ssin.S 18.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
|
|	ssin.sa 3.3 7/29/91
|
|	The entry point sSIN computes the sine of an input argument
|	sCOS computes the cosine, and sSINCOS computes both. The
|	corresponding entry points with a "d" computes the same
|	corresponding function values for denormalized inputs.
|
|	Input: Double-extended number X in location pointed to
|		by address register a0.
|
|	Output: The function value sin(X) or cos(X) returned in Fp0 if SIN or
|		COS is requested. Otherwise, for SINCOS, sin(X) is returned
|		in Fp0, and cos(X) is returned in Fp1.
|
|	Modifies: Fp0 for SIN or COS; both Fp0 and Fp1 for SINCOS.
|
|	Accuracy and Monotonicity: The returned result is within 1 ulp in
|		64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
|		result is subsequently rounded to double precision. The
|		result is provably monotonic in double precision.
|
|	Speed: The programs sSIN and sCOS take approximately 150 cycles for
|		input argument X such that |X| < 15Pi, which is the usual
|		situation. The speed for sSINCOS is approximately 190 cycles.
|
|	Algorithm:
|
|	SIN and COS:
|	1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1.
|
|	2. If |X| >= 15Pi or |X| < 2**(-40), go to 7.
|
|	3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
|		k = N mod 4, so in particular, k = 0,1,2,or 3. Overwrite
|		k by k := k + AdjN.
|
|	4. If k is even, go to 6.
|
|	5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. Return sgn*cos(r)
|		where cos(r) is approximated by an even polynomial in r,
|		1 + r*r*(B1+s*(B2+ ... + s*B8)),	s = r*r.
|		Exit.
|
|	6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r)
|		where sin(r) is approximated by an odd polynomial in r
|		r + r*s*(A1+s*(A2+ ... + s*A7)),	s = r*r.
|		Exit.
|
|	7. If |X| > 1, go to 9.
|
|	8. (|X|<2**(-40)) If SIN is invoked, return X; otherwise return 1.
|
|	9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 3.
|
|	SINCOS:
|	1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
|
|	2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
|		k = N mod 4, so in particular, k = 0,1,2,or 3.
|
|	3. If k is even, go to 5.
|
|	4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), i.e.
|		j1 exclusive or with the l.s.b. of k.
|		sgn1 := (-1)**j1, sgn2 := (-1)**j2.
|		SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where
|		sin(r) and cos(r) are computed as odd and even polynomials
|		in r, respectively. Exit
|
|	5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1.
|		SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where
|		sin(r) and cos(r) are computed as odd and even polynomials
|		in r, respectively. Exit
|
|	6. If |X| > 1, go to 8.
|
|	7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit.
|
|	8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
|

|		Copyright (C) Motorola, Inc. 1990
|			All Rights Reserved
|
|       For details on the license for this file, please see the
|       file, README, in this same directory.

|SSIN	idnt	2,1 | Motorola 040 Floating Point Software Package

	|section	8

#include "fpsp.h"

BOUNDS1:	.long 0x3FD78000,0x4004BC7E
TWOBYPI:	.long 0x3FE45F30,0x6DC9C883

SINA7:	.long 0xBD6AAA77,0xCCC994F5
SINA6:	.long 0x3DE61209,0x7AAE8DA1

SINA5:	.long 0xBE5AE645,0x2A118AE4
SINA4:	.long 0x3EC71DE3,0xA5341531

SINA3:	.long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000

SINA2:	.long 0x3FF80000,0x88888888,0x888859AF,0x00000000

SINA1:	.long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000

COSB8:	.long 0x3D2AC4D0,0xD6011EE3
COSB7:	.long 0xBDA9396F,0x9F45AC19

COSB6:	.long 0x3E21EED9,0x0612C972
COSB5:	.long 0xBE927E4F,0xB79D9FCF

COSB4:	.long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000

COSB3:	.long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000

COSB2:	.long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E
COSB1:	.long 0xBF000000

INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A

TWOPI1:	.long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
TWOPI2:	.long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000

	|xref	PITBL

	.set	INARG,FP_SCR4

	.set	X,FP_SCR5
	.set	XDCARE,X+2
	.set	XFRAC,X+4

	.set	RPRIME,FP_SCR1
	.set	SPRIME,FP_SCR2

	.set	POSNEG1,L_SCR1
	.set	TWOTO63,L_SCR1

	.set	ENDFLAG,L_SCR2
	.set	N,L_SCR2

	.set	ADJN,L_SCR3

	| xref	t_frcinx
	|xref	t_extdnrm
	|xref	sto_cos

	.global	ssind
ssind:
|--SIN(X) = X FOR DENORMALIZED X
	bra		t_extdnrm

	.global	scosd
scosd:
|--COS(X) = 1 FOR DENORMALIZED X

	fmoves		#0x3F800000,%fp0
|
|	9D25B Fix: Sometimes the previous fmove.s sets fpsr bits
|
	fmovel		#0,%fpsr
|
	bra		t_frcinx

	.global	ssin
ssin:
|--SET ADJN TO 0
	movel		#0,ADJN(%a6)
	bras		SINBGN

	.global	scos
scos:
|--SET ADJN TO 1
	movel		#1,ADJN(%a6)

SINBGN:
|--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE

	fmovex		(%a0),%fp0	| ...LOAD INPUT

	movel		(%a0),%d0
	movew		4(%a0),%d0
	fmovex		%fp0,X(%a6)
	andil		#0x7FFFFFFF,%d0		| ...COMPACTIFY X

	cmpil		#0x3FD78000,%d0		| ...|X| >= 2**(-40)?
	bges		SOK1
	bra		SINSM

SOK1:
	cmpil		#0x4004BC7E,%d0		| ...|X| < 15 PI?
	blts		SINMAIN
	bra		REDUCEX

SINMAIN:
|--THIS IS THE USUAL CASE, |X| <= 15 PI.
|--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
	fmovex		%fp0,%fp1
	fmuld		TWOBYPI,%fp1	| ...X*2/PI

|--HIDE THE NEXT THREE INSTRUCTIONS
	lea		PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32


|--FP1 IS NOW READY
	fmovel		%fp1,N(%a6)		| ...CONVERT TO INTEGER

	movel		N(%a6),%d0
	asll		#4,%d0
	addal		%d0,%a1	| ...A1 IS THE ADDRESS OF N*PIBY2
|				...WHICH IS IN TWO PIECES Y1 & Y2

	fsubx		(%a1)+,%fp0	| ...X-Y1
|--HIDE THE NEXT ONE
	fsubs		(%a1),%fp0	| ...FP0 IS R = (X-Y1)-Y2

SINCONT:
|--continuation from REDUCEX

|--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED
	movel		N(%a6),%d0
	addl		ADJN(%a6),%d0	| ...SEE IF D0 IS ODD OR EVEN
	rorl		#1,%d0	| ...D0 WAS ODD IFF D0 IS NEGATIVE
	cmpil		#0,%d0
	blt		COSPOLY

SINPOLY:
|--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
|--THEN WE RETURN	SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
|--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE
|--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS
|--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])
|--WHERE T=S*S.
|--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION
|--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT.
	fmovex		%fp0,X(%a6)	| ...X IS R
	fmulx		%fp0,%fp0	| ...FP0 IS S
|---HIDE THE NEXT TWO WHILE WAITING FOR FP0
	fmoved		SINA7,%fp3
	fmoved		SINA6,%fp2
|--FP0 IS NOW READY
	fmovex		%fp0,%fp1
	fmulx		%fp1,%fp1	| ...FP1 IS T
|--HIDE THE NEXT TWO WHILE WAITING FOR FP1

	rorl		#1,%d0
	andil		#0x80000000,%d0
|				...LEAST SIG. BIT OF D0 IN SIGN POSITION
	eorl		%d0,X(%a6)	| ...X IS NOW R'= SGN*R

	fmulx		%fp1,%fp3	| ...TA7
	fmulx		%fp1,%fp2	| ...TA6

	faddd		SINA5,%fp3 | ...A5+TA7
	faddd		SINA4,%fp2 | ...A4+TA6

	fmulx		%fp1,%fp3	| ...T(A5+TA7)
	fmulx		%fp1,%fp2	| ...T(A4+TA6)

