lock_dlm.c 38.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
/*
 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
 * Copyright 2004-2011 Red Hat, Inc.
 *
 * This copyrighted material is made available to anyone wishing to use,
 * modify, copy, or redistribute it subject to the terms and conditions
 * of the GNU General Public License version 2.
 */

#include <linux/fs.h>
#include <linux/dlm.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/gfs2_ondisk.h>

#include "incore.h"
#include "glock.h"
#include "util.h"
#include "sys.h"
#include "trace_gfs2.h"

extern struct workqueue_struct *gfs2_control_wq;

/**
 * gfs2_update_stats - Update time based stats
 * @mv: Pointer to mean/variance structure to update
 * @sample: New data to include
 *
 * @delta is the difference between the current rtt sample and the
 * running average srtt. We add 1/8 of that to the srtt in order to
 * update the current srtt estimate. The varience estimate is a bit
 * more complicated. We subtract the abs value of the @delta from
 * the current variance estimate and add 1/4 of that to the running
 * total.
 *
 * Note that the index points at the array entry containing the smoothed
 * mean value, and the variance is always in the following entry
 *
 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
 * they are not scaled fixed point.
 */

static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
				     s64 sample)
{
	s64 delta = sample - s->stats[index];
	s->stats[index] += (delta >> 3);
	index++;
	s->stats[index] += ((abs64(delta) - s->stats[index]) >> 2);
}

/**
 * gfs2_update_reply_times - Update locking statistics
 * @gl: The glock to update
 *
 * This assumes that gl->gl_dstamp has been set earlier.
 *
 * The rtt (lock round trip time) is an estimate of the time
 * taken to perform a dlm lock request. We update it on each
 * reply from the dlm.
 *
 * The blocking flag is set on the glock for all dlm requests
 * which may potentially block due to lock requests from other nodes.
 * DLM requests where the current lock state is exclusive, the
 * requested state is null (or unlocked) or where the TRY or
 * TRY_1CB flags are set are classified as non-blocking. All
 * other DLM requests are counted as (potentially) blocking.
 */
static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
{
	struct gfs2_pcpu_lkstats *lks;
	const unsigned gltype = gl->gl_name.ln_type;
	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
	s64 rtt;

	preempt_disable();
	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
	lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
	preempt_enable();

	trace_gfs2_glock_lock_time(gl, rtt);
}

/**
 * gfs2_update_request_times - Update locking statistics
 * @gl: The glock to update
 *
 * The irt (lock inter-request times) measures the average time
 * between requests to the dlm. It is updated immediately before
 * each dlm call.
 */

static inline void gfs2_update_request_times(struct gfs2_glock *gl)
{
	struct gfs2_pcpu_lkstats *lks;
	const unsigned gltype = gl->gl_name.ln_type;
	ktime_t dstamp;
	s64 irt;

	preempt_disable();
	dstamp = gl->gl_dstamp;
	gl->gl_dstamp = ktime_get_real();
	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
	lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
	preempt_enable();
}
 
static void gdlm_ast(void *arg)
{
	struct gfs2_glock *gl = arg;
	unsigned ret = gl->gl_state;

	gfs2_update_reply_times(gl);
	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);

	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);

	switch (gl->gl_lksb.sb_status) {
	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
		gfs2_glock_free(gl);
		return;
	case -DLM_ECANCEL: /* Cancel while getting lock */
		ret |= LM_OUT_CANCELED;
		goto out;
	case -EAGAIN: /* Try lock fails */
	case -EDEADLK: /* Deadlock detected */
		goto out;
	case -ETIMEDOUT: /* Canceled due to timeout */
		ret |= LM_OUT_ERROR;
		goto out;
	case 0: /* Success */
		break;
	default: /* Something unexpected */
		BUG();
	}

	ret = gl->gl_req;
	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
		if (gl->gl_req == LM_ST_SHARED)
			ret = LM_ST_DEFERRED;
		else if (gl->gl_req == LM_ST_DEFERRED)
			ret = LM_ST_SHARED;
		else
			BUG();
	}

	set_bit(GLF_INITIAL, &gl->gl_flags);
	gfs2_glock_complete(gl, ret);
	return;
out:
	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
		gl->gl_lksb.sb_lkid = 0;
	gfs2_glock_complete(gl, ret);
}

static void gdlm_bast(void *arg, int mode)
{
	struct gfs2_glock *gl = arg;

	switch (mode) {
	case DLM_LOCK_EX:
		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
		break;
	case DLM_LOCK_CW:
		gfs2_glock_cb(gl, LM_ST_DEFERRED);
		break;
	case DLM_LOCK_PR:
		gfs2_glock_cb(gl, LM_ST_SHARED);
		break;
	default:
		printk(KERN_ERR "unknown bast mode %d", mode);
		BUG();
	}
}

