mcookie.c 12.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
/* mcookie.c -- Generates random numbers for xauth
 * Created: Fri Feb  3 10:42:48 1995 by faith@cs.unc.edu
 * Revised: Fri Mar 19 07:48:01 1999 by faith@acm.org
 * Public Domain 1995, 1999 Rickard E. Faith (faith@acm.org)
 * This program comes with ABSOLUTELY NO WARRANTY.
 * 
 * $Id: mcookie.c,v 1.5 1997/07/06 00:13:06 aebr Exp $
 *
 * This program gathers some random bits of data and used the MD5
 * message-digest algorithm to generate a 128-bit hexadecimal number for
 * use with xauth(1).
 *
 * NOTE: Unless /dev/random is available, this program does not actually
 * gather 128 bits of random information, so the magic cookie generated
 * will be considerably easier to guess than one might expect.
 *
 * 1999-02-22 Arkadiusz Mi¶kiewicz <misiek@pld.ORG.PL>
 * - added Native Language Support
 * 1999-03-21 aeb: Added some fragments of code from Colin Plumb.
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>

#define BUFFERSIZE 4096


#ifndef MD5_H
#define MD5_H

#if defined (__alpha__) || defined (__ia64__) || defined (__x86_64__)
typedef unsigned int uint32;
#else
typedef unsigned long uint32;
#endif

struct MD5Context {
	uint32 buf[4];
	uint32 bits[2];
	unsigned char in[64];
};

void MD5Init(struct MD5Context *context);
void MD5Update(struct MD5Context *context, unsigned char const *buf,
	       unsigned len);
void MD5Final(unsigned char digest[16], struct MD5Context *context);
void MD5Transform(uint32 buf[4], uint32 const in[16]);

/*
 * This is needed to make RSAREF happy on some MS-DOS compilers.
 */
typedef struct MD5Context MD5_CTX;

#endif /* !MD5_H */



/*
 * This code implements the MD5 message-digest algorithm.
 * The algorithm is due to Ron Rivest.  This code was
 * written by Colin Plumb in 1993, no copyright is claimed.
 * This code is in the public domain; do with it what you wish.
 *
 * Equivalent code is available from RSA Data Security, Inc.
 * This code has been tested against that, and is equivalent,
 * except that you don't need to include two pages of legalese
 * with every copy.
 *
 * To compute the message digest of a chunk of bytes, declare an
 * MD5Context structure, pass it to MD5Init, call MD5Update as
 * needed on buffers full of bytes, and then call MD5Final, which
 * will fill a supplied 16-byte array with the digest.
 */
#include <string.h>		/* for memcpy() */
#include <endian.h>

#if __BYTE_ORDER == __LITTLE_ENDIAN
#define byteReverse(buf, len)	/* Nothing */
#else
void byteReverse(unsigned char *buf, unsigned longs);

/*
 * Note: this code is harmless on little-endian machines.
 */
void byteReverse(unsigned char *buf, unsigned longs)
{
    uint32 t;
    do {
	t = (uint32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
	    ((unsigned) buf[1] << 8 | buf[0]);
	*(uint32 *) buf = t;
	buf += 4;
    } while (--longs);
}
#endif

/*
 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
 * initialization constants.
 */
void MD5Init(struct MD5Context *ctx)
{
    ctx->buf[0] = 0x67452301;
    ctx->buf[1] = 0xefcdab89;
    ctx->buf[2] = 0x98badcfe;
    ctx->buf[3] = 0x10325476;

    ctx->bits[0] = 0;
    ctx->bits[1] = 0;
}

/*
 * Update context to reflect the concatenation of another buffer full
 * of bytes.
 */
void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
{
    uint32 t;

    /* Update bitcount */

    t = ctx->bits[0];
    if ((ctx->bits[0] = t + ((uint32) len << 3)) < t)
	ctx->bits[1]++;		/* Carry from low to high */
    ctx->bits[1] += len >> 29;

    t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */

    /* Handle any leading odd-sized chunks */

    if (t) {
	unsigned char *p = (unsigned char *) ctx->in + t;

	t = 64 - t;
	if (len < t) {
	    memcpy(p, buf, len);
	    return;
	}
	memcpy(p, buf, t);
	byteReverse(ctx->in, 16);
	MD5Transform(ctx->buf, (uint32 *) ctx->in);
	buf += t;
	len -= t;
    }
    /* Process data in 64-byte chunks */

    while (len >= 64) {
	memcpy(ctx->in, buf, 64);
	byteReverse(ctx->in, 16);
	MD5Transform(ctx->buf, (uint32 *) ctx->in);
	buf += 64;
	len -= 64;
    }

    /* Handle any remaining bytes of data. */

    memcpy(ctx->in, buf, len);
}

/*
 * Final wrapup - pad to 64-byte boundary with the bit pattern 
 * 1 0* (64-bit count of bits processed, MSB-first)
 */
void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
{
    unsigned count;
    unsigned char *p;

    /* Compute number of bytes mod 64 */
    count = (ctx->bits[0] >> 3) & 0x3F;

    /* Set the first char of padding to 0x80.  This is safe since there is
       always at least one byte free */
    p = ctx->in + count;
    *p++ = 0x80;

    /* Bytes of padding needed to make 64 bytes */
    count = 64 - 1 - count;

    /* Pad out to 56 mod 64 */
    if (count < 8) {
	/* Two lots of padding:  Pad the first block to 64 bytes */
	memset(p, 0, count);
	byteReverse(ctx->in, 16);
	MD5Transform(ctx->buf, (uint32 *) ctx->in);

