gc.c 20.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
/*
 * fs/logfs/gc.c	- garbage collection code
 *
 * As should be obvious for Linux kernel code, license is GPLv2
 *
 * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
 */
#include "logfs.h"
#include <linux/sched.h>
#include <linux/slab.h>

/*
 * Wear leveling needs to kick in when the difference between low erase
 * counts and high erase counts gets too big.  A good value for "too big"
 * may be somewhat below 10% of maximum erase count for the device.
 * Why not 397, to pick a nice round number with no specific meaning? :)
 *
 * WL_RATELIMIT is the minimum time between two wear level events.  A huge
 * number of segments may fulfil the requirements for wear leveling at the
 * same time.  If that happens we don't want to cause a latency from hell,
 * but just gently pick one segment every so often and minimize overhead.
 */
#define WL_DELTA 397
#define WL_RATELIMIT 100
#define MAX_OBJ_ALIASES	2600
#define SCAN_RATIO 512	/* number of scanned segments per gc'd segment */
#define LIST_SIZE 64	/* base size of candidate lists */
#define SCAN_ROUNDS 128	/* maximum number of complete medium scans */
#define SCAN_ROUNDS_HIGH 4 /* maximum number of higher-level scans */

static int no_free_segments(struct super_block *sb)
{
	struct logfs_super *super = logfs_super(sb);

	return super->s_free_list.count;
}

/* journal has distance -1, top-most ifile layer distance 0 */
static u8 root_distance(struct super_block *sb, gc_level_t __gc_level)
{
	struct logfs_super *super = logfs_super(sb);
	u8 gc_level = (__force u8)__gc_level;

	switch (gc_level) {
	case 0: /* fall through */
	case 1: /* fall through */
	case 2: /* fall through */
	case 3:
		/* file data or indirect blocks */
		return super->s_ifile_levels + super->s_iblock_levels - gc_level;
	case 6: /* fall through */
	case 7: /* fall through */
	case 8: /* fall through */
	case 9:
		/* inode file data or indirect blocks */
		return super->s_ifile_levels - (gc_level - 6);
	default:
		printk(KERN_ERR"LOGFS: segment of unknown level %x found\n",
				gc_level);
		WARN_ON(1);
		return super->s_ifile_levels + super->s_iblock_levels;
	}
}

static int segment_is_reserved(struct super_block *sb, u32 segno)
{
	struct logfs_super *super = logfs_super(sb);
	struct logfs_area *area;
	void *reserved;
	int i;

	/* Some segments are reserved.  Just pretend they were all valid */
	reserved = btree_lookup32(&super->s_reserved_segments, segno);
	if (reserved)
		return 1;

	/* Currently open segments */
	for_each_area(i) {
		area = super->s_area[i];
		if (area->a_is_open && area->a_segno == segno)
			return 1;
	}

	return 0;
}

static void logfs_mark_segment_bad(struct super_block *sb, u32 segno)
{
	BUG();
}

/*
 * Returns the bytes consumed by valid objects in this segment.  Object headers
 * are counted, the segment header is not.
 */
static u32 logfs_valid_bytes(struct super_block *sb, u32 segno, u32 *ec,
		gc_level_t *gc_level)
{
	struct logfs_segment_entry se;
	u32 ec_level;

	logfs_get_segment_entry(sb, segno, &se);
	if (se.ec_level == cpu_to_be32(BADSEG) ||
			se.valid == cpu_to_be32(RESERVED))
		return RESERVED;

	ec_level = be32_to_cpu(se.ec_level);
	*ec = ec_level >> 4;
	*gc_level = GC_LEVEL(ec_level & 0xf);
	return be32_to_cpu(se.valid);
}

static void logfs_cleanse_block(struct super_block *sb, u64 ofs, u64 ino,
		u64 bix, gc_level_t gc_level)
{
	struct inode *inode;
	int err, cookie;

	inode = logfs_safe_iget(sb, ino, &cookie);
	err = logfs_rewrite_block(inode, bix, ofs, gc_level, 0);
	BUG_ON(err);
	logfs_safe_iput(inode, cookie);
}

static u32 logfs_gc_segment(struct super_block *sb, u32 segno)
{
	struct logfs_super *super = logfs_super(sb);
	struct logfs_segment_header sh;
	struct logfs_object_header oh;
	u64 ofs, ino, bix;
	u32 seg_ofs, logical_segno, cleaned = 0;
	int err, len, valid;
	gc_level_t gc_level;

