smc91111.h 26.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
/*------------------------------------------------------------------------
 . smc91111.h - macros for the LAN91C111 Ethernet Driver
 .
 . (C) Copyright 2002
 . Sysgo Real-Time Solutions, GmbH <www.elinos.com>
 . Rolf Offermanns <rof@sysgo.de>
 . Copyright (C) 2001 Standard Microsystems Corporation (SMSC)
 .       Developed by Simple Network Magic Corporation (SNMC)
 . Copyright (C) 1996 by Erik Stahlman (ES)
 .
  * SPDX-License-Identifier:	GPL-2.0+
 .
 . This file contains register information and access macros for
 . the LAN91C111 single chip ethernet controller.  It is a modified
 . version of the smc9194.h file.
 .
 . Information contained in this file was obtained from the LAN91C111
 . manual from SMC.  To get a copy, if you really want one, you can find
 . information under www.smsc.com.
 .
 . Authors
 .	Erik Stahlman				( erik@vt.edu )
 .	Daris A Nevil				( dnevil@snmc.com )
 .
 . History
 . 03/16/01		Daris A Nevil	Modified for use with LAN91C111 device
 .
 ---------------------------------------------------------------------------*/
#ifndef _SMC91111_H_
#define _SMC91111_H_

#include <asm/types.h>
#include <config.h>

/*
 * This function may be called by the board specific initialisation code
 * in order to override the default mac address.
 */

void smc_set_mac_addr (const unsigned char *addr);


/* I want some simple types */

typedef unsigned char			byte;
typedef unsigned short			word;
typedef unsigned long int		dword;

struct smc91111_priv{
	u8 dev_num;
};

/*
 . DEBUGGING LEVELS
 .
 . 0 for normal operation
 . 1 for slightly more details
 . >2 for various levels of increasingly useless information
 .    2 for interrupt tracking, status flags
 .    3 for packet info
 .    4 for complete packet dumps
*/
/*#define SMC_DEBUG 0 */

/* Because of bank switching, the LAN91xxx uses only 16 I/O ports */

#define	SMC_IO_EXTENT	16

#ifdef CONFIG_CPU_PXA25X

#ifdef CONFIG_XSENGINE
#define	SMC_inl(a,r)	(*((volatile dword *)((a)->iobase+((r)<<1))))
#define	SMC_inw(a,r)	(*((volatile word *)((a)->iobase+((r)<<1))))
#define SMC_inb(a,p)  ({ \
	unsigned int __p = (unsigned int)((a)->iobase + ((p)<<1)); \
	unsigned int __v = *(volatile unsigned short *)((__p) & ~2); \
	if (__p & 2) __v >>= 8; \
	else __v &= 0xff; \
	__v; })
#elif defined(CONFIG_XAENIAX)
#define SMC_inl(a,r)	(*((volatile dword *)((a)->iobase+(r))))
#define SMC_inw(a,z)	({ \
	unsigned int __p = (unsigned int)((a)->iobase + (z)); \
	unsigned int __v = *(volatile unsigned int *)((__p) & ~3); \
	if (__p & 3) __v >>= 16; \
	else __v &= 0xffff; \
	__v; })
#define SMC_inb(a,p)	({ \
	unsigned int ___v = SMC_inw((a),(p) & ~1); \
	if ((p) & 1) ___v >>= 8; \
	else ___v &= 0xff; \
	___v; })
#else
#define	SMC_inl(a,r)	(*((volatile dword *)((a)->iobase+(r))))
#define	SMC_inw(a,r)	(*((volatile word *)((a)->iobase+(r))))
#define SMC_inb(a,p)	({ \
	unsigned int __p = (unsigned int)((a)->iobase + (p)); \
	unsigned int __v = *(volatile unsigned short *)((__p) & ~1); \
	if (__p & 1) __v >>= 8; \
	else __v &= 0xff; \
	__v; })
#endif

#ifdef CONFIG_XSENGINE
#define	SMC_outl(a,d,r)	(*((volatile dword *)((a)->iobase+(r<<1))) = d)
#define	SMC_outw(a,d,r)	(*((volatile word *)((a)->iobase+(r<<1))) = d)
#elif defined (CONFIG_XAENIAX)
#define SMC_outl(a,d,r)	(*((volatile dword *)((a)->iobase+(r))) = d)
#define SMC_outw(a,d,p)	({ \
	dword __dwo = SMC_inl((a),(p) & ~3); \
	dword __dwn = (word)(d); \
	__dwo &= ((p) & 3) ? 0x0000ffff : 0xffff0000; \
	__dwo |= ((p) & 3) ? __dwn << 16 : __dwn; \
	SMC_outl((a), __dwo, (p) & ~3); \
})
#else
#define	SMC_outl(a,d,r)	(*((volatile dword *)((a)->iobase+(r))) = d)
#define	SMC_outw(a,d,r)	(*((volatile word *)((a)->iobase+(r))) = d)
#endif

