mt2060.c 10 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
/*
 *  Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
 *
 *  Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
 */

/* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */

#include <linux/module.h>
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include <linux/i2c.h>
#include <linux/slab.h>

#include "dvb_frontend.h"

#include "mt2060.h"
#include "mt2060_priv.h"

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");

#define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0)

// Reads a single register
static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val)
{
	struct i2c_msg msg[2] = {
		{ .addr = priv->cfg->i2c_address, .flags = 0,        .buf = &reg, .len = 1 },
		{ .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .buf = val,  .len = 1 },
	};

	if (i2c_transfer(priv->i2c, msg, 2) != 2) {
		printk(KERN_WARNING "mt2060 I2C read failed\n");
		return -EREMOTEIO;
	}
	return 0;
}

// Writes a single register
static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val)
{
	u8 buf[2] = { reg, val };
	struct i2c_msg msg = {
		.addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = 2
	};

	if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
		printk(KERN_WARNING "mt2060 I2C write failed\n");
		return -EREMOTEIO;
	}
	return 0;
}

// Writes a set of consecutive registers
static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len)
{
	struct i2c_msg msg = {
		.addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = len
	};
	if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
		printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len);
		return -EREMOTEIO;
	}
	return 0;
}

// Initialisation sequences
// LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
static u8 mt2060_config1[] = {
	REG_LO1C1,
	0x3F,	0x74,	0x00,	0x08,	0x93
};

// FMCG=2, GP2=0, GP1=0
static u8 mt2060_config2[] = {
	REG_MISC_CTRL,
	0x20,	0x1E,	0x30,	0xff,	0x80,	0xff,	0x00,	0x2c,	0x42
};

//  VGAG=3, V1CSE=1

#ifdef  MT2060_SPURCHECK
/* The function below calculates the frequency offset between the output frequency if2
 and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
{
	int I,J;
	int dia,diamin,diff;
	diamin=1000000;
	for (I = 1; I < 10; I++) {
		J = ((2*I*lo1)/lo2+1)/2;
		diff = I*(int)lo1-J*(int)lo2;
		if (diff < 0) diff=-diff;
		dia = (diff-(int)if2);
		if (dia < 0) dia=-dia;
		if (diamin > dia) diamin=dia;
	}
	return diamin;
}

#define BANDWIDTH 4000 // kHz

/* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
{
	u32 Spur,Sp1,Sp2;
	int I,J;
	I=0;
	J=1000;

	Spur=mt2060_spurcalc(lo1,lo2,if2);
	if (Spur < BANDWIDTH) {
		/* Potential spurs detected */
		dprintk("Spurs before : f_lo1: %d  f_lo2: %d  (kHz)",
			(int)lo1,(int)lo2);
		I=1000;
		Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
		Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);

		if (Sp1 < Sp2) {
			J=-J; I=-I; Spur=Sp2;
		} else
			Spur=Sp1;

		while (Spur < BANDWIDTH) {
			I += J;
			Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
		}
		dprintk("Spurs after  : f_lo1: %d  f_lo2: %d  (kHz)",
			(int)(lo1+I),(int)(lo2+I));
	}
	return I;
}
#endif

#define IF2  36150       // IF2 frequency = 36.150 MHz
#define FREF 16000       // Quartz oscillator 16 MHz

static int mt2060_set_params(struct dvb_frontend *fe)
{
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
	struct mt2060_priv *priv;
	int ret=0;
	int i=0;
	u32 freq;
	u8  lnaband;
	u32 f_lo1,f_lo2;
	u32 div1,num1,div2,num2;
	u8  b[8];
	u32 if1;

	priv = fe->tuner_priv;

	if1 = priv->if1_freq;
	b[0] = REG_LO1B1;
	b[1] = 0xFF;

	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */

	mt2060_writeregs(priv,b,2);

	freq = c->frequency / 1000; /* Hz -> kHz */

	f_lo1 = freq + if1 * 1000;
	f_lo1 = (f_lo1 / 250) * 250;
	f_lo2 = f_lo1 - freq - IF2;
	// From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise
	f_lo2 = ((f_lo2 + 25) / 50) * 50;
	priv->frequency =  (f_lo1 - f_lo2 - IF2) * 1000,

#ifdef MT2060_SPURCHECK
	// LO-related spurs detection and correction
	num1   = mt2060_spurcheck(f_lo1,f_lo2,IF2);
	f_lo1 += num1;
	f_lo2 += num1;
#endif
	//Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
	num1 = f_lo1 / (FREF / 64);
	div1 = num1 / 64;
	num1 &= 0x3f;

	// Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
	num2 = f_lo2 * 64 / (FREF / 128);
	div2 = num2 / 8192;
	num2 &= 0x1fff;

	if (freq <=  95000) lnaband = 0xB0; else
	if (freq <= 180000) lnaband = 0xA0; else
	if (freq <= 260000) lnaband = 0x90; else
	if (freq <= 335000) lnaband = 0x80; else
	if (freq <= 425000) lnaband = 0x70; else
	if (freq <= 480000) lnaband = 0x60; else
	if (freq <= 570000) lnaband = 0x50; else
	if (freq <= 645000) lnaband = 0x40; else
	if (freq <= 730000) lnaband = 0x30; else
	if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;

	b[0] = REG_LO1C1;
	b[1] = lnaband | ((num1 >>2) & 0x0F);
	b[2] = div1;
	b[3] = (num2 & 0x0F)  | ((num1 & 3) << 4);
	b[4] = num2 >> 4;
	b[5] = ((num2 >>12) & 1) | (div2 << 1);

	dprintk("IF1: %dMHz",(int)if1);
	dprintk("PLL freq=%dkHz  f_lo1=%dkHz  f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2);
	dprintk("PLL div1=%d  num1=%d  div2=%d  num2=%d",(int)div1,(int)num1,(int)div2,(int)num2);
	dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);

	mt2060_writeregs(priv,b,6);

	//Waits for pll lock or timeout
	i = 0;
	do {
		mt2060_readreg(priv,REG_LO_STATUS,b);
		if ((b[0] & 0x88)==0x88)
			break;
		msleep(4);
		i++;
	} while (i<10);

	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */

	return ret;
}

static void mt2060_calibrate(struct mt2060_priv *priv)
{
	u8 b = 0;
	int i = 0;

	if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1)))
		return;
	if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2)))
		return;

	/* initialize the clock output */
	mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);

	do {
		b |= (1 << 6); // FM1SS;
		mt2060_writereg(priv, REG_LO2C1,b);
		msleep(20);

		if (i == 0) {
			b |= (1 << 7); // FM1CA;
			mt2060_writereg(priv, REG_LO2C1,b);
			b &= ~(1 << 7); // FM1CA;
			msleep(20);
		}

		b &= ~(1 << 6); // FM1SS
		mt2060_writereg(priv, REG_LO2C1,b);

		msleep(20);
		i++;
	} while (i < 9);

	i = 0;
	while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
		msleep(20);

	if (i <= 10) {
		mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :)
		dprintk("calibration was successful: %d", (int)priv->fmfreq);
	} else
		dprintk("FMCAL timed out");
}

static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
	struct mt2060_priv *priv = fe->tuner_priv;
	*frequency = priv->frequency;
	return 0;
}

static int mt2060_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
{
	*frequency = IF2 * 1000;
	return 0;
}

static int mt2060_init(struct dvb_frontend *fe)
{
	struct mt2060_priv *priv = fe->tuner_priv;
	int ret;

	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */

	ret = mt2060_writereg(priv, REG_VGAG,
			      (priv->cfg->clock_out << 6) | 0x33);

	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */

	return ret;
}

static int mt2060_sleep(struct dvb_frontend *fe)
{
	struct mt2060_priv *priv = fe->tuner_priv;
	int ret;

	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */

	ret = mt2060_writereg(priv, REG_VGAG,
			      (priv->cfg->clock_out << 6) | 0x30);

	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */

	return ret;
}

static int mt2060_release(struct dvb_frontend *fe)
{
	kfree(fe->tuner_priv);
	fe->tuner_priv = NULL;
	return 0;
}

static const struct dvb_tuner_ops mt2060_tuner_ops = {
	.info = {
		.name           = "Microtune MT2060",
		.frequency_min  =  48000000,
		.frequency_max  = 860000000,
		.frequency_step =     50000,
	},

	.release       = mt2060_release,

	.init          = mt2060_init,
	.sleep         = mt2060_sleep,

	.set_params    = mt2060_set_params,
	.get_frequency = mt2060_get_frequency,
	.get_if_frequency = mt2060_get_if_frequency,
};

/* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
struct dvb_frontend * mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1)
{
	struct mt2060_priv *priv = NULL;
	u8 id = 0;

	priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL);
	if (priv == NULL)
		return NULL;

	priv->cfg      = cfg;
	priv->i2c      = i2c;
	priv->if1_freq = if1;

	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */

	if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) {
		kfree(priv);
		return NULL;
	}

	if (id != PART_REV) {
		kfree(priv);
		return NULL;
	}
	printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1);
	memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops));

	fe->tuner_priv = priv;

	mt2060_calibrate(priv);

	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */

	return fe;
}
EXPORT_SYMBOL(mt2060_attach);

MODULE_AUTHOR("Olivier DANET");
MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
MODULE_LICENSE("GPL");