	LOGFS_BUG_ON(segment_is_reserved(sb, segno), sb);

	btree_insert32(&super->s_reserved_segments, segno, (void *)1, GFP_NOFS);
	err = wbuf_read(sb, dev_ofs(sb, segno, 0), sizeof(sh), &sh);
	BUG_ON(err);
	gc_level = GC_LEVEL(sh.level);
	logical_segno = be32_to_cpu(sh.segno);
	if (sh.crc != logfs_crc32(&sh, sizeof(sh), 4)) {
		logfs_mark_segment_bad(sb, segno);
		cleaned = -1;
		goto out;
	}

	for (seg_ofs = LOGFS_SEGMENT_HEADERSIZE;
			seg_ofs + sizeof(oh) < super->s_segsize; ) {
		ofs = dev_ofs(sb, logical_segno, seg_ofs);
		err = wbuf_read(sb, dev_ofs(sb, segno, seg_ofs), sizeof(oh),
				&oh);
		BUG_ON(err);

		if (!memchr_inv(&oh, 0xff, sizeof(oh)))
			break;

		if (oh.crc != logfs_crc32(&oh, sizeof(oh) - 4, 4)) {
			logfs_mark_segment_bad(sb, segno);
			cleaned = super->s_segsize - 1;
			goto out;
		}

		ino = be64_to_cpu(oh.ino);
		bix = be64_to_cpu(oh.bix);
		len = sizeof(oh) + be16_to_cpu(oh.len);
		valid = logfs_is_valid_block(sb, ofs, ino, bix, gc_level);
		if (valid == 1) {
			logfs_cleanse_block(sb, ofs, ino, bix, gc_level);
			cleaned += len;
		} else if (valid == 2) {
			/* Will be invalid upon journal commit */
			cleaned += len;
		}
		seg_ofs += len;
	}
out:
	btree_remove32(&super->s_reserved_segments, segno);
	return cleaned;
}

static struct gc_candidate *add_list(struct gc_candidate *cand,
		struct candidate_list *list)
{
	struct rb_node **p = &list->rb_tree.rb_node;
	struct rb_node *parent = NULL;
	struct gc_candidate *cur;
	int comp;

	cand->list = list;
	while (*p) {
		parent = *p;
		cur = rb_entry(parent, struct gc_candidate, rb_node);

		if (list->sort_by_ec)
			comp = cand->erase_count < cur->erase_count;
		else
			comp = cand->valid < cur->valid;

		if (comp)
			p = &parent->rb_left;
		else
			p = &parent->rb_right;
	}
	rb_link_node(&cand->rb_node, parent, p);
	rb_insert_color(&cand->rb_node, &list->rb_tree);

	if (list->count <= list->maxcount) {
		list->count++;
		return NULL;
	}
	cand = rb_entry(rb_last(&list->rb_tree), struct gc_candidate, rb_node);
	rb_erase(&cand->rb_node, &list->rb_tree);
	cand->list = NULL;
	return cand;
}

static void remove_from_list(struct gc_candidate *cand)
{
	struct candidate_list *list = cand->list;

	rb_erase(&cand->rb_node, &list->rb_tree);
	list->count--;
}

static void free_candidate(struct super_block *sb, struct gc_candidate *cand)
{
	struct logfs_super *super = logfs_super(sb);

	btree_remove32(&super->s_cand_tree, cand->segno);
	kfree(cand);
}

u32 get_best_cand(struct super_block *sb, struct candidate_list *list, u32 *ec)
{
	struct gc_candidate *cand;
	u32 segno;

	BUG_ON(list->count == 0);

	cand = rb_entry(rb_first(&list->rb_tree), struct gc_candidate, rb_node);
	remove_from_list(cand);
	segno = cand->segno;
	if (ec)
		*ec = cand->erase_count;
	free_candidate(sb, cand);
	return segno;
}

