red.h 10 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
#ifndef __NET_SCHED_RED_H
#define __NET_SCHED_RED_H

#include <linux/types.h>
#include <linux/bug.h>
#include <net/pkt_sched.h>
#include <net/inet_ecn.h>
#include <net/dsfield.h>
#include <linux/reciprocal_div.h>

/*	Random Early Detection (RED) algorithm.
	=======================================

	Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
	for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.

	This file codes a "divisionless" version of RED algorithm
	as written down in Fig.17 of the paper.

	Short description.
	------------------

	When a new packet arrives we calculate the average queue length:

	avg = (1-W)*avg + W*current_queue_len,

	W is the filter time constant (chosen as 2^(-Wlog)), it controls
	the inertia of the algorithm. To allow larger bursts, W should be
	decreased.

	if (avg > th_max) -> packet marked (dropped).
	if (avg < th_min) -> packet passes.
	if (th_min < avg < th_max) we calculate probability:

	Pb = max_P * (avg - th_min)/(th_max-th_min)

	and mark (drop) packet with this probability.
	Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
	max_P should be small (not 1), usually 0.01..0.02 is good value.

	max_P is chosen as a number, so that max_P/(th_max-th_min)
	is a negative power of two in order arithmetics to contain
	only shifts.


	Parameters, settable by user:
	-----------------------------

	qth_min		- bytes (should be < qth_max/2)
	qth_max		- bytes (should be at least 2*qth_min and less limit)
	Wlog	       	- bits (<32) log(1/W).
	Plog	       	- bits (<32)

	Plog is related to max_P by formula:

	max_P = (qth_max-qth_min)/2^Plog;

	F.e. if qth_max=128K and qth_min=32K, then Plog=22
	corresponds to max_P=0.02

	Scell_log
	Stab

	Lookup table for log((1-W)^(t/t_ave).


	NOTES:

	Upper bound on W.
	-----------------

	If you want to allow bursts of L packets of size S,
	you should choose W:

	L + 1 - th_min/S < (1-(1-W)^L)/W

	th_min/S = 32         th_min/S = 4

	log(W)	L
	-1	33
	-2	35
	-3	39
	-4	46
	-5	57
	-6	75
	-7	101
	-8	135
	-9	190
	etc.
 */

/*
 * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
 * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
 *
 * Every 500 ms:
 *  if (avg > target and max_p <= 0.5)
 *   increase max_p : max_p += alpha;
 *  else if (avg < target and max_p >= 0.01)
 *   decrease max_p : max_p *= beta;
 *
 * target :[qth_min + 0.4*(qth_min - qth_max),
 *          qth_min + 0.6*(qth_min - qth_max)].
 * alpha : min(0.01, max_p / 4)
 * beta : 0.9
 * max_P is a Q0.32 fixed point number (with 32 bits mantissa)
 * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
 */
#define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))

#define MAX_P_MIN (1 * RED_ONE_PERCENT)
#define MAX_P_MAX (50 * RED_ONE_PERCENT)
#define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)

#define RED_STAB_SIZE	256
#define RED_STAB_MASK	(RED_STAB_SIZE - 1)

struct red_stats {
	u32		prob_drop;	/* Early probability drops */
	u32		prob_mark;	/* Early probability marks */
	u32		forced_drop;	/* Forced drops, qavg > max_thresh */
	u32		forced_mark;	/* Forced marks, qavg > max_thresh */
	u32		pdrop;          /* Drops due to queue limits */
	u32		other;          /* Drops due to drop() calls */
};

struct red_parms {
	/* Parameters */
	u32		qth_min;	/* Min avg length threshold: Wlog scaled */
	u32		qth_max;	/* Max avg length threshold: Wlog scaled */
	u32		Scell_max;
	u32		max_P;		/* probability, [0 .. 1.0] 32 scaled */
	/* reciprocal_value(max_P / qth_delta) */
	struct reciprocal_value	max_P_reciprocal;
	u32		qth_delta;	/* max_th - min_th */
	u32		target_min;	/* min_th + 0.4*(max_th - min_th) */
	u32		target_max;	/* min_th + 0.6*(max_th - min_th) */
	u8		Scell_log;
	u8		Wlog;		/* log(W)		*/
	u8		Plog;		/* random number bits	*/
	u8		Stab[RED_STAB_SIZE];
};

struct red_vars {
	/* Variables */
	int		qcount;		/* Number of packets since last random
					   number generation */
	u32		qR;		/* Cached random number */

	unsigned long	qavg;		/* Average queue length: Wlog scaled */
	ktime_t		qidlestart;	/* Start of current idle period */
};

static inline u32 red_maxp(u8 Plog)
{
	return Plog < 32 ? (~0U >> Plog) : ~0U;
}

static inline void red_set_vars(struct red_vars *v)
{
	/* Reset average queue length, the value is strictly bound
	 * to the parameters below, reseting hurts a bit but leaving
	 * it might result in an unreasonable qavg for a while. --TGR
	 */
	v->qavg		= 0;

	v->qcount	= -1;
}

static inline void red_set_parms(struct red_parms *p,
				 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
				 u8 Scell_log, u8 *stab, u32 max_P)
{
	int delta = qth_max - qth_min;
	u32 max_p_delta;

	p->qth_min	= qth_min << Wlog;
	p->qth_max	= qth_max << Wlog;
	p->Wlog		= Wlog;
	p->Plog		= Plog;
	if (delta < 0)
		delta = 1;
	p->qth_delta	= delta;
	if (!max_P) {
		max_P = red_maxp(Plog);
		max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
	}
	p->max_P = max_P;
	max_p_delta = max_P / delta;
	max_p_delta = max(max_p_delta, 1U);
	p->max_P_reciprocal  = reciprocal_value(max_p_delta);