	faddd		SINA3,%fp3 | ...A3+T(A5+TA7)
	faddx		SINA2,%fp2 | ...A2+T(A4+TA6)

	fmulx		%fp3,%fp1	| ...T(A3+T(A5+TA7))

	fmulx		%fp0,%fp2	| ...S(A2+T(A4+TA6))
	faddx		SINA1,%fp1 | ...A1+T(A3+T(A5+TA7))
	fmulx		X(%a6),%fp0	| ...R'*S

	faddx		%fp2,%fp1	| ...[A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]
|--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
|--FP2 RELEASED, RESTORE NOW AND TAKE FULL ADVANTAGE OF HIDING


	fmulx		%fp1,%fp0		| ...SIN(R')-R'
|--FP1 RELEASED.

	fmovel		%d1,%FPCR		|restore users exceptions
	faddx		X(%a6),%fp0		|last inst - possible exception set
	bra		t_frcinx


COSPOLY:
|--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
|--THEN WE RETURN	SGN*COS(R). SGN*COS(R) IS COMPUTED BY
|--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE
|--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS
|--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))])
|--WHERE T=S*S.
|--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION
|--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2
|--AND IS THEREFORE STORED AS SINGLE PRECISION.

	fmulx		%fp0,%fp0	| ...FP0 IS S
|---HIDE THE NEXT TWO WHILE WAITING FOR FP0
	fmoved		COSB8,%fp2
	fmoved		COSB7,%fp3
|--FP0 IS NOW READY
	fmovex		%fp0,%fp1
	fmulx		%fp1,%fp1	| ...FP1 IS T
|--HIDE THE NEXT TWO WHILE WAITING FOR FP1
	fmovex		%fp0,X(%a6)	| ...X IS S
	rorl		#1,%d0
	andil		#0x80000000,%d0
|			...LEAST SIG. BIT OF D0 IN SIGN POSITION

	fmulx		%fp1,%fp2	| ...TB8
|--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
	eorl		%d0,X(%a6)	| ...X IS NOW S'= SGN*S
	andil		#0x80000000,%d0

	fmulx		%fp1,%fp3	| ...TB7
|--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
	oril		#0x3F800000,%d0	| ...D0 IS SGN IN SINGLE
	movel		%d0,POSNEG1(%a6)

	faddd		COSB6,%fp2 | ...B6+TB8
	faddd		COSB5,%fp3 | ...B5+TB7

	fmulx		%fp1,%fp2	| ...T(B6+TB8)
	fmulx		%fp1,%fp3	| ...T(B5+TB7)

	faddd		COSB4,%fp2 | ...B4+T(B6+TB8)
	faddx		COSB3,%fp3 | ...B3+T(B5+TB7)

	fmulx		%fp1,%fp2	| ...T(B4+T(B6+TB8))
	fmulx		%fp3,%fp1	| ...T(B3+T(B5+TB7))

	faddx		COSB2,%fp2 | ...B2+T(B4+T(B6+TB8))
	fadds		COSB1,%fp1 | ...B1+T(B3+T(B5+TB7))

	fmulx		%fp2,%fp0	| ...S(B2+T(B4+T(B6+TB8)))
|--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
|--FP2 RELEASED.


	faddx		%fp1,%fp0
|--FP1 RELEASED

	fmulx		X(%a6),%fp0

	fmovel		%d1,%FPCR		|restore users exceptions
	fadds		POSNEG1(%a6),%fp0	|last inst - possible exception set
	bra		t_frcinx


SINBORS:
|--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
|--IF |X| < 2**(-40), RETURN X OR 1.
	cmpil		#0x3FFF8000,%d0
	bgts		REDUCEX


SINSM:
	movel		ADJN(%a6),%d0
	cmpil		#0,%d0
	bgts		COSTINY

SINTINY:
	movew		#0x0000,XDCARE(%a6)	| ...JUST IN CASE
	fmovel		%d1,%FPCR		|restore users exceptions
	fmovex		X(%a6),%fp0		|last inst - possible exception set
	bra		t_frcinx