/*
 * We have several lists to manage segments with.  The reserve_list is used to
 * deal with bad blocks.  We try to keep the best (lowest ec) segments on this
 * list.
 * The free_list contains free segments for normal usage.  It usually gets the
 * second pick after the reserve_list.  But when the free_list is running short
 * it is more important to keep the free_list full than to keep a reserve.
 *
 * Segments that are not free are put onto a per-level low_list.  If we have
 * to run garbage collection, we pick a candidate from there.  All segments on
 * those lists should have at least some free space so GC will make progress.
 *
 * And last we have the ec_list, which is used to pick segments for wear
 * leveling.
 *
 * If all appropriate lists are full, we simply free the candidate and forget
 * about that segment for a while.  We have better candidates for each purpose.
 */
static void __add_candidate(struct super_block *sb, struct gc_candidate *cand)
{
	struct logfs_super *super = logfs_super(sb);
	u32 full = super->s_segsize - LOGFS_SEGMENT_RESERVE;

	if (cand->valid == 0) {
		/* 100% free segments */
		log_gc_noisy("add reserve segment %x (ec %x) at %llx\n",
				cand->segno, cand->erase_count,
				dev_ofs(sb, cand->segno, 0));
		cand = add_list(cand, &super->s_reserve_list);
		if (cand) {
			log_gc_noisy("add free segment %x (ec %x) at %llx\n",
					cand->segno, cand->erase_count,
					dev_ofs(sb, cand->segno, 0));
			cand = add_list(cand, &super->s_free_list);
		}
	} else {
		/* good candidates for Garbage Collection */
		if (cand->valid < full)
			cand = add_list(cand, &super->s_low_list[cand->dist]);
		/* good candidates for wear leveling,
		 * segments that were recently written get ignored */
		if (cand)
			cand = add_list(cand, &super->s_ec_list);
	}
	if (cand)
		free_candidate(sb, cand);
}

static int add_candidate(struct super_block *sb, u32 segno, u32 valid, u32 ec,
		u8 dist)
{
	struct logfs_super *super = logfs_super(sb);
	struct gc_candidate *cand;

	cand = kmalloc(sizeof(*cand), GFP_NOFS);
	if (!cand)
		return -ENOMEM;

	cand->segno = segno;
	cand->valid = valid;
	cand->erase_count = ec;
	cand->dist = dist;

	btree_insert32(&super->s_cand_tree, segno, cand, GFP_NOFS);
	__add_candidate(sb, cand);
	return 0;
}

static void remove_segment_from_lists(struct super_block *sb, u32 segno)
{
	struct logfs_super *super = logfs_super(sb);
	struct gc_candidate *cand;

	cand = btree_lookup32(&super->s_cand_tree, segno);
	if (cand) {
		remove_from_list(cand);
		free_candidate(sb, cand);
	}
}

static void scan_segment(struct super_block *sb, u32 segno)
{
	u32 valid, ec = 0;
	gc_level_t gc_level = 0;
	u8 dist;

	if (segment_is_reserved(sb, segno))
		return;

	remove_segment_from_lists(sb, segno);
	valid = logfs_valid_bytes(sb, segno, &ec, &gc_level);
	if (valid == RESERVED)
		return;

	dist = root_distance(sb, gc_level);
	add_candidate(sb, segno, valid, ec, dist);
}

static struct gc_candidate *first_in_list(struct candidate_list *list)
{
	if (list->count == 0)
		return NULL;
	return rb_entry(rb_first(&list->rb_tree), struct gc_candidate, rb_node);
}