/* convert gfs lock-state to dlm lock-mode */

static int make_mode(const unsigned int lmstate)
{
	switch (lmstate) {
	case LM_ST_UNLOCKED:
		return DLM_LOCK_NL;
	case LM_ST_EXCLUSIVE:
		return DLM_LOCK_EX;
	case LM_ST_DEFERRED:
		return DLM_LOCK_CW;
	case LM_ST_SHARED:
		return DLM_LOCK_PR;
	}
	printk(KERN_ERR "unknown LM state %d", lmstate);
	BUG();
	return -1;
}

static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
		      const int req)
{
	u32 lkf = 0;

	if (gl->gl_lksb.sb_lvbptr)
		lkf |= DLM_LKF_VALBLK;

	if (gfs_flags & LM_FLAG_TRY)
		lkf |= DLM_LKF_NOQUEUE;

	if (gfs_flags & LM_FLAG_TRY_1CB) {
		lkf |= DLM_LKF_NOQUEUE;
		lkf |= DLM_LKF_NOQUEUEBAST;
	}

	if (gfs_flags & LM_FLAG_PRIORITY) {
		lkf |= DLM_LKF_NOORDER;
		lkf |= DLM_LKF_HEADQUE;
	}

	if (gfs_flags & LM_FLAG_ANY) {
		if (req == DLM_LOCK_PR)
			lkf |= DLM_LKF_ALTCW;
		else if (req == DLM_LOCK_CW)
			lkf |= DLM_LKF_ALTPR;
		else
			BUG();
	}

	if (gl->gl_lksb.sb_lkid != 0) {
		lkf |= DLM_LKF_CONVERT;
		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
			lkf |= DLM_LKF_QUECVT;
	}

	return lkf;
}

static void gfs2_reverse_hex(char *c, u64 value)
{
	*c = '0';
	while (value) {
		*c-- = hex_asc[value & 0x0f];
		value >>= 4;
	}
}

static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
		     unsigned int flags)
{
	struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
	int req;
	u32 lkf;
	char strname[GDLM_STRNAME_BYTES] = "";

	req = make_mode(req_state);
	lkf = make_flags(gl, flags, req);
	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
	if (gl->gl_lksb.sb_lkid) {
		gfs2_update_request_times(gl);
	} else {
		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
		strname[GDLM_STRNAME_BYTES - 1] = '\0';
		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
		gl->gl_dstamp = ktime_get_real();
	}
	/*
	 * Submit the actual lock request.
	 */

	return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
}

static void gdlm_put_lock(struct gfs2_glock *gl)
{
	struct gfs2_sbd *sdp = gl->gl_sbd;
	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
	int lvb_needs_unlock = 0;
	int error;

	if (gl->gl_lksb.sb_lkid == 0) {
		gfs2_glock_free(gl);
		return;
	}

	clear_bit(GLF_BLOCKING, &gl->gl_flags);
	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
	gfs2_update_request_times(gl);

	/* don't want to skip dlm_unlock writing the lvb when lock is ex */

	if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE))
		lvb_needs_unlock = 1;

	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
	    !lvb_needs_unlock) {
		gfs2_glock_free(gl);
		return;
	}

	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
			   NULL, gl);
	if (error) {
		printk(KERN_ERR "gdlm_unlock %x,%llx err=%d\n",
		       gl->gl_name.ln_type,
		       (unsigned long long)gl->gl_name.ln_number, error);
		return;
	}
}

static void gdlm_cancel(struct gfs2_glock *gl)
{
	struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
}