	/* Now fill the next block with 56 bytes */
	memset(ctx->in, 0, 56);
    } else {
	/* Pad block to 56 bytes */
	memset(p, 0, count - 8);
    }
    byteReverse(ctx->in, 14);

    /* Append length in bits and transform */
    ((uint32 *) ctx->in)[14] = ctx->bits[0];
    ((uint32 *) ctx->in)[15] = ctx->bits[1];

    MD5Transform(ctx->buf, (uint32 *) ctx->in);
    byteReverse((unsigned char *) ctx->buf, 4);
    memcpy(digest, ctx->buf, 16);
    memset(ctx, 0, sizeof(ctx));	/* In case it's sensitive */
}

/* The four core functions - F1 is optimized somewhat */

/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))

/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )

/*
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data.  MD5Update blocks
 * the data and converts bytes into longwords for this routine.
 */
void MD5Transform(uint32 buf[4], uint32 const in[16])
{
    register uint32 a, b, c, d;

    a = buf[0];
    b = buf[1];
    c = buf[2];
    d = buf[3];

    MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
    MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
    MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
    MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
    MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
    MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
    MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
    MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
    MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
    MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
    MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
    MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
    MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
    MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
    MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
    MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);

    MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
    MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
    MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
    MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
    MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
    MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
    MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
    MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
    MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
    MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
    MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
    MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
    MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
    MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
    MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
    MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);

    MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
    MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
    MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
    MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
    MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
    MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
    MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
    MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
    MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
    MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
    MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
    MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
    MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
    MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
    MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
    MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);

    MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
    MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
    MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
    MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
    MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
    MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
    MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
    MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
    MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
    MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
    MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
    MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
    MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
    MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
    MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
    MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);

    buf[0] += a;
    buf[1] += b;
    buf[2] += c;
    buf[3] += d;
}




struct rngs {
   const char *path;
   int minlength, maxlength;
} rngs[] = {
   { "/dev/random",              16,  16 }, /* 16 bytes = 128 bits suffice */
   { "/proc/interrupts",          0,   0 },
   { "/proc/slabinfo",            0,   0 },
   { "/proc/stat",                0,   0 },
   { "/dev/urandom",             32,  64 },
};
#define RNGS (sizeof(rngs)/sizeof(struct rngs))

int Verbose = 0;

/* The basic function to hash a file */
static off_t
hash_file(struct MD5Context *ctx, int fd)
{
   off_t count = 0;
   ssize_t r;
   unsigned char buf[BUFFERSIZE];

   while ((r = read(fd, buf, sizeof(buf))) > 0) {
      MD5Update(ctx, buf, r);
      count += r;
   }
   /* Separate files with a null byte */
   buf[0] = 0;
   MD5Update(ctx, buf, 1);
   return count;
}

int main( int argc, char **argv )
{
   int               i;
   struct MD5Context ctx;
   unsigned char     digest[16];
   unsigned char     buf[BUFFERSIZE];
   int               fd;
   int               c;
   pid_t             pid;
   char              *file = NULL;
   int               r;
   struct timeval    tv;
   struct timezone   tz;

   while ((c = getopt( argc, argv, "vf:" )) != -1)
      switch (c) {
      case 'v': ++Verbose;     break;
      case 'f': file = optarg; break;
      }

   MD5Init( &ctx );
   
   gettimeofday( &tv, &tz );
   MD5Update( &ctx, (unsigned char *)&tv, sizeof( tv ) );
   pid = getppid();
   MD5Update( &ctx, (unsigned char *)&pid, sizeof( pid ));
   pid = getpid();
   MD5Update( &ctx, (unsigned char *)&pid, sizeof( pid ));

   if (file) {
      int count = 0;
      
      if (file[0] == '-' && !file[1])
	 fd = fileno(stdin);
      else
	 fd = open( file, O_RDONLY );

      if (fd < 0) {
	 fprintf( stderr, "Could not open %s\n", file );
      } else {
         count = hash_file( &ctx, fd );
	 if (Verbose)
	    fprintf( stderr, "Got %d bytes from %s\n", count, file );

	 if (file[0] != '-' || file[1]) close( fd );
      }
   }

   for (i = 0; i < RNGS; i++) {
      if ((fd = open( rngs[i].path, O_RDONLY|O_NONBLOCK )) >= 0) {
	 int count = sizeof(buf);

	 if (rngs[i].maxlength && count > rngs[i].maxlength)
	    count = rngs[i].maxlength;
	 r = read( fd, buf, count );
	 if (r > 0)
	    MD5Update( &ctx, buf, r );
	 else
	    r = 0;
	 close( fd );
	 if (Verbose)
	    fprintf( stderr, "Got %d bytes from %s\n", r, rngs[i].path );
	 if (rngs[i].minlength && r >= rngs[i].minlength)
	    break;
      } else if (Verbose)
	 fprintf( stderr, "Could not open %s\n", rngs[i].path );
   }

   MD5Final( digest, &ctx );
   for (i = 0; i < 16; i++) printf( "%02x", digest[i] );
   putchar ( '\n' );
   
   /*
    * The following is important for cases like disk full, so shell scripts
    * can bomb out properly rather than think they succeeded.
    */
   if (fflush(stdout) < 0 || fclose(stdout) < 0)
      return 1;

   return 0;
}