/*
 * Find the best segment for garbage collection.  Main criterion is
 * the segment requiring the least effort to clean.  Secondary
 * criterion is to GC on the lowest level available.
 *
 * So we search the least effort segment on the lowest level first,
 * then move up and pick another segment iff is requires significantly
 * less effort.  Hence the LOGFS_MAX_OBJECTSIZE in the comparison.
 */
static struct gc_candidate *get_candidate(struct super_block *sb)
{
	struct logfs_super *super = logfs_super(sb);
	int i, max_dist;
	struct gc_candidate *cand = NULL, *this;

	max_dist = min(no_free_segments(sb), LOGFS_NO_AREAS - 1);

	for (i = max_dist; i >= 0; i--) {
		this = first_in_list(&super->s_low_list[i]);
		if (!this)
			continue;
		if (!cand)
			cand = this;
		if (this->valid + LOGFS_MAX_OBJECTSIZE <= cand->valid)
			cand = this;
	}
	return cand;
}

static int __logfs_gc_once(struct super_block *sb, struct gc_candidate *cand)
{
	struct logfs_super *super = logfs_super(sb);
	gc_level_t gc_level;
	u32 cleaned, valid, segno, ec;
	u8 dist;

	if (!cand) {
		log_gc("GC attempted, but no candidate found\n");
		return 0;
	}

	segno = cand->segno;
	dist = cand->dist;
	valid = logfs_valid_bytes(sb, segno, &ec, &gc_level);
	free_candidate(sb, cand);
	log_gc("GC segment #%02x at %llx, %x required, %x free, %x valid, %llx free\n",
			segno, (u64)segno << super->s_segshift,
			dist, no_free_segments(sb), valid,
			super->s_free_bytes);
	cleaned = logfs_gc_segment(sb, segno);
	log_gc("GC segment #%02x complete - now %x valid\n", segno,
			valid - cleaned);
	BUG_ON(cleaned != valid);
	return 1;
}

static int logfs_gc_once(struct super_block *sb)
{
	struct gc_candidate *cand;

	cand = get_candidate(sb);
	if (cand)
		remove_from_list(cand);
	return __logfs_gc_once(sb, cand);
}

/* returns 1 if a wrap occurs, 0 otherwise */
static int logfs_scan_some(struct super_block *sb)
{
	struct logfs_super *super = logfs_super(sb);
	u32 segno;
	int i, ret = 0;

	segno = super->s_sweeper;
	for (i = SCAN_RATIO; i > 0; i--) {
		segno++;
		if (segno >= super->s_no_segs) {
			segno = 0;
			ret = 1;
			/* Break out of the loop.  We want to read a single
			 * block from the segment size on next invocation if
			 * SCAN_RATIO is set to match block size
			 */
			break;
		}

		scan_segment(sb, segno);
	}
	super->s_sweeper = segno;
	return ret;
}

/*
 * In principle, this function should loop forever, looking for GC candidates
 * and moving data.  LogFS is designed in such a way that this loop is
 * guaranteed to terminate.
 *
 * Limiting the loop to some iterations serves purely to catch cases when
 * these guarantees have failed.  An actual endless loop is an obvious bug
 * and should be reported as such.
 */
static void __logfs_gc_pass(struct super_block *sb, int target)
{
	struct logfs_super *super = logfs_super(sb);
	struct logfs_block *block;
	int round, progress, last_progress = 0;

	/*
	 * Doing too many changes to the segfile at once would result
	 * in a large number of aliases.  Write the journal before
	 * things get out of hand.
	 */
	if (super->s_shadow_tree.no_shadowed_segments >= MAX_OBJ_ALIASES)
		logfs_write_anchor(sb);

	if (no_free_segments(sb) >= target &&
			super->s_no_object_aliases < MAX_OBJ_ALIASES)
		return;

	log_gc("__logfs_gc_pass(%x)\n", target);
	for (round = 0; round < SCAN_ROUNDS; ) {
		if (no_free_segments(sb) >= target)
			goto write_alias;

		/* Sync in-memory state with on-medium state in case they
		 * diverged */
		logfs_write_anchor(sb);
		round += logfs_scan_some(sb);
		if (no_free_segments(sb) >= target)
			goto write_alias;
		progress = logfs_gc_once(sb);
		if (progress)
			last_progress = round;
		else if (round - last_progress > 2)
			break;
		continue;