#define	SMC_outb(a,d,r)	({	word __d = (byte)(d);  \
				word __w = SMC_inw((a),(r)&~1);  \
				__w &= ((r)&1) ? 0x00FF : 0xFF00;  \
				__w |= ((r)&1) ? __d<<8 : __d;  \
				SMC_outw((a),__w,(r)&~1);  \
			})

#define SMC_outsl(a,r,b,l)	({	int __i; \
					dword *__b2; \
					__b2 = (dword *) b; \
					for (__i = 0; __i < l; __i++) { \
					    SMC_outl((a), *(__b2 + __i), r); \
					} \
				})

#define SMC_outsw(a,r,b,l)	({	int __i; \
					word *__b2; \
					__b2 = (word *) b; \
					for (__i = 0; __i < l; __i++) { \
					    SMC_outw((a), *(__b2 + __i), r); \
					} \
				})

#define SMC_insl(a,r,b,l)	({	int __i ;  \
					dword *__b2;  \
					__b2 = (dword *) b;  \
					for (__i = 0; __i < l; __i++) {  \
					  *(__b2 + __i) = SMC_inl((a),(r));  \
					  SMC_inl((a),0);  \
					};  \
				})

#define SMC_insw(a,r,b,l)		({	int __i ;  \
					word *__b2;  \
					__b2 = (word *) b;  \
					for (__i = 0; __i < l; __i++) {  \
					  *(__b2 + __i) = SMC_inw((a),(r));  \
					  SMC_inw((a),0);  \
					};  \
				})

#define SMC_insb(a,r,b,l)	({	int __i ;  \
					byte *__b2;  \
					__b2 = (byte *) b;  \
					for (__i = 0; __i < l; __i++) {  \
					  *(__b2 + __i) = SMC_inb((a),(r));  \
					  SMC_inb((a),0);  \
					};  \
				})

#elif defined(CONFIG_LEON)	/* if not CONFIG_CPU_PXA25X */

#define SMC_LEON_SWAP16(_x_) ({ word _x = (_x_); ((_x << 8) | (_x >> 8)); })

#define SMC_LEON_SWAP32(_x_)			\
    ({ dword _x = (_x_);			\
       ((_x << 24) |				\
       ((0x0000FF00UL & _x) <<  8) |		\
       ((0x00FF0000UL & _x) >>  8) |		\
       (_x  >> 24)); })

#define	SMC_inl(a,r)	(SMC_LEON_SWAP32((*(volatile dword *)((a)->iobase+((r)<<0)))))
#define	SMC_inl_nosw(a,r)	((*(volatile dword *)((a)->iobase+((r)<<0))))
#define	SMC_inw(a,r)	(SMC_LEON_SWAP16((*(volatile word *)((a)->iobase+((r)<<0)))))
#define	SMC_inw_nosw(a,r)	((*(volatile word *)((a)->iobase+((r)<<0))))
#define SMC_inb(a,p)	({ \
	word ___v = SMC_inw((a),(p) & ~1); \
	if ((p) & 1) ___v >>= 8; \
	else ___v &= 0xff; \
	___v; })

#define	SMC_outl(a,d,r)	(*(volatile dword *)((a)->iobase+((r)<<0))=SMC_LEON_SWAP32(d))
#define	SMC_outl_nosw(a,d,r)	(*(volatile dword *)((a)->iobase+((r)<<0))=(d))
#define	SMC_outw(a,d,r)	(*(volatile word *)((a)->iobase+((r)<<0))=SMC_LEON_SWAP16(d))
#define	SMC_outw_nosw(a,d,r)	(*(volatile word *)((a)->iobase+((r)<<0))=(d))
#define	SMC_outb(a,d,r)	do{	word __d = (byte)(d);  \
				word __w = SMC_inw((a),(r)&~1);  \
				__w &= ((r)&1) ? 0x00FF : 0xFF00;  \
				__w |= ((r)&1) ? __d<<8 : __d;  \
				SMC_outw((a),__w,(r)&~1);  \
			}while(0)
#define SMC_outsl(a,r,b,l)	do{	int __i; \
					dword *__b2; \
					__b2 = (dword *) b; \
					for (__i = 0; __i < l; __i++) { \
					    SMC_outl_nosw((a), *(__b2 + __i), r); \
					} \
				}while(0)
#define SMC_outsw(a,r,b,l)	do{	int __i; \
					word *__b2; \
					__b2 = (word *) b; \
					for (__i = 0; __i < l; __i++) { \
					    SMC_outw_nosw((a), *(__b2 + __i), r); \
					} \
				}while(0)
#define SMC_insl(a,r,b,l)	do{	int __i ;  \
					dword *__b2;  \
					__b2 = (dword *) b;  \
					for (__i = 0; __i < l; __i++) {  \
					  *(__b2 + __i) = SMC_inl_nosw((a),(r));  \
					};  \
				}while(0)