/*
 * dlm/gfs2 recovery coordination using dlm_recover callbacks
 *
 *  1. dlm_controld sees lockspace members change
 *  2. dlm_controld blocks dlm-kernel locking activity
 *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
 *  4. dlm_controld starts and finishes its own user level recovery
 *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
 *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
 *  7. dlm_recoverd does its own lock recovery
 *  8. dlm_recoverd unblocks dlm-kernel locking activity
 *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
 * 12. gfs2_recover dequeues and recovers journals of failed nodes
 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
 * 15. gfs2_control unblocks normal locking when all journals are recovered
 *
 * - failures during recovery
 *
 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
 * recovering for a prior failure.  gfs2_control needs a way to detect
 * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
 * the recover_block and recover_start values.
 *
 * recover_done() provides a new lockspace generation number each time it
 * is called (step 9).  This generation number is saved as recover_start.
 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
 * recover_block = recover_start.  So, while recover_block is equal to
 * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
 *
 * - more specific gfs2 steps in sequence above
 *
 *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
 *  6. recover_slot records any failed jids (maybe none)
 *  9. recover_done sets recover_start = new generation number
 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
 * 12. gfs2_recover does journal recoveries for failed jids identified above
 * 14. gfs2_control clears control_lock lvb bits for recovered jids
 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
 *     again) then do nothing, otherwise if recover_start > recover_block
 *     then clear BLOCK_LOCKS.
 *
 * - parallel recovery steps across all nodes
 *
 * All nodes attempt to update the control_lock lvb with the new generation
 * number and jid bits, but only the first to get the control_lock EX will
 * do so; others will see that it's already done (lvb already contains new
 * generation number.)
 *
 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
 * . One node gets control_lock first and writes the lvb, others see it's done
 * . All nodes attempt to recover jids for which they see control_lock bits set
 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
 * . All nodes will eventually see all lvb bits clear and unblock locks
 *
 * - is there a problem with clearing an lvb bit that should be set
 *   and missing a journal recovery?
 *
 * 1. jid fails
 * 2. lvb bit set for step 1
 * 3. jid recovered for step 1
 * 4. jid taken again (new mount)
 * 5. jid fails (for step 4)
 * 6. lvb bit set for step 5 (will already be set)
 * 7. lvb bit cleared for step 3
 *
 * This is not a problem because the failure in step 5 does not
 * require recovery, because the mount in step 4 could not have
 * progressed far enough to unblock locks and access the fs.  The
 * control_mount() function waits for all recoveries to be complete
 * for the latest lockspace generation before ever unblocking locks
 * and returning.  The mount in step 4 waits until the recovery in
 * step 1 is done.
 *
 * - special case of first mounter: first node to mount the fs
 *
 * The first node to mount a gfs2 fs needs to check all the journals
 * and recover any that need recovery before other nodes are allowed
 * to mount the fs.  (Others may begin mounting, but they must wait
 * for the first mounter to be done before taking locks on the fs
 * or accessing the fs.)  This has two parts:
 *
 * 1. The mounted_lock tells a node it's the first to mount the fs.
 * Each node holds the mounted_lock in PR while it's mounted.
 * Each node tries to acquire the mounted_lock in EX when it mounts.
 * If a node is granted the mounted_lock EX it means there are no
 * other mounted nodes (no PR locks exist), and it is the first mounter.
 * The mounted_lock is demoted to PR when first recovery is done, so
 * others will fail to get an EX lock, but will get a PR lock.
 *
 * 2. The control_lock blocks others in control_mount() while the first
 * mounter is doing first mount recovery of all journals.
 * A mounting node needs to acquire control_lock in EX mode before
 * it can proceed.  The first mounter holds control_lock in EX while doing
 * the first mount recovery, blocking mounts from other nodes, then demotes
 * control_lock to NL when it's done (others_may_mount/first_done),
 * allowing other nodes to continue mounting.
 *
 * first mounter:
 * control_lock EX/NOQUEUE success
 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
 * set first=1
 * do first mounter recovery
 * mounted_lock EX->PR
 * control_lock EX->NL, write lvb generation
 *
 * other mounter:
 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
 * mounted_lock PR/NOQUEUE success
 * read lvb generation
 * control_lock EX->NL
 * set first=0
 *
 * - mount during recovery
 *
 * If a node mounts while others are doing recovery (not first mounter),
 * the mounting node will get its initial recover_done() callback without
 * having seen any previous failures/callbacks.
 *
 * It must wait for all recoveries preceding its mount to be finished
 * before it unblocks locks.  It does this by repeating the "other mounter"
 * steps above until the lvb generation number is >= its mount generation
 * number (from initial recover_done) and all lvb bits are clear.
 *
 * - control_lock lvb format
 *
 * 4 bytes generation number: the latest dlm lockspace generation number
 * from recover_done callback.  Indicates the jid bitmap has been updated
 * to reflect all slot failures through that generation.
 * 4 bytes unused.
 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
 * that jid N needs recovery.
 */

