softfloat.c 116 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
/*
===============================================================================

This C source file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2.

Written by John R. Hauser.  This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704.  Funding was partially provided by the
National Science Foundation under grant MIP-9311980.  The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
is available through the web page
http://www.jhauser.us/arithmetic/SoftFloat-2b/SoftFloat-source.txt

THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.

Derivative works are acceptable, even for commercial purposes, so long as
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these three paragraphs for those parts of
this code that are retained.

===============================================================================
*/

#include <asm/div64.h>

#include "fpa11.h"
//#include "milieu.h"
//#include "softfloat.h"

/*
-------------------------------------------------------------------------------
Primitive arithmetic functions, including multi-word arithmetic, and
division and square root approximations.  (Can be specialized to target if
desired.)
-------------------------------------------------------------------------------
*/
#include "softfloat-macros"

/*
-------------------------------------------------------------------------------
Functions and definitions to determine:  (1) whether tininess for underflow
is detected before or after rounding by default, (2) what (if anything)
happens when exceptions are raised, (3) how signaling NaNs are distinguished
from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
are propagated from function inputs to output.  These details are target-
specific.
-------------------------------------------------------------------------------
*/
#include "softfloat-specialize"

/*
-------------------------------------------------------------------------------
Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
and 7, and returns the properly rounded 32-bit integer corresponding to the
input.  If `zSign' is nonzero, the input is negated before being converted
to an integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point
input is simply rounded to an integer, with the inexact exception raised if
the input cannot be represented exactly as an integer.  If the fixed-point
input is too large, however, the invalid exception is raised and the largest
positive or negative integer is returned.
-------------------------------------------------------------------------------
*/
static int32 roundAndPackInt32( struct roundingData *roundData, flag zSign, bits64 absZ )
{
    int8 roundingMode;
    flag roundNearestEven;
    int8 roundIncrement, roundBits;
    int32 z;

    roundingMode = roundData->mode;
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    roundIncrement = 0x40;
    if ( ! roundNearestEven ) {
        if ( roundingMode == float_round_to_zero ) {
            roundIncrement = 0;
        }
        else {
            roundIncrement = 0x7F;
            if ( zSign ) {
                if ( roundingMode == float_round_up ) roundIncrement = 0;
            }
            else {
                if ( roundingMode == float_round_down ) roundIncrement = 0;
            }
        }
    }
    roundBits = absZ & 0x7F;
    absZ = ( absZ + roundIncrement )>>7;
    absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    z = absZ;
    if ( zSign ) z = - z;
    if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
        roundData->exception |= float_flag_invalid;
        return zSign ? 0x80000000 : 0x7FFFFFFF;
    }
    if ( roundBits ) roundData->exception |= float_flag_inexact;
    return z;

}

/*
-------------------------------------------------------------------------------
Returns the fraction bits of the single-precision floating-point value `a'.
-------------------------------------------------------------------------------
*/
INLINE bits32 extractFloat32Frac( float32 a )
{

    return a & 0x007FFFFF;

}

/*
-------------------------------------------------------------------------------
Returns the exponent bits of the single-precision floating-point value `a'.
-------------------------------------------------------------------------------
*/
INLINE int16 extractFloat32Exp( float32 a )
{

    return ( a>>23 ) & 0xFF;

}

/*
-------------------------------------------------------------------------------
Returns the sign bit of the single-precision floating-point value `a'.
-------------------------------------------------------------------------------
*/
#if 0	/* in softfloat.h */
INLINE flag extractFloat32Sign( float32 a )
{

    return a>>31;

}
#endif

/*
-------------------------------------------------------------------------------
Normalizes the subnormal single-precision floating-point value represented
by the denormalized significand `aSig'.  The normalized exponent and
significand are stored at the locations pointed to by `zExpPtr' and
`zSigPtr', respectively.
-------------------------------------------------------------------------------
*/
static void
 normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
{
    int8 shiftCount;

    shiftCount = countLeadingZeros32( aSig ) - 8;
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*
-------------------------------------------------------------------------------
Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
single-precision floating-point value, returning the result.  After being
shifted into the proper positions, the three fields are simply added
together to form the result.  This means that any integer portion of `zSig'
will be added into the exponent.  Since a properly normalized significand
will have an integer portion equal to 1, the `zExp' input should be 1 less
than the desired result exponent whenever `zSig' is a complete, normalized
significand.
-------------------------------------------------------------------------------
*/
INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
{
#if 0
   float32 f;
   __asm__("@ packFloat32				\n\
   	    mov %0, %1, asl #31				\n\
   	    orr %0, %2, asl #23				\n\
   	    orr %0, %3"
   	    : /* no outputs */
   	    : "g" (f), "g" (zSign), "g" (zExp), "g" (zSig)
   	    : "cc");
   return f;
#else
    return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;
#endif 
}