		/*
		 * The goto logic is nasty, I just don't know a better way to
		 * code it.  GC is supposed to ensure two things:
		 * 1. Enough free segments are available.
		 * 2. The number of aliases is bounded.
		 * When 1. is achieved, we take a look at 2. and write back
		 * some alias-containing blocks, if necessary.  However, after
		 * each such write we need to go back to 1., as writes can
		 * consume free segments.
		 */
write_alias:
		if (super->s_no_object_aliases < MAX_OBJ_ALIASES)
			return;
		if (list_empty(&super->s_object_alias)) {
			/* All aliases are still in btree */
			return;
		}
		log_gc("Write back one alias\n");
		block = list_entry(super->s_object_alias.next,
				struct logfs_block, alias_list);
		block->ops->write_block(block);
		/*
		 * To round off the nasty goto logic, we reset round here.  It
		 * is a safety-net for GC not making any progress and limited
		 * to something reasonably small.  If incremented it for every
		 * single alias, the loop could terminate rather quickly.
		 */
		round = 0;
	}
	LOGFS_BUG(sb);
}

static int wl_ratelimit(struct super_block *sb, u64 *next_event)
{
	struct logfs_super *super = logfs_super(sb);

	if (*next_event < super->s_gec) {
		*next_event = super->s_gec + WL_RATELIMIT;
		return 0;
	}
	return 1;
}

static void logfs_wl_pass(struct super_block *sb)
{
	struct logfs_super *super = logfs_super(sb);
	struct gc_candidate *wl_cand, *free_cand;

	if (wl_ratelimit(sb, &super->s_wl_gec_ostore))
		return;

	wl_cand = first_in_list(&super->s_ec_list);
	if (!wl_cand)
		return;
	free_cand = first_in_list(&super->s_free_list);
	if (!free_cand)
		return;

	if (wl_cand->erase_count < free_cand->erase_count + WL_DELTA) {
		remove_from_list(wl_cand);
		__logfs_gc_once(sb, wl_cand);
	}
}

/*
 * The journal needs wear leveling as well.  But moving the journal is an
 * expensive operation so we try to avoid it as much as possible.  And if we
 * have to do it, we move the whole journal, not individual segments.
 *
 * Ratelimiting is not strictly necessary here, it mainly serves to avoid the
 * calculations.  First we check whether moving the journal would be a
 * significant improvement.  That means that a) the current journal segments
 * have more wear than the future journal segments and b) the current journal
 * segments have more wear than normal ostore segments.
 * Rationale for b) is that we don't have to move the journal if it is aging
 * less than the ostore, even if the reserve segments age even less (they are
 * excluded from wear leveling, after all).
 * Next we check that the superblocks have less wear than the journal.  Since
 * moving the journal requires writing the superblocks, we have to protect the
 * superblocks even more than the journal.
 *
 * Also we double the acceptable wear difference, compared to ostore wear
 * leveling.  Journal data is read and rewritten rapidly, comparatively.  So
 * soft errors have much less time to accumulate and we allow the journal to
 * be a bit worse than the ostore.
 */
static void logfs_journal_wl_pass(struct super_block *sb)
{
	struct logfs_super *super = logfs_super(sb);
	struct gc_candidate *cand;
	u32 min_journal_ec = -1, max_reserve_ec = 0;
	int i;

	if (wl_ratelimit(sb, &super->s_wl_gec_journal))
		return;

	if (super->s_reserve_list.count < super->s_no_journal_segs) {
		/* Reserve is not full enough to move complete journal */
		return;
	}

	journal_for_each(i)
		if (super->s_journal_seg[i])
			min_journal_ec = min(min_journal_ec,
					super->s_journal_ec[i]);
	cand = rb_entry(rb_first(&super->s_free_list.rb_tree),
			struct gc_candidate, rb_node);
	max_reserve_ec = cand->erase_count;
	for (i = 0; i < 2; i++) {
		struct logfs_segment_entry se;
		u32 segno = seg_no(sb, super->s_sb_ofs[i]);
		u32 ec;

		logfs_get_segment_entry(sb, segno, &se);
		ec = be32_to_cpu(se.ec_level) >> 4;
		max_reserve_ec = max(max_reserve_ec, ec);
	}

	if (min_journal_ec > max_reserve_ec + 2 * WL_DELTA) {
		do_logfs_journal_wl_pass(sb);
	}
}

void logfs_gc_pass(struct super_block *sb)
{
	struct logfs_super *super = logfs_super(sb);