#define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */

static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
			     char *lvb_bits)
{
	__le32 gen;
	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
	memcpy(&gen, lvb_bits, sizeof(__le32));
	*lvb_gen = le32_to_cpu(gen);
}

static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
			      char *lvb_bits)
{
	__le32 gen;
	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
	gen = cpu_to_le32(lvb_gen);
	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
}

static int all_jid_bits_clear(char *lvb)
{
	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
}

static void sync_wait_cb(void *arg)
{
	struct lm_lockstruct *ls = arg;
	complete(&ls->ls_sync_wait);
}

static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
{
	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
	int error;

	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
	if (error) {
		fs_err(sdp, "%s lkid %x error %d\n",
		       name, lksb->sb_lkid, error);
		return error;
	}

	wait_for_completion(&ls->ls_sync_wait);

	if (lksb->sb_status != -DLM_EUNLOCK) {
		fs_err(sdp, "%s lkid %x status %d\n",
		       name, lksb->sb_lkid, lksb->sb_status);
		return -1;
	}
	return 0;
}

static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
		     unsigned int num, struct dlm_lksb *lksb, char *name)
{
	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
	char strname[GDLM_STRNAME_BYTES];
	int error, status;

	memset(strname, 0, GDLM_STRNAME_BYTES);
	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);

	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
			 strname, GDLM_STRNAME_BYTES - 1,
			 0, sync_wait_cb, ls, NULL);
	if (error) {
		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
		       name, lksb->sb_lkid, flags, mode, error);
		return error;
	}

	wait_for_completion(&ls->ls_sync_wait);

	status = lksb->sb_status;

	if (status && status != -EAGAIN) {
		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
		       name, lksb->sb_lkid, flags, mode, status);
	}

	return status;
}

static int mounted_unlock(struct gfs2_sbd *sdp)
{
	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
}

static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
{
	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
			 &ls->ls_mounted_lksb, "mounted_lock");
}

static int control_unlock(struct gfs2_sbd *sdp)
{
	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
}

static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
{
	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
			 &ls->ls_control_lksb, "control_lock");
}

static void gfs2_control_func(struct work_struct *work)
{
	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
	uint32_t block_gen, start_gen, lvb_gen, flags;
	int recover_set = 0;
	int write_lvb = 0;
	int recover_size;
	int i, error;

	spin_lock(&ls->ls_recover_spin);
	/*
	 * No MOUNT_DONE means we're still mounting; control_mount()
	 * will set this flag, after which this thread will take over
	 * all further clearing of BLOCK_LOCKS.
	 *
	 * FIRST_MOUNT means this node is doing first mounter recovery,
	 * for which recovery control is handled by
	 * control_mount()/control_first_done(), not this thread.
	 */
	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
		spin_unlock(&ls->ls_recover_spin);
		return;
	}
	block_gen = ls->ls_recover_block;
	start_gen = ls->ls_recover_start;
	spin_unlock(&ls->ls_recover_spin);

	/*
	 * Equal block_gen and start_gen implies we are between
	 * recover_prep and recover_done callbacks, which means
	 * dlm recovery is in progress and dlm locking is blocked.
	 * There's no point trying to do any work until recover_done.
	 */

	if (block_gen == start_gen)
		return;

	/*
	 * Propagate recover_submit[] and recover_result[] to lvb:
	 * dlm_recoverd adds to recover_submit[] jids needing recovery
	 * gfs2_recover adds to recover_result[] journal recovery results
	 *
	 * set lvb bit for jids in recover_submit[] if the lvb has not
	 * yet been updated for the generation of the failure
	 *
	 * clear lvb bit for jids in recover_result[] if the result of
	 * the journal recovery is SUCCESS
	 */

	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
	if (error) {
		fs_err(sdp, "control lock EX error %d\n", error);
		return;
	}