/*
-------------------------------------------------------------------------------
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
and significand `zSig', and returns the proper single-precision floating-
point value corresponding to the abstract input.  Ordinarily, the abstract
value is simply rounded and packed into the single-precision format, with
the inexact exception raised if the abstract input cannot be represented
exactly.  If the abstract value is too large, however, the overflow and
inexact exceptions are raised and an infinity or maximal finite value is
returned.  If the abstract value is too small, the input value is rounded to
a subnormal number, and the underflow and inexact exceptions are raised if
the abstract input cannot be represented exactly as a subnormal single-
precision floating-point number.
    The input significand `zSig' has its binary point between bits 30
and 29, which is 7 bits to the left of the usual location.  This shifted
significand must be normalized or smaller.  If `zSig' is not normalized,
`zExp' must be 0; in that case, the result returned is a subnormal number,
and it must not require rounding.  In the usual case that `zSig' is
normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
The handling of underflow and overflow follows the IEC/IEEE Standard for
Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
static float32 roundAndPackFloat32( struct roundingData *roundData, flag zSign, int16 zExp, bits32 zSig )
{
    int8 roundingMode;
    flag roundNearestEven;
    int8 roundIncrement, roundBits;
    flag isTiny;

    roundingMode = roundData->mode;
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    roundIncrement = 0x40;
    if ( ! roundNearestEven ) {
        if ( roundingMode == float_round_to_zero ) {
            roundIncrement = 0;
        }
        else {
            roundIncrement = 0x7F;
            if ( zSign ) {
                if ( roundingMode == float_round_up ) roundIncrement = 0;
            }
            else {
                if ( roundingMode == float_round_down ) roundIncrement = 0;
            }
        }
    }
    roundBits = zSig & 0x7F;
    if ( 0xFD <= (bits16) zExp ) {
        if (    ( 0xFD < zExp )
             || (    ( zExp == 0xFD )
                  && ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
           ) {
            roundData->exception |= float_flag_overflow | float_flag_inexact;
            return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );
        }
        if ( zExp < 0 ) {
            isTiny =
                   ( float_detect_tininess == float_tininess_before_rounding )
                || ( zExp < -1 )
                || ( zSig + roundIncrement < 0x80000000 );
            shift32RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x7F;
            if ( isTiny && roundBits ) roundData->exception |= float_flag_underflow;
        }
    }
    if ( roundBits ) roundData->exception |= float_flag_inexact;
    zSig = ( zSig + roundIncrement )>>7;
    zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat32( zSign, zExp, zSig );

}

/*
-------------------------------------------------------------------------------
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
and significand `zSig', and returns the proper single-precision floating-
point value corresponding to the abstract input.  This routine is just like
`roundAndPackFloat32' except that `zSig' does not have to be normalized in
any way.  In all cases, `zExp' must be 1 less than the ``true'' floating-
point exponent.
-------------------------------------------------------------------------------
*/
static float32
 normalizeRoundAndPackFloat32( struct roundingData *roundData, flag zSign, int16 zExp, bits32 zSig )
{
    int8 shiftCount;

    shiftCount = countLeadingZeros32( zSig ) - 1;
    return roundAndPackFloat32( roundData, zSign, zExp - shiftCount, zSig<<shiftCount );

}

/*
-------------------------------------------------------------------------------
Returns the fraction bits of the double-precision floating-point value `a'.
-------------------------------------------------------------------------------
*/
INLINE bits64 extractFloat64Frac( float64 a )
{

    return a & LIT64( 0x000FFFFFFFFFFFFF );

}

/*
-------------------------------------------------------------------------------
Returns the exponent bits of the double-precision floating-point value `a'.
-------------------------------------------------------------------------------
*/
INLINE int16 extractFloat64Exp( float64 a )
{

    return ( a>>52 ) & 0x7FF;

}

/*
-------------------------------------------------------------------------------
Returns the sign bit of the double-precision floating-point value `a'.
-------------------------------------------------------------------------------
*/
#if 0	/* in softfloat.h */
INLINE flag extractFloat64Sign( float64 a )
{

    return a>>63;