#define SMC_insw(a,r,b,l)		do{	int __i ;  \
					word *__b2;  \
					__b2 = (word *) b;  \
					for (__i = 0; __i < l; __i++) {  \
					  *(__b2 + __i) = SMC_inw_nosw((a),(r));  \
					};  \
				}while(0)

#define SMC_insb(a,r,b,l)		do{	int __i ;  \
					byte *__b2;  \
					__b2 = (byte *) b;  \
					for (__i = 0; __i < l; __i++) {  \
					  *(__b2 + __i) = SMC_inb((a),(r));  \
					};  \
				}while(0)
#elif defined(CONFIG_MS7206SE)
#define SWAB7206(x) ({ word __x = x; ((__x << 8)|(__x >> 8)); })
#define SMC_inw(a, r) *((volatile word*)((a)->iobase + (r)))
#define SMC_inb(a, r) (*((volatile byte*)((a)->iobase + ((r) ^ 0x01))))
#define SMC_insw(a, r, b, l) \
	do { \
		int __i; \
		word *__b2 = (word *)(b);		  \
		for (__i = 0; __i < (l); __i++) { \
			*__b2++ = SWAB7206(SMC_inw(a, r));	\
		} \
	} while (0)
#define	SMC_outw(a, d, r)	(*((volatile word *)((a)->iobase+(r))) = d)
#define	SMC_outb(a, d, r)	({	word __d = (byte)(d);  \
				word __w = SMC_inw((a), ((r)&(~1)));	\
				if (((r) & 1)) \
					__w = (__w & 0x00ff) | (__d << 8); \
				else \
					__w = (__w & 0xff00) | (__d); \
				SMC_outw((a), __w, ((r)&(~1)));	      \
			})
#define SMC_outsw(a, r, b, l) \
	do { \
		int __i; \
		word *__b2 = (word *)(b);		  \
		for (__i = 0; __i < (l); __i++) { \
			SMC_outw(a, SWAB7206(*__b2), r);	  \
			__b2++; \
		} \
	} while (0)
#else			/* if not CONFIG_CPU_PXA25X and not CONFIG_LEON */

#ifndef CONFIG_SMC_USE_IOFUNCS /* these macros don't work on some boards */
/*
 * We have only 16 Bit PCMCIA access on Socket 0
 */

#ifdef CONFIG_ADNPESC1
#define	SMC_inw(a,r)	(*((volatile word *)((a)->iobase+((r)<<1))))
#elif CONFIG_BLACKFIN
#define	SMC_inw(a,r)	({ word __v = (*((volatile word *)((a)->iobase+(r)))); SSYNC(); __v;})
#elif CONFIG_ARM64
#define	SMC_inw(a, r)	(*((volatile word*)((a)->iobase+((dword)(r)))))
#else
#define SMC_inw(a, r)	(*((volatile word*)((a)->iobase+(r))))
#endif
#define  SMC_inb(a,r)	(((r)&1) ? SMC_inw((a),(r)&~1)>>8 : SMC_inw((a),(r)&0xFF))

#ifdef CONFIG_ADNPESC1
#define	SMC_outw(a,d,r)	(*((volatile word *)((a)->iobase+((r)<<1))) = d)
#elif CONFIG_BLACKFIN
#define	SMC_outw(a, d, r)	\
			({	(*((volatile word*)((a)->iobase+((r)))) = d); \
				SSYNC(); \
			})
#elif CONFIG_ARM64
#define	SMC_outw(a, d, r)	\
			(*((volatile word*)((a)->iobase+((dword)(r)))) = d)
#else
#define	SMC_outw(a, d, r)	\
			(*((volatile word*)((a)->iobase+(r))) = d)
#endif
#define	SMC_outb(a,d,r)	({	word __d = (byte)(d);  \
				word __w = SMC_inw((a),(r)&~1);  \
				__w &= ((r)&1) ? 0x00FF : 0xFF00;  \
				__w |= ((r)&1) ? __d<<8 : __d;  \
				SMC_outw((a),__w,(r)&~1);  \
			})
#if 0
#define	SMC_outsw(a,r,b,l)	outsw((a)->iobase+(r), (b), (l))
#else
#define SMC_outsw(a,r,b,l)	({	int __i; \
					word *__b2; \
					__b2 = (word *) b; \
					for (__i = 0; __i < l; __i++) { \
					    SMC_outw((a), *(__b2 + __i), r); \
					} \
				})
#endif

#if 0
#define	SMC_insw(a,r,b,l)	insw((a)->iobase+(r), (b), (l))
#else
#define SMC_insw(a,r,b,l)	({	int __i ;  \
					word *__b2;  \
					__b2 = (word *) b;  \
					for (__i = 0; __i < l; __i++) {  \
					  *(__b2 + __i) = SMC_inw((a),(r));  \
					  SMC_inw((a),0);  \
					};  \
				})
#endif