	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);

	spin_lock(&ls->ls_recover_spin);
	if (block_gen != ls->ls_recover_block ||
	    start_gen != ls->ls_recover_start) {
		fs_info(sdp, "recover generation %u block1 %u %u\n",
			start_gen, block_gen, ls->ls_recover_block);
		spin_unlock(&ls->ls_recover_spin);
		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
		return;
	}

	recover_size = ls->ls_recover_size;

	if (lvb_gen <= start_gen) {
		/*
		 * Clear lvb bits for jids we've successfully recovered.
		 * Because all nodes attempt to recover failed journals,
		 * a journal can be recovered multiple times successfully
		 * in succession.  Only the first will really do recovery,
		 * the others find it clean, but still report a successful
		 * recovery.  So, another node may have already recovered
		 * the jid and cleared the lvb bit for it.
		 */
		for (i = 0; i < recover_size; i++) {
			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
				continue;

			ls->ls_recover_result[i] = 0;

			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
				continue;

			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
			write_lvb = 1;
		}
	}

	if (lvb_gen == start_gen) {
		/*
		 * Failed slots before start_gen are already set in lvb.
		 */
		for (i = 0; i < recover_size; i++) {
			if (!ls->ls_recover_submit[i])
				continue;
			if (ls->ls_recover_submit[i] < lvb_gen)
				ls->ls_recover_submit[i] = 0;
		}
	} else if (lvb_gen < start_gen) {
		/*
		 * Failed slots before start_gen are not yet set in lvb.
		 */
		for (i = 0; i < recover_size; i++) {
			if (!ls->ls_recover_submit[i])
				continue;
			if (ls->ls_recover_submit[i] < start_gen) {
				ls->ls_recover_submit[i] = 0;
				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
			}
		}
		/* even if there are no bits to set, we need to write the
		   latest generation to the lvb */
		write_lvb = 1;
	} else {
		/*
		 * we should be getting a recover_done() for lvb_gen soon
		 */
	}
	spin_unlock(&ls->ls_recover_spin);

	if (write_lvb) {
		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
	} else {
		flags = DLM_LKF_CONVERT;
	}

	error = control_lock(sdp, DLM_LOCK_NL, flags);
	if (error) {
		fs_err(sdp, "control lock NL error %d\n", error);
		return;
	}

	/*
	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
	 * and clear a jid bit in the lvb if the recovery is a success.
	 * Eventually all journals will be recovered, all jid bits will
	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
	 */

	for (i = 0; i < recover_size; i++) {
		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
			fs_info(sdp, "recover generation %u jid %d\n",
				start_gen, i);
			gfs2_recover_set(sdp, i);
			recover_set++;
		}
	}
	if (recover_set)
		return;

	/*
	 * No more jid bits set in lvb, all recovery is done, unblock locks
	 * (unless a new recover_prep callback has occured blocking locks
	 * again while working above)
	 */

	spin_lock(&ls->ls_recover_spin);
	if (ls->ls_recover_block == block_gen &&
	    ls->ls_recover_start == start_gen) {
		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
		spin_unlock(&ls->ls_recover_spin);
		fs_info(sdp, "recover generation %u done\n", start_gen);
		gfs2_glock_thaw(sdp);
	} else {
		fs_info(sdp, "recover generation %u block2 %u %u\n",
			start_gen, block_gen, ls->ls_recover_block);
		spin_unlock(&ls->ls_recover_spin);
	}
}

static int control_mount(struct gfs2_sbd *sdp)
{
	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
	int mounted_mode;
	int retries = 0;
	int error;

	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
	init_completion(&ls->ls_sync_wait);

	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);

	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
	if (error) {
		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
		return error;
	}

	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
	if (error) {
		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
		control_unlock(sdp);
		return error;
	}
	mounted_mode = DLM_LOCK_NL;

restart:
	if (retries++ && signal_pending(current)) {
		error = -EINTR;
		goto fail;
	}

	/*
	 * We always start with both locks in NL. control_lock is
	 * demoted to NL below so we don't need to do it here.
	 */

	if (mounted_mode != DLM_LOCK_NL) {
		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
		if (error)
			goto fail;
		mounted_mode = DLM_LOCK_NL;
	}

	/*
	 * Other nodes need to do some work in dlm recovery and gfs2_control
	 * before the recover_done and control_lock will be ready for us below.
	 * A delay here is not required but often avoids having to retry.
	 */

	msleep_interruptible(500);

	/*
	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
	 * control_lock lvb keeps track of any pending journal recoveries.
	 * mounted_lock indicates if any other nodes have the fs mounted.
	 */

	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
	if (error == -EAGAIN) {
		goto restart;
	} else if (error) {
		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
		goto fail;
	}