COSTINY:
	fmoves		#0x3F800000,%fp0

	fmovel		%d1,%FPCR		|restore users exceptions
	fsubs		#0x00800000,%fp0	|last inst - possible exception set
	bra		t_frcinx


REDUCEX:
|--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
|--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
|--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.

	fmovemx	%fp2-%fp5,-(%a7)	| ...save FP2 through FP5
	movel		%d2,-(%a7)
        fmoves         #0x00000000,%fp1
|--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
|--there is a danger of unwanted overflow in first LOOP iteration.  In this
|--case, reduce argument by one remainder step to make subsequent reduction
|--safe.
	cmpil	#0x7ffeffff,%d0		|is argument dangerously large?
	bnes	LOOP
	movel	#0x7ffe0000,FP_SCR2(%a6)	|yes
|					;create 2**16383*PI/2
	movel	#0xc90fdaa2,FP_SCR2+4(%a6)
	clrl	FP_SCR2+8(%a6)
	ftstx	%fp0			|test sign of argument
	movel	#0x7fdc0000,FP_SCR3(%a6)	|create low half of 2**16383*
|					;PI/2 at FP_SCR3
	movel	#0x85a308d3,FP_SCR3+4(%a6)
	clrl   FP_SCR3+8(%a6)
	fblt	red_neg
	orw	#0x8000,FP_SCR2(%a6)	|positive arg
	orw	#0x8000,FP_SCR3(%a6)
red_neg:
	faddx  FP_SCR2(%a6),%fp0		|high part of reduction is exact
	fmovex  %fp0,%fp1		|save high result in fp1
	faddx  FP_SCR3(%a6),%fp0		|low part of reduction
	fsubx  %fp0,%fp1			|determine low component of result
	faddx  FP_SCR3(%a6),%fp1		|fp0/fp1 are reduced argument.

|--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
|--integer quotient will be stored in N
|--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1)

LOOP:
	fmovex		%fp0,INARG(%a6)	| ...+-2**K * F, 1 <= F < 2
	movew		INARG(%a6),%d0
        movel          %d0,%a1		| ...save a copy of D0
	andil		#0x00007FFF,%d0
	subil		#0x00003FFF,%d0	| ...D0 IS K
	cmpil		#28,%d0
	bles		LASTLOOP
CONTLOOP:
	subil		#27,%d0	 | ...D0 IS L := K-27
	movel		#0,ENDFLAG(%a6)
	bras		WORK
LASTLOOP:
	clrl		%d0		| ...D0 IS L := 0
	movel		#1,ENDFLAG(%a6)

WORK:
|--FIND THE REMAINDER OF (R,r) W.R.T.	2**L * (PI/2). L IS SO CHOSEN
|--THAT	INT( X * (2/PI) / 2**(L) ) < 2**29.

|--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
|--2**L * (PIby2_1), 2**L * (PIby2_2)

	movel		#0x00003FFE,%d2	| ...BIASED EXPO OF 2/PI
	subl		%d0,%d2		| ...BIASED EXPO OF 2**(-L)*(2/PI)

	movel		#0xA2F9836E,FP_SCR1+4(%a6)
	movel		#0x4E44152A,FP_SCR1+8(%a6)
	movew		%d2,FP_SCR1(%a6)	| ...FP_SCR1 is 2**(-L)*(2/PI)

	fmovex		%fp0,%fp2
	fmulx		FP_SCR1(%a6),%fp2
|--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
|--FLOATING POINT FORMAT, THE TWO FMOVE'S	FMOVE.L FP <--> N
|--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
|--(SIGN(INARG)*2**63	+	FP2) - SIGN(INARG)*2**63 WILL GIVE
|--US THE DESIRED VALUE IN FLOATING POINT.