#endif  /* CONFIG_SMC_USE_IOFUNCS */

#if defined(CONFIG_SMC_USE_32_BIT)

#ifdef CONFIG_XSENGINE
#define	SMC_inl(a,r)	(*((volatile dword *)((a)->iobase+(r<<1))))
#else
#define	SMC_inl(a,r)	(*((volatile dword *)((a)->iobase+(r))))
#endif

#define SMC_insl(a,r,b,l)	({	int __i ;  \
					dword *__b2;  \
					__b2 = (dword *) b;  \
					for (__i = 0; __i < l; __i++) {  \
					  *(__b2 + __i) = SMC_inl((a),(r));  \
					  SMC_inl((a),0);  \
					};  \
				})

#ifdef CONFIG_XSENGINE
#define	SMC_outl(a,d,r)	(*((volatile dword *)((a)->iobase+(r<<1))) = d)
#else
#define	SMC_outl(a,d,r)	(*((volatile dword *)((a)->iobase+(r))) = d)
#endif
#define SMC_outsl(a,r,b,l)	({	int __i; \
					dword *__b2; \
					__b2 = (dword *) b; \
					for (__i = 0; __i < l; __i++) { \
					    SMC_outl((a), *(__b2 + __i), r); \
					} \
				})

#endif /* CONFIG_SMC_USE_32_BIT */

#endif

/*---------------------------------------------------------------
 .
 . A description of the SMSC registers is probably in order here,
 . although for details, the SMC datasheet is invaluable.
 .
 . Basically, the chip has 4 banks of registers ( 0 to 3 ), which
 . are accessed by writing a number into the BANK_SELECT register
 . ( I also use a SMC_SELECT_BANK macro for this ).
 .
 . The banks are configured so that for most purposes, bank 2 is all
 . that is needed for simple run time tasks.
 -----------------------------------------------------------------------*/

/*
 . Bank Select Register:
 .
 .		yyyy yyyy 0000 00xx
 .		xx		= bank number
 .		yyyy yyyy	= 0x33, for identification purposes.
*/
#define	BANK_SELECT		14

/* Transmit Control Register */
/* BANK 0  */
#define	TCR_REG		0x0000	/* transmit control register */
#define TCR_ENABLE	0x0001	/* When 1 we can transmit */
#define TCR_LOOP	0x0002	/* Controls output pin LBK */
#define TCR_FORCOL	0x0004	/* When 1 will force a collision */
#define TCR_PAD_EN	0x0080	/* When 1 will pad tx frames < 64 bytes w/0 */
#define TCR_NOCRC	0x0100	/* When 1 will not append CRC to tx frames */
#define TCR_MON_CSN	0x0400	/* When 1 tx monitors carrier */
#define TCR_FDUPLX	0x0800  /* When 1 enables full duplex operation */
#define TCR_STP_SQET	0x1000	/* When 1 stops tx if Signal Quality Error */
#define	TCR_EPH_LOOP	0x2000	/* When 1 enables EPH block loopback */
#define	TCR_SWFDUP	0x8000	/* When 1 enables Switched Full Duplex mode */

#define	TCR_CLEAR	0	/* do NOTHING */
/* the default settings for the TCR register : */
/* QUESTION: do I want to enable padding of short packets ? */
#define	TCR_DEFAULT	TCR_ENABLE


/* EPH Status Register */
/* BANK 0  */
#define EPH_STATUS_REG	0x0002
#define ES_TX_SUC	0x0001	/* Last TX was successful */
#define ES_SNGL_COL	0x0002	/* Single collision detected for last tx */
#define ES_MUL_COL	0x0004	/* Multiple collisions detected for last tx */
#define ES_LTX_MULT	0x0008	/* Last tx was a multicast */
#define ES_16COL	0x0010	/* 16 Collisions Reached */
#define ES_SQET		0x0020	/* Signal Quality Error Test */
#define ES_LTXBRD	0x0040	/* Last tx was a broadcast */
#define ES_TXDEFR	0x0080	/* Transmit Deferred */
#define ES_LATCOL	0x0200	/* Late collision detected on last tx */
#define ES_LOSTCARR	0x0400	/* Lost Carrier Sense */
#define ES_EXC_DEF	0x0800	/* Excessive Deferral */
#define ES_CTR_ROL	0x1000	/* Counter Roll Over indication */
#define ES_LINK_OK	0x4000	/* Driven by inverted value of nLNK pin */
#define ES_TXUNRN	0x8000	/* Tx Underrun */