	/* RED Adaptative target :
	 * [min_th + 0.4*(min_th - max_th),
	 *  min_th + 0.6*(min_th - max_th)].
	 */
	delta /= 5;
	p->target_min = qth_min + 2*delta;
	p->target_max = qth_min + 3*delta;

	p->Scell_log	= Scell_log;
	p->Scell_max	= (255 << Scell_log);

	if (stab)
		memcpy(p->Stab, stab, sizeof(p->Stab));
}

static inline int red_is_idling(const struct red_vars *v)
{
	return v->qidlestart.tv64 != 0;
}

static inline void red_start_of_idle_period(struct red_vars *v)
{
	v->qidlestart = ktime_get();
}

static inline void red_end_of_idle_period(struct red_vars *v)
{
	v->qidlestart.tv64 = 0;
}

static inline void red_restart(struct red_vars *v)
{
	red_end_of_idle_period(v);
	v->qavg = 0;
	v->qcount = -1;
}

static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
							 const struct red_vars *v)
{
	s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
	long us_idle = min_t(s64, delta, p->Scell_max);
	int  shift;

	/*
	 * The problem: ideally, average length queue recalcultion should
	 * be done over constant clock intervals. This is too expensive, so
	 * that the calculation is driven by outgoing packets.
	 * When the queue is idle we have to model this clock by hand.
	 *
	 * SF+VJ proposed to "generate":
	 *
	 *	m = idletime / (average_pkt_size / bandwidth)
	 *
	 * dummy packets as a burst after idle time, i.e.
	 *
	 * 	v->qavg *= (1-W)^m
	 *
	 * This is an apparently overcomplicated solution (f.e. we have to
	 * precompute a table to make this calculation in reasonable time)
	 * I believe that a simpler model may be used here,
	 * but it is field for experiments.
	 */

	shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];

	if (shift)
		return v->qavg >> shift;
	else {
		/* Approximate initial part of exponent with linear function:
		 *
		 * 	(1-W)^m ~= 1-mW + ...
		 *
		 * Seems, it is the best solution to
		 * problem of too coarse exponent tabulation.
		 */
		us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;

		if (us_idle < (v->qavg >> 1))
			return v->qavg - us_idle;
		else
			return v->qavg >> 1;
	}
}

static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
						       const struct red_vars *v,
						       unsigned int backlog)
{
	/*
	 * NOTE: v->qavg is fixed point number with point at Wlog.
	 * The formula below is equvalent to floating point
	 * version:
	 *
	 * 	qavg = qavg*(1-W) + backlog*W;
	 *
	 * --ANK (980924)
	 */
	return v->qavg + (backlog - (v->qavg >> p->Wlog));
}

static inline unsigned long red_calc_qavg(const struct red_parms *p,
					  const struct red_vars *v,
					  unsigned int backlog)
{
	if (!red_is_idling(v))
		return red_calc_qavg_no_idle_time(p, v, backlog);
	else
		return red_calc_qavg_from_idle_time(p, v);
}


static inline u32 red_random(const struct red_parms *p)
{
	return reciprocal_divide(prandom_u32(), p->max_P_reciprocal);
}

static inline int red_mark_probability(const struct red_parms *p,
				       const struct red_vars *v,
				       unsigned long qavg)
{
	/* The formula used below causes questions.

	   OK. qR is random number in the interval
		(0..1/max_P)*(qth_max-qth_min)
	   i.e. 0..(2^Plog). If we used floating point
	   arithmetics, it would be: (2^Plog)*rnd_num,
	   where rnd_num is less 1.

	   Taking into account, that qavg have fixed
	   point at Wlog, two lines
	   below have the following floating point equivalent:

	   max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount

	   Any questions? --ANK (980924)
	 */
	return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
}

enum {
	RED_BELOW_MIN_THRESH,
	RED_BETWEEN_TRESH,
	RED_ABOVE_MAX_TRESH,
};

static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
{
	if (qavg < p->qth_min)
		return RED_BELOW_MIN_THRESH;
	else if (qavg >= p->qth_max)
		return RED_ABOVE_MAX_TRESH;
	else
		return RED_BETWEEN_TRESH;
}

enum {
	RED_DONT_MARK,
	RED_PROB_MARK,
	RED_HARD_MARK,
};

static inline int red_action(const struct red_parms *p,
			     struct red_vars *v,
			     unsigned long qavg)
{
	switch (red_cmp_thresh(p, qavg)) {
		case RED_BELOW_MIN_THRESH:
			v->qcount = -1;
			return RED_DONT_MARK;

		case RED_BETWEEN_TRESH:
			if (++v->qcount) {
				if (red_mark_probability(p, v, qavg)) {
					v->qcount = 0;
					v->qR = red_random(p);
					return RED_PROB_MARK;
				}
			} else
				v->qR = red_random(p);

			return RED_DONT_MARK;

		case RED_ABOVE_MAX_TRESH:
			v->qcount = -1;
			return RED_HARD_MARK;
	}

	BUG();
	return RED_DONT_MARK;
}

static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
{
	unsigned long qavg;
	u32 max_p_delta;

	qavg = v->qavg;
	if (red_is_idling(v))
		qavg = red_calc_qavg_from_idle_time(p, v);

	/* v->qavg is fixed point number with point at Wlog */
	qavg >>= p->Wlog;

	if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
		p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
	else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
		p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */

	max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
	max_p_delta = max(max_p_delta, 1U);
	p->max_P_reciprocal = reciprocal_value(max_p_delta);
}
#endif