}
#endif

/*
-------------------------------------------------------------------------------
Normalizes the subnormal double-precision floating-point value represented
by the denormalized significand `aSig'.  The normalized exponent and
significand are stored at the locations pointed to by `zExpPtr' and
`zSigPtr', respectively.
-------------------------------------------------------------------------------
*/
static void
 normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr )
{
    int8 shiftCount;

    shiftCount = countLeadingZeros64( aSig ) - 11;
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*
-------------------------------------------------------------------------------
Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
double-precision floating-point value, returning the result.  After being
shifted into the proper positions, the three fields are simply added
together to form the result.  This means that any integer portion of `zSig'
will be added into the exponent.  Since a properly normalized significand
will have an integer portion equal to 1, the `zExp' input should be 1 less
than the desired result exponent whenever `zSig' is a complete, normalized
significand.
-------------------------------------------------------------------------------
*/
INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig )
{

    return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig;

}

/*
-------------------------------------------------------------------------------
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
and significand `zSig', and returns the proper double-precision floating-
point value corresponding to the abstract input.  Ordinarily, the abstract
value is simply rounded and packed into the double-precision format, with
the inexact exception raised if the abstract input cannot be represented
exactly.  If the abstract value is too large, however, the overflow and
inexact exceptions are raised and an infinity or maximal finite value is
returned.  If the abstract value is too small, the input value is rounded to
a subnormal number, and the underflow and inexact exceptions are raised if
the abstract input cannot be represented exactly as a subnormal double-
precision floating-point number.
    The input significand `zSig' has its binary point between bits 62
and 61, which is 10 bits to the left of the usual location.  This shifted
significand must be normalized or smaller.  If `zSig' is not normalized,
`zExp' must be 0; in that case, the result returned is a subnormal number,
and it must not require rounding.  In the usual case that `zSig' is
normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
The handling of underflow and overflow follows the IEC/IEEE Standard for
Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
static float64 roundAndPackFloat64( struct roundingData *roundData, flag zSign, int16 zExp, bits64 zSig )
{
    int8 roundingMode;
    flag roundNearestEven;
    int16 roundIncrement, roundBits;
    flag isTiny;

    roundingMode = roundData->mode;
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    roundIncrement = 0x200;
    if ( ! roundNearestEven ) {
        if ( roundingMode == float_round_to_zero ) {
            roundIncrement = 0;
        }
        else {
            roundIncrement = 0x3FF;
            if ( zSign ) {
                if ( roundingMode == float_round_up ) roundIncrement = 0;
            }
            else {
                if ( roundingMode == float_round_down ) roundIncrement = 0;
            }
        }
    }
    roundBits = zSig & 0x3FF;
    if ( 0x7FD <= (bits16) zExp ) {
        if (    ( 0x7FD < zExp )
             || (    ( zExp == 0x7FD )
                  && ( (sbits64) ( zSig + roundIncrement ) < 0 ) )
           ) {
            //register int lr = __builtin_return_address(0);
            //printk("roundAndPackFloat64 called from 0x%08x\n",lr);
            roundData->exception |= float_flag_overflow | float_flag_inexact;
            return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 );
        }
        if ( zExp < 0 ) {
            isTiny =
                   ( float_detect_tininess == float_tininess_before_rounding )
                || ( zExp < -1 )
                || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
            shift64RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x3FF;
            if ( isTiny && roundBits ) roundData->exception |= float_flag_underflow;
        }
    }
    if ( roundBits ) roundData->exception |= float_flag_inexact;
    zSig = ( zSig + roundIncrement )>>10;
    zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat64( zSign, zExp, zSig );

}

/*
-------------------------------------------------------------------------------
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
and significand `zSig', and returns the proper double-precision floating-
point value corresponding to the abstract input.  This routine is just like
`roundAndPackFloat64' except that `zSig' does not have to be normalized in
any way.  In all cases, `zExp' must be 1 less than the ``true'' floating-
point exponent.
-------------------------------------------------------------------------------
*/
static float64
 normalizeRoundAndPackFloat64( struct roundingData *roundData, flag zSign, int16 zExp, bits64 zSig )
{
    int8 shiftCount;

    shiftCount = countLeadingZeros64( zSig ) - 1;
    return roundAndPackFloat64( roundData, zSign, zExp - shiftCount, zSig<<shiftCount );

}

#ifdef FLOATX80

/*
-------------------------------------------------------------------------------
Returns the fraction bits of the extended double-precision floating-point
value `a'.
-------------------------------------------------------------------------------
*/
INLINE bits64 extractFloatx80Frac( floatx80 a )
{

    return a.low;

