
int err = 0;
dprintk(2, "\n");
err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
if (err < 0)
printk(KERN_ERR "%s: Invalid parameter\n", __func__);
return err;
}
#endif
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_DESCRIPTION("MT2063 Silicon tuner");
MODULE_LICENSE("GPL");