	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
	if (!error) {
		mounted_mode = DLM_LOCK_EX;
		goto locks_done;
	} else if (error != -EAGAIN) {
		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
		goto fail;
	}

	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
	if (!error) {
		mounted_mode = DLM_LOCK_PR;
		goto locks_done;
	} else {
		/* not even -EAGAIN should happen here */
		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
		goto fail;
	}

locks_done:
	/*
	 * If we got both locks above in EX, then we're the first mounter.
	 * If not, then we need to wait for the control_lock lvb to be
	 * updated by other mounted nodes to reflect our mount generation.
	 *
	 * In simple first mounter cases, first mounter will see zero lvb_gen,
	 * but in cases where all existing nodes leave/fail before mounting
	 * nodes finish control_mount, then all nodes will be mounting and
	 * lvb_gen will be non-zero.
	 */

	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);

	if (lvb_gen == 0xFFFFFFFF) {
		/* special value to force mount attempts to fail */
		fs_err(sdp, "control_mount control_lock disabled\n");
		error = -EINVAL;
		goto fail;
	}

	if (mounted_mode == DLM_LOCK_EX) {
		/* first mounter, keep both EX while doing first recovery */
		spin_lock(&ls->ls_recover_spin);
		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
		spin_unlock(&ls->ls_recover_spin);
		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
		return 0;
	}

	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
	if (error)
		goto fail;

	/*
	 * We are not first mounter, now we need to wait for the control_lock
	 * lvb generation to be >= the generation from our first recover_done
	 * and all lvb bits to be clear (no pending journal recoveries.)
	 */

	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
		/* journals need recovery, wait until all are clear */
		fs_info(sdp, "control_mount wait for journal recovery\n");
		goto restart;
	}

	spin_lock(&ls->ls_recover_spin);
	block_gen = ls->ls_recover_block;
	start_gen = ls->ls_recover_start;
	mount_gen = ls->ls_recover_mount;

	if (lvb_gen < mount_gen) {
		/* wait for mounted nodes to update control_lock lvb to our
		   generation, which might include new recovery bits set */
		fs_info(sdp, "control_mount wait1 block %u start %u mount %u "
			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
			lvb_gen, ls->ls_recover_flags);
		spin_unlock(&ls->ls_recover_spin);
		goto restart;
	}

	if (lvb_gen != start_gen) {
		/* wait for mounted nodes to update control_lock lvb to the
		   latest recovery generation */
		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
			lvb_gen, ls->ls_recover_flags);
		spin_unlock(&ls->ls_recover_spin);
		goto restart;
	}

	if (block_gen == start_gen) {
		/* dlm recovery in progress, wait for it to finish */
		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
			lvb_gen, ls->ls_recover_flags);
		spin_unlock(&ls->ls_recover_spin);
		goto restart;
	}

	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
	spin_unlock(&ls->ls_recover_spin);
	return 0;

fail:
	mounted_unlock(sdp);
	control_unlock(sdp);
	return error;
}

static int dlm_recovery_wait(void *word)
{
	schedule();
	return 0;
}

static int control_first_done(struct gfs2_sbd *sdp)
{
	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
	uint32_t start_gen, block_gen;
	int error;

restart:
	spin_lock(&ls->ls_recover_spin);
	start_gen = ls->ls_recover_start;
	block_gen = ls->ls_recover_block;

	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
		/* sanity check, should not happen */
		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
		       start_gen, block_gen, ls->ls_recover_flags);
		spin_unlock(&ls->ls_recover_spin);
		control_unlock(sdp);
		return -1;
	}

	if (start_gen == block_gen) {
		/*
		 * Wait for the end of a dlm recovery cycle to switch from
		 * first mounter recovery.  We can ignore any recover_slot
		 * callbacks between the recover_prep and next recover_done
		 * because we are still the first mounter and any failed nodes
		 * have not fully mounted, so they don't need recovery.
		 */
		spin_unlock(&ls->ls_recover_spin);
		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);

		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
			    dlm_recovery_wait, TASK_UNINTERRUPTIBLE);
		goto restart;
	}

	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
	spin_unlock(&ls->ls_recover_spin);

	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);

	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
	if (error)
		fs_err(sdp, "control_first_done mounted PR error %d\n", error);

	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
	if (error)
		fs_err(sdp, "control_first_done control NL error %d\n", error);

	return error;
}

/*
 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
 * to accomodate the largest slot number.  (NB dlm slot numbers start at 1,
 * gfs2 jids start at 0, so jid = slot - 1)
 */