/* Receive Control Register */
/* BANK 0  */
#define	RCR_REG		0x0004
#define	RCR_RX_ABORT	0x0001	/* Set if a rx frame was aborted */
#define	RCR_PRMS	0x0002	/* Enable promiscuous mode */
#define	RCR_ALMUL	0x0004	/* When set accepts all multicast frames */
#define RCR_RXEN	0x0100	/* IFF this is set, we can receive packets */
#define	RCR_STRIP_CRC	0x0200	/* When set strips CRC from rx packets */
#define	RCR_ABORT_ENB	0x0200	/* When set will abort rx on collision */
#define	RCR_FILT_CAR	0x0400	/* When set filters leading 12 bit s of carrier */
#define RCR_SOFTRST	0x8000	/* resets the chip */

/* the normal settings for the RCR register : */
#define	RCR_DEFAULT	(RCR_STRIP_CRC | RCR_RXEN)
#define RCR_CLEAR	0x0	/* set it to a base state */

/* Counter Register */
/* BANK 0  */
#define	COUNTER_REG	0x0006

/* Memory Information Register */
/* BANK 0  */
#define	MIR_REG		0x0008

/* Receive/Phy Control Register */
/* BANK 0  */
#define	RPC_REG		0x000A
#define	RPC_SPEED	0x2000	/* When 1 PHY is in 100Mbps mode. */
#define	RPC_DPLX	0x1000	/* When 1 PHY is in Full-Duplex Mode */
#define	RPC_ANEG	0x0800	/* When 1 PHY is in Auto-Negotiate Mode */
#define	RPC_LSXA_SHFT	5	/* Bits to shift LS2A,LS1A,LS0A to lsb */
#define	RPC_LSXB_SHFT	2	/* Bits to get LS2B,LS1B,LS0B to lsb */
#define RPC_LED_100_10	(0x00)	/* LED = 100Mbps OR's with 10Mbps link detect */
#define RPC_LED_RES	(0x01)	/* LED = Reserved */
#define RPC_LED_10	(0x02)	/* LED = 10Mbps link detect */
#define RPC_LED_FD	(0x03)	/* LED = Full Duplex Mode */
#define RPC_LED_TX_RX	(0x04)	/* LED = TX or RX packet occurred */
#define RPC_LED_100	(0x05)	/* LED = 100Mbps link dectect */
#define RPC_LED_TX	(0x06)	/* LED = TX packet occurred */
#define RPC_LED_RX	(0x07)	/* LED = RX packet occurred */
#if defined(CONFIG_DK1C20) || defined(CONFIG_DK1S10)
/* buggy schematic: LEDa -> yellow, LEDb --> green */
#define RPC_DEFAULT	( RPC_SPEED | RPC_DPLX | RPC_ANEG	\
			| (RPC_LED_TX_RX << RPC_LSXA_SHFT)	\
			| (RPC_LED_100_10 << RPC_LSXB_SHFT)	)
#elif defined(CONFIG_ADNPESC1)
/* SSV ADNP/ESC1 has only one LED: LEDa -> Rx/Tx indicator */
#define RPC_DEFAULT	( RPC_SPEED | RPC_DPLX | RPC_ANEG	\
			| (RPC_LED_TX_RX << RPC_LSXA_SHFT)	\
			| (RPC_LED_100_10 << RPC_LSXB_SHFT)	)
#else
/* SMSC reference design: LEDa --> green, LEDb --> yellow */
#define RPC_DEFAULT	( RPC_SPEED | RPC_DPLX | RPC_ANEG	\
			| (RPC_LED_100_10 << RPC_LSXA_SHFT)	\
			| (RPC_LED_TX_RX << RPC_LSXB_SHFT)	)
#endif

/* Bank 0 0x000C is reserved */

/* Bank Select Register */
/* All Banks */
#define BSR_REG	0x000E


/* Configuration Reg */
/* BANK 1 */
#define CONFIG_REG	0x0000
#define CONFIG_EXT_PHY	0x0200	/* 1=external MII, 0=internal Phy */
#define CONFIG_GPCNTRL	0x0400	/* Inverse value drives pin nCNTRL */
#define CONFIG_NO_WAIT	0x1000	/* When 1 no extra wait states on ISA bus */
#define CONFIG_EPH_POWER_EN 0x8000 /* When 0 EPH is placed into low power mode. */

/* Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low */
#define CONFIG_DEFAULT	(CONFIG_EPH_POWER_EN)


/* Base Address Register */
/* BANK 1 */
#define	BASE_REG	0x0002


/* Individual Address Registers */
/* BANK 1 */
#define	ADDR0_REG	0x0004
#define	ADDR1_REG	0x0006
#define	ADDR2_REG	0x0008