	//BUG_ON(mutex_trylock(&logfs_super(sb)->s_w_mutex));
	/* Write journal before free space is getting saturated with dirty
	 * objects.
	 */
	if (super->s_dirty_used_bytes + super->s_dirty_free_bytes
			+ LOGFS_MAX_OBJECTSIZE >= super->s_free_bytes)
		logfs_write_anchor(sb);
	__logfs_gc_pass(sb, super->s_total_levels);
	logfs_wl_pass(sb);
	logfs_journal_wl_pass(sb);
}

static int check_area(struct super_block *sb, int i)
{
	struct logfs_super *super = logfs_super(sb);
	struct logfs_area *area = super->s_area[i];
	gc_level_t gc_level;
	u32 cleaned, valid, ec;
	u32 segno = area->a_segno;
	u64 ofs = dev_ofs(sb, area->a_segno, area->a_written_bytes);

	if (!area->a_is_open)
		return 0;

	if (super->s_devops->can_write_buf(sb, ofs) == 0)
		return 0;

	printk(KERN_INFO"LogFS: Possibly incomplete write at %llx\n", ofs);
	/*
	 * The device cannot write back the write buffer.  Most likely the
	 * wbuf was already written out and the system crashed at some point
	 * before the journal commit happened.  In that case we wouldn't have
	 * to do anything.  But if the crash happened before the wbuf was
	 * written out correctly, we must GC this segment.  So assume the
	 * worst and always do the GC run.
	 */
	area->a_is_open = 0;
	valid = logfs_valid_bytes(sb, segno, &ec, &gc_level);
	cleaned = logfs_gc_segment(sb, segno);
	if (cleaned != valid)
		return -EIO;
	return 0;
}

int logfs_check_areas(struct super_block *sb)
{
	int i, err;

	for_each_area(i) {
		err = check_area(sb, i);
		if (err)
			return err;
	}
	return 0;
}

static void logfs_init_candlist(struct candidate_list *list, int maxcount,
		int sort_by_ec)
{
	list->count = 0;
	list->maxcount = maxcount;
	list->sort_by_ec = sort_by_ec;
	list->rb_tree = RB_ROOT;
}

int logfs_init_gc(struct super_block *sb)
{
	struct logfs_super *super = logfs_super(sb);
	int i;

	btree_init_mempool32(&super->s_cand_tree, super->s_btree_pool);
	logfs_init_candlist(&super->s_free_list, LIST_SIZE + SCAN_RATIO, 1);
	logfs_init_candlist(&super->s_reserve_list,
			super->s_bad_seg_reserve, 1);
	for_each_area(i)
		logfs_init_candlist(&super->s_low_list[i], LIST_SIZE, 0);
	logfs_init_candlist(&super->s_ec_list, LIST_SIZE, 1);
	return 0;
}

static void logfs_cleanup_list(struct super_block *sb,
		struct candidate_list *list)
{
	struct gc_candidate *cand;

	while (list->count) {
		cand = rb_entry(list->rb_tree.rb_node, struct gc_candidate,
				rb_node);
		remove_from_list(cand);
		free_candidate(sb, cand);
	}
	BUG_ON(list->rb_tree.rb_node);
}

void logfs_cleanup_gc(struct super_block *sb)
{
	struct logfs_super *super = logfs_super(sb);
	int i;

	if (!super->s_free_list.count)
		return;

	/*
	 * FIXME: The btree may still contain a single empty node.  So we
	 * call the grim visitor to clean up that mess.  Btree code should
	 * do it for us, really.
	 */
	btree_grim_visitor32(&super->s_cand_tree, 0, NULL);
	logfs_cleanup_list(sb, &super->s_free_list);
	logfs_cleanup_list(sb, &super->s_reserve_list);
	for_each_area(i)
		logfs_cleanup_list(sb, &super->s_low_list[i]);
	logfs_cleanup_list(sb, &super->s_ec_list);
}