#define RECOVER_SIZE_INC 16

static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
			    int num_slots)
{
	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
	uint32_t *submit = NULL;
	uint32_t *result = NULL;
	uint32_t old_size, new_size;
	int i, max_jid;

	if (!ls->ls_lvb_bits) {
		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
		if (!ls->ls_lvb_bits)
			return -ENOMEM;
	}

	max_jid = 0;
	for (i = 0; i < num_slots; i++) {
		if (max_jid < slots[i].slot - 1)
			max_jid = slots[i].slot - 1;
	}

	old_size = ls->ls_recover_size;

	if (old_size >= max_jid + 1)
		return 0;

	new_size = old_size + RECOVER_SIZE_INC;

	submit = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
	result = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
	if (!submit || !result) {
		kfree(submit);
		kfree(result);
		return -ENOMEM;
	}

	spin_lock(&ls->ls_recover_spin);
	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
	kfree(ls->ls_recover_submit);
	kfree(ls->ls_recover_result);
	ls->ls_recover_submit = submit;
	ls->ls_recover_result = result;
	ls->ls_recover_size = new_size;
	spin_unlock(&ls->ls_recover_spin);
	return 0;
}

static void free_recover_size(struct lm_lockstruct *ls)
{
	kfree(ls->ls_lvb_bits);
	kfree(ls->ls_recover_submit);
	kfree(ls->ls_recover_result);
	ls->ls_recover_submit = NULL;
	ls->ls_recover_result = NULL;
	ls->ls_recover_size = 0;
}

/* dlm calls before it does lock recovery */

static void gdlm_recover_prep(void *arg)
{
	struct gfs2_sbd *sdp = arg;
	struct lm_lockstruct *ls = &sdp->sd_lockstruct;

	spin_lock(&ls->ls_recover_spin);
	ls->ls_recover_block = ls->ls_recover_start;
	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);

	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
		spin_unlock(&ls->ls_recover_spin);
		return;
	}
	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
	spin_unlock(&ls->ls_recover_spin);
}

/* dlm calls after recover_prep has been completed on all lockspace members;
   identifies slot/jid of failed member */

static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
{
	struct gfs2_sbd *sdp = arg;
	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
	int jid = slot->slot - 1;

	spin_lock(&ls->ls_recover_spin);
	if (ls->ls_recover_size < jid + 1) {
		fs_err(sdp, "recover_slot jid %d gen %u short size %d",
		       jid, ls->ls_recover_block, ls->ls_recover_size);
		spin_unlock(&ls->ls_recover_spin);
		return;
	}

	if (ls->ls_recover_submit[jid]) {
		fs_info(sdp, "recover_slot jid %d gen %u prev %u",
			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
	}
	ls->ls_recover_submit[jid] = ls->ls_recover_block;
	spin_unlock(&ls->ls_recover_spin);
}

/* dlm calls after recover_slot and after it completes lock recovery */

static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
			      int our_slot, uint32_t generation)
{
	struct gfs2_sbd *sdp = arg;
	struct lm_lockstruct *ls = &sdp->sd_lockstruct;

	/* ensure the ls jid arrays are large enough */
	set_recover_size(sdp, slots, num_slots);

	spin_lock(&ls->ls_recover_spin);
	ls->ls_recover_start = generation;

	if (!ls->ls_recover_mount) {
		ls->ls_recover_mount = generation;
		ls->ls_jid = our_slot - 1;
	}

	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);

	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
	smp_mb__after_clear_bit();
	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
	spin_unlock(&ls->ls_recover_spin);
}

/* gfs2_recover thread has a journal recovery result */

static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
				 unsigned int result)
{
	struct lm_lockstruct *ls = &sdp->sd_lockstruct;

	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
		return;

	/* don't care about the recovery of own journal during mount */
	if (jid == ls->ls_jid)
		return;

	spin_lock(&ls->ls_recover_spin);
	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
		spin_unlock(&ls->ls_recover_spin);
		return;
	}
	if (ls->ls_recover_size < jid + 1) {
		fs_err(sdp, "recovery_result jid %d short size %d",
		       jid, ls->ls_recover_size);
		spin_unlock(&ls->ls_recover_spin);
		return;
	}

	fs_info(sdp, "recover jid %d result %s\n", jid,
		result == LM_RD_GAVEUP ? "busy" : "success");

	ls->ls_recover_result[jid] = result;