/* General Purpose Register */
/* BANK 1 */
#define	GP_REG		0x000A


/* Control Register */
/* BANK 1 */
#define	CTL_REG		0x000C
#define CTL_RCV_BAD	0x4000 /* When 1 bad CRC packets are received */
#define CTL_AUTO_RELEASE 0x0800 /* When 1 tx pages are released automatically */
#define	CTL_LE_ENABLE	0x0080 /* When 1 enables Link Error interrupt */
#define	CTL_CR_ENABLE	0x0040 /* When 1 enables Counter Rollover interrupt */
#define	CTL_TE_ENABLE	0x0020 /* When 1 enables Transmit Error interrupt */
#define	CTL_EEPROM_SELECT 0x0004 /* Controls EEPROM reload & store */
#define	CTL_RELOAD	0x0002 /* When set reads EEPROM into registers */
#define	CTL_STORE	0x0001 /* When set stores registers into EEPROM */
#define CTL_DEFAULT     (0x1A10) /* Autorelease enabled*/

/* MMU Command Register */
/* BANK 2 */
#define MMU_CMD_REG	0x0000
#define MC_BUSY		1	/* When 1 the last release has not completed */
#define MC_NOP		(0<<5)	/* No Op */
#define	MC_ALLOC	(1<<5)	/* OR with number of 256 byte packets */
#define	MC_RESET	(2<<5)	/* Reset MMU to initial state */
#define	MC_REMOVE	(3<<5)	/* Remove the current rx packet */
#define MC_RELEASE	(4<<5)	/* Remove and release the current rx packet */
#define MC_FREEPKT	(5<<5)	/* Release packet in PNR register */
#define MC_ENQUEUE	(6<<5)	/* Enqueue the packet for transmit */
#define MC_RSTTXFIFO	(7<<5)	/* Reset the TX FIFOs */


/* Packet Number Register */
/* BANK 2 */
#define	PN_REG		0x0002


/* Allocation Result Register */
/* BANK 2 */
#define	AR_REG		0x0003
#define AR_FAILED	0x80	/* Alocation Failed */


/* RX FIFO Ports Register */
/* BANK 2 */
#define RXFIFO_REG	0x0004	/* Must be read as a word */
#define RXFIFO_REMPTY	0x8000	/* RX FIFO Empty */


/* TX FIFO Ports Register */
/* BANK 2 */
#define TXFIFO_REG	RXFIFO_REG	/* Must be read as a word */
#define TXFIFO_TEMPTY	0x80	/* TX FIFO Empty */


/* Pointer Register */
/* BANK 2 */
#define PTR_REG		0x0006
#define	PTR_RCV		0x8000 /* 1=Receive area, 0=Transmit area */
#define	PTR_AUTOINC	0x4000 /* Auto increment the pointer on each access */
#define PTR_READ	0x2000 /* When 1 the operation is a read */
#define PTR_NOTEMPTY	0x0800 /* When 1 _do not_ write fifo DATA REG */


/* Data Register */
/* BANK 2 */
#define	SMC91111_DATA_REG	0x0008


/* Interrupt Status/Acknowledge Register */
/* BANK 2 */
#define	SMC91111_INT_REG	0x000C


/* Interrupt Mask Register */
/* BANK 2 */
#define IM_REG		0x000D
#define	IM_MDINT	0x80 /* PHY MI Register 18 Interrupt */
#define	IM_ERCV_INT	0x40 /* Early Receive Interrupt */
#define	IM_EPH_INT	0x20 /* Set by Etheret Protocol Handler section */
#define	IM_RX_OVRN_INT	0x10 /* Set by Receiver Overruns */
#define	IM_ALLOC_INT	0x08 /* Set when allocation request is completed */
#define	IM_TX_EMPTY_INT	0x04 /* Set if the TX FIFO goes empty */
#define	IM_TX_INT	0x02 /* Transmit Interrrupt */
#define IM_RCV_INT	0x01 /* Receive Interrupt */


/* Multicast Table Registers */
/* BANK 3 */
#define	MCAST_REG1	0x0000
#define	MCAST_REG2	0x0002
#define	MCAST_REG3	0x0004
#define	MCAST_REG4	0x0006


/* Management Interface Register (MII) */
/* BANK 3 */
#define	MII_REG		0x0008
#define MII_MSK_CRS100	0x4000 /* Disables CRS100 detection during tx half dup */
#define MII_MDOE	0x0008 /* MII Output Enable */
#define MII_MCLK	0x0004 /* MII Clock, pin MDCLK */
#define MII_MDI		0x0002 /* MII Input, pin MDI */
#define MII_MDO		0x0001 /* MII Output, pin MDO */


/* Revision Register */
/* BANK 3 */
#define	REV_REG		0x000A /* ( hi: chip id   low: rev # ) */


/* Early RCV Register */
/* BANK 3 */
/* this is NOT on SMC9192 */
#define	ERCV_REG	0x000C
#define ERCV_RCV_DISCRD	0x0080 /* When 1 discards a packet being received */
#define ERCV_THRESHOLD	0x001F /* ERCV Threshold Mask */