|--HIDE SIX CYCLES OF INSTRUCTION
        movel		%a1,%d2
        swap		%d2
	andil		#0x80000000,%d2
	oril		#0x5F000000,%d2	| ...D2 IS SIGN(INARG)*2**63 IN SGL
	movel		%d2,TWOTO63(%a6)

	movel		%d0,%d2
	addil		#0x00003FFF,%d2	| ...BIASED EXPO OF 2**L * (PI/2)

|--FP2 IS READY
	fadds		TWOTO63(%a6),%fp2	| ...THE FRACTIONAL PART OF FP1 IS ROUNDED

|--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1  and  2**(L)*Piby2_2
        movew		%d2,FP_SCR2(%a6)
	clrw           FP_SCR2+2(%a6)
	movel		#0xC90FDAA2,FP_SCR2+4(%a6)
	clrl		FP_SCR2+8(%a6)		| ...FP_SCR2 is  2**(L) * Piby2_1

|--FP2 IS READY
	fsubs		TWOTO63(%a6),%fp2		| ...FP2 is N

	addil		#0x00003FDD,%d0
        movew		%d0,FP_SCR3(%a6)
	clrw           FP_SCR3+2(%a6)
	movel		#0x85A308D3,FP_SCR3+4(%a6)
	clrl		FP_SCR3+8(%a6)		| ...FP_SCR3 is 2**(L) * Piby2_2

	movel		ENDFLAG(%a6),%d0

|--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
|--P2 = 2**(L) * Piby2_2
	fmovex		%fp2,%fp4
	fmulx		FP_SCR2(%a6),%fp4		| ...W = N*P1
	fmovex		%fp2,%fp5
	fmulx		FP_SCR3(%a6),%fp5		| ...w = N*P2
	fmovex		%fp4,%fp3
|--we want P+p = W+w  but  |p| <= half ulp of P
|--Then, we need to compute  A := R-P   and  a := r-p
	faddx		%fp5,%fp3			| ...FP3 is P
	fsubx		%fp3,%fp4			| ...W-P

	fsubx		%fp3,%fp0			| ...FP0 is A := R - P
        faddx		%fp5,%fp4			| ...FP4 is p = (W-P)+w

	fmovex		%fp0,%fp3			| ...FP3 A
	fsubx		%fp4,%fp1			| ...FP1 is a := r - p

|--Now we need to normalize (A,a) to  "new (R,r)" where R+r = A+a but
|--|r| <= half ulp of R.
	faddx		%fp1,%fp0			| ...FP0 is R := A+a
|--No need to calculate r if this is the last loop
	cmpil		#0,%d0
	bgt		RESTORE

|--Need to calculate r
	fsubx		%fp0,%fp3			| ...A-R
	faddx		%fp3,%fp1			| ...FP1 is r := (A-R)+a
	bra		LOOP

RESTORE:
        fmovel		%fp2,N(%a6)
	movel		(%a7)+,%d2
	fmovemx	(%a7)+,%fp2-%fp5


	movel		ADJN(%a6),%d0
	cmpil		#4,%d0

	blt		SINCONT
	bras		SCCONT

	.global	ssincosd
ssincosd:
|--SIN AND COS OF X FOR DENORMALIZED X

	fmoves		#0x3F800000,%fp1
	bsr		sto_cos		|store cosine result
	bra		t_extdnrm

	.global	ssincos
ssincos:
|--SET ADJN TO 4
	movel		#4,ADJN(%a6)

	fmovex		(%a0),%fp0	| ...LOAD INPUT

	movel		(%a0),%d0
	movew		4(%a0),%d0
	fmovex		%fp0,X(%a6)
	andil		#0x7FFFFFFF,%d0		| ...COMPACTIFY X

	cmpil		#0x3FD78000,%d0		| ...|X| >= 2**(-40)?
	bges		SCOK1
	bra		SCSM

SCOK1:
	cmpil		#0x4004BC7E,%d0		| ...|X| < 15 PI?
	blts		SCMAIN
	bra		REDUCEX


SCMAIN:
|--THIS IS THE USUAL CASE, |X| <= 15 PI.
|--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
	fmovex		%fp0,%fp1
	fmuld		TWOBYPI,%fp1	| ...X*2/PI

|--HIDE THE NEXT THREE INSTRUCTIONS
	lea		PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32