	/* GAVEUP means another node is recovering the journal; delay our
	   next attempt to recover it, to give the other node a chance to
	   finish before trying again */

	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
				   result == LM_RD_GAVEUP ? HZ : 0);
	spin_unlock(&ls->ls_recover_spin);
}

const struct dlm_lockspace_ops gdlm_lockspace_ops = {
	.recover_prep = gdlm_recover_prep,
	.recover_slot = gdlm_recover_slot,
	.recover_done = gdlm_recover_done,
};

static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
{
	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
	char cluster[GFS2_LOCKNAME_LEN];
	const char *fsname;
	uint32_t flags;
	int error, ops_result;

	/*
	 * initialize everything
	 */

	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
	spin_lock_init(&ls->ls_recover_spin);
	ls->ls_recover_flags = 0;
	ls->ls_recover_mount = 0;
	ls->ls_recover_start = 0;
	ls->ls_recover_block = 0;
	ls->ls_recover_size = 0;
	ls->ls_recover_submit = NULL;
	ls->ls_recover_result = NULL;
	ls->ls_lvb_bits = NULL;

	error = set_recover_size(sdp, NULL, 0);
	if (error)
		goto fail;

	/*
	 * prepare dlm_new_lockspace args
	 */

	fsname = strchr(table, ':');
	if (!fsname) {
		fs_info(sdp, "no fsname found\n");
		error = -EINVAL;
		goto fail_free;
	}
	memset(cluster, 0, sizeof(cluster));
	memcpy(cluster, table, strlen(table) - strlen(fsname));
	fsname++;

	flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;

	/*
	 * create/join lockspace
	 */

	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
				  &gdlm_lockspace_ops, sdp, &ops_result,
				  &ls->ls_dlm);
	if (error) {
		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
		goto fail_free;
	}

	if (ops_result < 0) {
		/*
		 * dlm does not support ops callbacks,
		 * old dlm_controld/gfs_controld are used, try without ops.
		 */
		fs_info(sdp, "dlm lockspace ops not used\n");
		free_recover_size(ls);
		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
		return 0;
	}

	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
		error = -EINVAL;
		goto fail_release;
	}

	/*
	 * control_mount() uses control_lock to determine first mounter,
	 * and for later mounts, waits for any recoveries to be cleared.
	 */

	error = control_mount(sdp);
	if (error) {
		fs_err(sdp, "mount control error %d\n", error);
		goto fail_release;
	}

	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
	smp_mb__after_clear_bit();
	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
	return 0;

fail_release:
	dlm_release_lockspace(ls->ls_dlm, 2);
fail_free:
	free_recover_size(ls);
fail:
	return error;
}

static void gdlm_first_done(struct gfs2_sbd *sdp)
{
	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
	int error;

	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
		return;

	error = control_first_done(sdp);
	if (error)
		fs_err(sdp, "mount first_done error %d\n", error);
}

static void gdlm_unmount(struct gfs2_sbd *sdp)
{
	struct lm_lockstruct *ls = &sdp->sd_lockstruct;

	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
		goto release;

	/* wait for gfs2_control_wq to be done with this mount */

	spin_lock(&ls->ls_recover_spin);
	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
	spin_unlock(&ls->ls_recover_spin);
	flush_delayed_work(&sdp->sd_control_work);

	/* mounted_lock and control_lock will be purged in dlm recovery */
release:
	if (ls->ls_dlm) {
		dlm_release_lockspace(ls->ls_dlm, 2);
		ls->ls_dlm = NULL;
	}

	free_recover_size(ls);
}

static const match_table_t dlm_tokens = {
	{ Opt_jid, "jid=%d"},
	{ Opt_id, "id=%d"},
	{ Opt_first, "first=%d"},
	{ Opt_nodir, "nodir=%d"},
	{ Opt_err, NULL },
};

const struct lm_lockops gfs2_dlm_ops = {
	.lm_proto_name = "lock_dlm",
	.lm_mount = gdlm_mount,
	.lm_first_done = gdlm_first_done,
	.lm_recovery_result = gdlm_recovery_result,
	.lm_unmount = gdlm_unmount,
	.lm_put_lock = gdlm_put_lock,
	.lm_lock = gdlm_lock,
	.lm_cancel = gdlm_cancel,
	.lm_tokens = &dlm_tokens,
};