/* External Register */
/* BANK 7 */
#define	EXT_REG		0x0000


#define CHIP_9192	3
#define CHIP_9194	4
#define CHIP_9195	5
#define CHIP_9196	6
#define CHIP_91100	7
#define CHIP_91100FD	8
#define CHIP_91111FD	9

#if 0
static const char * chip_ids[ 15 ] =  {
	NULL, NULL, NULL,
	/* 3 */ "SMC91C90/91C92",
	/* 4 */ "SMC91C94",
	/* 5 */ "SMC91C95",
	/* 6 */ "SMC91C96",
	/* 7 */ "SMC91C100",
	/* 8 */ "SMC91C100FD",
	/* 9 */ "SMC91C111",
	NULL, NULL,
	NULL, NULL, NULL};
#endif

/*
 . Transmit status bits
*/
#define TS_SUCCESS 0x0001
#define TS_LOSTCAR 0x0400
#define TS_LATCOL  0x0200
#define TS_16COL   0x0010

/*
 . Receive status bits
*/
#define RS_ALGNERR	0x8000
#define RS_BRODCAST	0x4000
#define RS_BADCRC	0x2000
#define RS_ODDFRAME	0x1000	/* bug: the LAN91C111 never sets this on receive */
#define RS_TOOLONG	0x0800
#define RS_TOOSHORT	0x0400
#define RS_MULTICAST	0x0001
#define RS_ERRORS	(RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)


/* PHY Types */
enum {
	PHY_LAN83C183 = 1,	/* LAN91C111 Internal PHY */
	PHY_LAN83C180
};


/* PHY Register Addresses (LAN91C111 Internal PHY) */

/* PHY Control Register */
#define PHY_CNTL_REG		0x00
#define PHY_CNTL_RST		0x8000	/* 1=PHY Reset */
#define PHY_CNTL_LPBK		0x4000	/* 1=PHY Loopback */
#define PHY_CNTL_SPEED		0x2000	/* 1=100Mbps, 0=10Mpbs */
#define PHY_CNTL_ANEG_EN	0x1000 /* 1=Enable Auto negotiation */
#define PHY_CNTL_PDN		0x0800	/* 1=PHY Power Down mode */
#define PHY_CNTL_MII_DIS	0x0400	/* 1=MII 4 bit interface disabled */
#define PHY_CNTL_ANEG_RST	0x0200 /* 1=Reset Auto negotiate */
#define PHY_CNTL_DPLX		0x0100	/* 1=Full Duplex, 0=Half Duplex */
#define PHY_CNTL_COLTST		0x0080	/* 1= MII Colision Test */

/* PHY Status Register */
#define PHY_STAT_REG		0x01
#define PHY_STAT_CAP_T4		0x8000	/* 1=100Base-T4 capable */
#define PHY_STAT_CAP_TXF	0x4000	/* 1=100Base-X full duplex capable */
#define PHY_STAT_CAP_TXH	0x2000	/* 1=100Base-X half duplex capable */
#define PHY_STAT_CAP_TF		0x1000	/* 1=10Mbps full duplex capable */
#define PHY_STAT_CAP_TH		0x0800	/* 1=10Mbps half duplex capable */
#define PHY_STAT_CAP_SUPR	0x0040	/* 1=recv mgmt frames with not preamble */
#define PHY_STAT_ANEG_ACK	0x0020	/* 1=ANEG has completed */
#define PHY_STAT_REM_FLT	0x0010	/* 1=Remote Fault detected */
#define PHY_STAT_CAP_ANEG	0x0008	/* 1=Auto negotiate capable */
#define PHY_STAT_LINK		0x0004	/* 1=valid link */
#define PHY_STAT_JAB		0x0002	/* 1=10Mbps jabber condition */
#define PHY_STAT_EXREG		0x0001	/* 1=extended registers implemented */

/* PHY Identifier Registers */
#define PHY_ID1_REG		0x02	/* PHY Identifier 1 */
#define PHY_ID2_REG		0x03	/* PHY Identifier 2 */

/* PHY Auto-Negotiation Advertisement Register */
#define PHY_AD_REG		0x04
#define PHY_AD_NP		0x8000	/* 1=PHY requests exchange of Next Page */
#define PHY_AD_ACK		0x4000	/* 1=got link code word from remote */
#define PHY_AD_RF		0x2000	/* 1=advertise remote fault */
#define PHY_AD_T4		0x0200	/* 1=PHY is capable of 100Base-T4 */
#define PHY_AD_TX_FDX		0x0100	/* 1=PHY is capable of 100Base-TX FDPLX */
#define PHY_AD_TX_HDX		0x0080	/* 1=PHY is capable of 100Base-TX HDPLX */
#define PHY_AD_10_FDX		0x0040	/* 1=PHY is capable of 10Base-T FDPLX */
#define PHY_AD_10_HDX		0x0020	/* 1=PHY is capable of 10Base-T HDPLX */
#define PHY_AD_CSMA		0x0001	/* 1=PHY is capable of 802.3 CMSA */