|--FP1 IS NOW READY
	fmovel		%fp1,N(%a6)		| ...CONVERT TO INTEGER

	movel		N(%a6),%d0
	asll		#4,%d0
	addal		%d0,%a1		| ...ADDRESS OF N*PIBY2, IN Y1, Y2

	fsubx		(%a1)+,%fp0	| ...X-Y1
        fsubs		(%a1),%fp0	| ...FP0 IS R = (X-Y1)-Y2

SCCONT:
|--continuation point from REDUCEX

|--HIDE THE NEXT TWO
	movel		N(%a6),%d0
	rorl		#1,%d0

	cmpil		#0,%d0		| ...D0 < 0 IFF N IS ODD
	bge		NEVEN

NODD:
|--REGISTERS SAVED SO FAR: D0, A0, FP2.

	fmovex		%fp0,RPRIME(%a6)
	fmulx		%fp0,%fp0	 | ...FP0 IS S = R*R
	fmoved		SINA7,%fp1	| ...A7
	fmoved		COSB8,%fp2	| ...B8
	fmulx		%fp0,%fp1	 | ...SA7
	movel		%d2,-(%a7)
	movel		%d0,%d2
	fmulx		%fp0,%fp2	 | ...SB8
	rorl		#1,%d2
	andil		#0x80000000,%d2

	faddd		SINA6,%fp1	| ...A6+SA7
	eorl		%d0,%d2
	andil		#0x80000000,%d2
	faddd		COSB7,%fp2	| ...B7+SB8

	fmulx		%fp0,%fp1	 | ...S(A6+SA7)
	eorl		%d2,RPRIME(%a6)
	movel		(%a7)+,%d2
	fmulx		%fp0,%fp2	 | ...S(B7+SB8)
	rorl		#1,%d0
	andil		#0x80000000,%d0

	faddd		SINA5,%fp1	| ...A5+S(A6+SA7)
	movel		#0x3F800000,POSNEG1(%a6)
	eorl		%d0,POSNEG1(%a6)
	faddd		COSB6,%fp2	| ...B6+S(B7+SB8)

	fmulx		%fp0,%fp1	 | ...S(A5+S(A6+SA7))
	fmulx		%fp0,%fp2	 | ...S(B6+S(B7+SB8))
	fmovex		%fp0,SPRIME(%a6)

	faddd		SINA4,%fp1	| ...A4+S(A5+S(A6+SA7))
	eorl		%d0,SPRIME(%a6)
	faddd		COSB5,%fp2	| ...B5+S(B6+S(B7+SB8))

	fmulx		%fp0,%fp1	 | ...S(A4+...)
	fmulx		%fp0,%fp2	 | ...S(B5+...)

	faddd		SINA3,%fp1	| ...A3+S(A4+...)
	faddd		COSB4,%fp2	| ...B4+S(B5+...)

	fmulx		%fp0,%fp1	 | ...S(A3+...)
	fmulx		%fp0,%fp2	 | ...S(B4+...)

	faddx		SINA2,%fp1	| ...A2+S(A3+...)
	faddx		COSB3,%fp2	| ...B3+S(B4+...)

	fmulx		%fp0,%fp1	 | ...S(A2+...)
	fmulx		%fp0,%fp2	 | ...S(B3+...)

	faddx		SINA1,%fp1	| ...A1+S(A2+...)
	faddx		COSB2,%fp2	| ...B2+S(B3+...)

	fmulx		%fp0,%fp1	 | ...S(A1+...)
	fmulx		%fp2,%fp0	 | ...S(B2+...)



	fmulx		RPRIME(%a6),%fp1	| ...R'S(A1+...)
	fadds		COSB1,%fp0	| ...B1+S(B2...)
	fmulx		SPRIME(%a6),%fp0	| ...S'(B1+S(B2+...))

	movel		%d1,-(%sp)	|restore users mode & precision
	andil		#0xff,%d1		|mask off all exceptions
	fmovel		%d1,%FPCR
	faddx		RPRIME(%a6),%fp1	| ...COS(X)
	bsr		sto_cos		|store cosine result
	fmovel		(%sp)+,%FPCR	|restore users exceptions
	fadds		POSNEG1(%a6),%fp0	| ...SIN(X)

	bra		t_frcinx


NEVEN:
|--REGISTERS SAVED SO FAR: FP2.

	fmovex		%fp0,RPRIME(%a6)
	fmulx		%fp0,%fp0	 | ...FP0 IS S = R*R
	fmoved		COSB8,%fp1			| ...B8
	fmoved		SINA7,%fp2			| ...A7
	fmulx		%fp0,%fp1	 | ...SB8
	fmovex		%fp0,SPRIME(%a6)
	fmulx		%fp0,%fp2	 | ...SA7
	rorl		#1,%d0
	andil		#0x80000000,%d0
	faddd		COSB7,%fp1	| ...B7+SB8
	faddd		SINA6,%fp2	| ...A6+SA7
	eorl		%d0,RPRIME(%a6)
	eorl		%d0,SPRIME(%a6)
	fmulx		%fp0,%fp1	 | ...S(B7+SB8)
	oril		#0x3F800000,%d0
	movel		%d0,POSNEG1(%a6)
	fmulx		%fp0,%fp2	 | ...S(A6+SA7)

	faddd		COSB6,%fp1	| ...B6+S(B7+SB8)
	faddd		SINA5,%fp2	| ...A5+S(A6+SA7)

	fmulx		%fp0,%fp1	 | ...S(B6+S(B7+SB8))
	fmulx		%fp0,%fp2	 | ...S(A5+S(A6+SA7))

	faddd		COSB5,%fp1	| ...B5+S(B6+S(B7+SB8))
	faddd		SINA4,%fp2	| ...A4+S(A5+S(A6+SA7))

	fmulx		%fp0,%fp1	 | ...S(B5+...)
	fmulx		%fp0,%fp2	 | ...S(A4+...)

	faddd		COSB4,%fp1	| ...B4+S(B5+...)
	faddd		SINA3,%fp2	| ...A3+S(A4+...)

	fmulx		%fp0,%fp1	 | ...S(B4+...)
	fmulx		%fp0,%fp2	 | ...S(A3+...)

	faddx		COSB3,%fp1	| ...B3+S(B4+...)
	faddx		SINA2,%fp2	| ...A2+S(A3+...)

	fmulx		%fp0,%fp1	 | ...S(B3+...)
	fmulx		%fp0,%fp2	 | ...S(A2+...)

	faddx		COSB2,%fp1	| ...B2+S(B3+...)
	faddx		SINA1,%fp2	| ...A1+S(A2+...)

	fmulx		%fp0,%fp1	 | ...S(B2+...)
	fmulx		%fp2,%fp0	 | ...s(a1+...)



	fadds		COSB1,%fp1	| ...B1+S(B2...)
	fmulx		RPRIME(%a6),%fp0	| ...R'S(A1+...)
	fmulx		SPRIME(%a6),%fp1	| ...S'(B1+S(B2+...))

	movel		%d1,-(%sp)	|save users mode & precision
	andil		#0xff,%d1		|mask off all exceptions
	fmovel		%d1,%FPCR
	fadds		POSNEG1(%a6),%fp1	| ...COS(X)
	bsr		sto_cos		|store cosine result
	fmovel		(%sp)+,%FPCR	|restore users exceptions
	faddx		RPRIME(%a6),%fp0	| ...SIN(X)

	bra		t_frcinx

SCBORS:
	cmpil		#0x3FFF8000,%d0
	bgt		REDUCEX


SCSM:
	movew		#0x0000,XDCARE(%a6)
	fmoves		#0x3F800000,%fp1

	movel		%d1,-(%sp)	|save users mode & precision
	andil		#0xff,%d1		|mask off all exceptions
	fmovel		%d1,%FPCR
	fsubs		#0x00800000,%fp1
	bsr		sto_cos		|store cosine result
	fmovel		(%sp)+,%FPCR	|restore users exceptions
	fmovex		X(%a6),%fp0
	bra		t_frcinx

	|end