/* PHY Auto-negotiation Remote End Capability Register */
#define PHY_RMT_REG		0x05
/* Uses same bit definitions as PHY_AD_REG */

/* PHY Configuration Register 1 */
#define PHY_CFG1_REG		0x10
#define PHY_CFG1_LNKDIS		0x8000	/* 1=Rx Link Detect Function disabled */
#define PHY_CFG1_XMTDIS		0x4000	/* 1=TP Transmitter Disabled */
#define PHY_CFG1_XMTPDN		0x2000	/* 1=TP Transmitter Powered Down */
#define PHY_CFG1_BYPSCR		0x0400	/* 1=Bypass scrambler/descrambler */
#define PHY_CFG1_UNSCDS		0x0200	/* 1=Unscramble Idle Reception Disable */
#define PHY_CFG1_EQLZR		0x0100	/* 1=Rx Equalizer Disabled */
#define PHY_CFG1_CABLE		0x0080	/* 1=STP(150ohm), 0=UTP(100ohm) */
#define PHY_CFG1_RLVL0		0x0040	/* 1=Rx Squelch level reduced by 4.5db */
#define PHY_CFG1_TLVL_SHIFT	2	/* Transmit Output Level Adjust */
#define PHY_CFG1_TLVL_MASK	0x003C
#define PHY_CFG1_TRF_MASK	0x0003	/* Transmitter Rise/Fall time */


/* PHY Configuration Register 2 */
#define PHY_CFG2_REG		0x11
#define PHY_CFG2_APOLDIS	0x0020	/* 1=Auto Polarity Correction disabled */
#define PHY_CFG2_JABDIS		0x0010	/* 1=Jabber disabled */
#define PHY_CFG2_MREG		0x0008	/* 1=Multiple register access (MII mgt) */
#define PHY_CFG2_INTMDIO	0x0004	/* 1=Interrupt signaled with MDIO pulseo */

/* PHY Status Output (and Interrupt status) Register */
#define PHY_INT_REG		0x12	/* Status Output (Interrupt Status) */
#define PHY_INT_INT		0x8000	/* 1=bits have changed since last read */
#define	PHY_INT_LNKFAIL		0x4000	/* 1=Link Not detected */
#define PHY_INT_LOSSSYNC	0x2000	/* 1=Descrambler has lost sync */
#define PHY_INT_CWRD		0x1000	/* 1=Invalid 4B5B code detected on rx */
#define PHY_INT_SSD		0x0800	/* 1=No Start Of Stream detected on rx */
#define PHY_INT_ESD		0x0400	/* 1=No End Of Stream detected on rx */
#define PHY_INT_RPOL		0x0200	/* 1=Reverse Polarity detected */
#define PHY_INT_JAB		0x0100	/* 1=Jabber detected */
#define PHY_INT_SPDDET		0x0080	/* 1=100Base-TX mode, 0=10Base-T mode */
#define PHY_INT_DPLXDET		0x0040	/* 1=Device in Full Duplex */

/* PHY Interrupt/Status Mask Register */
#define PHY_MASK_REG		0x13	/* Interrupt Mask */
/* Uses the same bit definitions as PHY_INT_REG */


/*-------------------------------------------------------------------------
 .  I define some macros to make it easier to do somewhat common
 . or slightly complicated, repeated tasks.
 --------------------------------------------------------------------------*/

/* select a register bank, 0 to 3  */

#define SMC_SELECT_BANK(a,x)  { SMC_outw((a), (x), BANK_SELECT ); }

/* this enables an interrupt in the interrupt mask register */
#define SMC_ENABLE_INT(a,x) {\
		unsigned char mask;\
		SMC_SELECT_BANK((a),2);\
		mask = SMC_inb((a), IM_REG );\
		mask |= (x);\
		SMC_outb( (a), mask, IM_REG ); \
}

/* this disables an interrupt from the interrupt mask register */

#define SMC_DISABLE_INT(a,x) {\
		unsigned char mask;\
		SMC_SELECT_BANK(2);\
		mask = SMC_inb( (a), IM_REG );\
		mask &= ~(x);\
		SMC_outb( (a), mask, IM_REG ); \
}

/*----------------------------------------------------------------------
 . Define the interrupts that I want to receive from the card
 .
 . I want:
 .  IM_EPH_INT, for nasty errors
 .  IM_RCV_INT, for happy received packets
 .  IM_RX_OVRN_INT, because I have to kick the receiver
 .  IM_MDINT, for PHY Register 18 Status Changes
 --------------------------------------------------------------------------*/
#define SMC_INTERRUPT_MASK   (IM_EPH_INT | IM_RX_OVRN_INT | IM_RCV_INT | \
	IM_MDINT)

#endif  /* _SMC_91111_H_ */