}

/*
-------------------------------------------------------------------------------
Returns the exponent bits of the extended double-precision floating-point
value `a'.
-------------------------------------------------------------------------------
*/
INLINE int32 extractFloatx80Exp( floatx80 a )
{

    return a.high & 0x7FFF;

}

/*
-------------------------------------------------------------------------------
Returns the sign bit of the extended double-precision floating-point value
`a'.
-------------------------------------------------------------------------------
*/
INLINE flag extractFloatx80Sign( floatx80 a )
{

    return a.high>>15;

}

/*
-------------------------------------------------------------------------------
Normalizes the subnormal extended double-precision floating-point value
represented by the denormalized significand `aSig'.  The normalized exponent
and significand are stored at the locations pointed to by `zExpPtr' and
`zSigPtr', respectively.
-------------------------------------------------------------------------------
*/
static void
 normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr )
{
    int8 shiftCount;

    shiftCount = countLeadingZeros64( aSig );
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*
-------------------------------------------------------------------------------
Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
extended double-precision floating-point value, returning the result.
-------------------------------------------------------------------------------
*/
INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
{
    floatx80 z;

    z.low = zSig;
    z.high = ( ( (bits16) zSign )<<15 ) + zExp;
    z.__padding = 0;
    return z;

}

/*
-------------------------------------------------------------------------------
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
and extended significand formed by the concatenation of `zSig0' and `zSig1',
and returns the proper extended double-precision floating-point value
corresponding to the abstract input.  Ordinarily, the abstract value is
rounded and packed into the extended double-precision format, with the
inexact exception raised if the abstract input cannot be represented
exactly.  If the abstract value is too large, however, the overflow and
inexact exceptions are raised and an infinity or maximal finite value is
returned.  If the abstract value is too small, the input value is rounded to
a subnormal number, and the underflow and inexact exceptions are raised if
the abstract input cannot be represented exactly as a subnormal extended
double-precision floating-point number.
    If `roundingPrecision' is 32 or 64, the result is rounded to the same
number of bits as single or double precision, respectively.  Otherwise, the
result is rounded to the full precision of the extended double-precision
format.
    The input significand must be normalized or smaller.  If the input
significand is not normalized, `zExp' must be 0; in that case, the result
returned is a subnormal number, and it must not require rounding.  The
handling of underflow and overflow follows the IEC/IEEE Standard for Binary
Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
static floatx80
 roundAndPackFloatx80(
     struct roundingData *roundData, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
 )
{
    int8 roundingMode, roundingPrecision;
    flag roundNearestEven, increment, isTiny;
    int64 roundIncrement, roundMask, roundBits;

    roundingMode = roundData->mode;
    roundingPrecision = roundData->precision;
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    if ( roundingPrecision == 80 ) goto precision80;
    if ( roundingPrecision == 64 ) {
        roundIncrement = LIT64( 0x0000000000000400 );
        roundMask = LIT64( 0x00000000000007FF );
    }
    else if ( roundingPrecision == 32 ) {
        roundIncrement = LIT64( 0x0000008000000000 );
        roundMask = LIT64( 0x000000FFFFFFFFFF );
    }
    else {
        goto precision80;
    }
    zSig0 |= ( zSig1 != 0 );
    if ( ! roundNearestEven ) {
        if ( roundingMode == float_round_to_zero ) {
            roundIncrement = 0;
        }
        else {
            roundIncrement = roundMask;
            if ( zSign ) {
                if ( roundingMode == float_round_up ) roundIncrement = 0;
            }
            else {
                if ( roundingMode == float_round_down ) roundIncrement = 0;
            }
        }
    }
    roundBits = zSig0 & roundMask;
    if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
        if (    ( 0x7FFE < zExp )
             || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
           ) {
            goto overflow;
        }
        if ( zExp <= 0 ) {
            isTiny =
                   ( float_detect_tininess == float_tininess_before_rounding )
                || ( zExp < 0 )
                || ( zSig0 <= zSig0 + roundIncrement );
            shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
            zExp = 0;
            roundBits = zSig0 & roundMask;
            if ( isTiny && roundBits ) roundData->exception |= float_flag_underflow;
            if ( roundBits ) roundData->exception |= float_flag_inexact;
            zSig0 += roundIncrement;
            if ( (sbits64) zSig0 < 0 ) zExp = 1;
            roundIncrement = roundMask + 1;
            if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
                roundMask |= roundIncrement;
            }
            zSig0 &= ~ roundMask;
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
    if ( roundBits ) roundData->exception |= float_flag_inexact;
    zSig0 += roundIncrement;
    if ( zSig0 < roundIncrement ) {
        ++zExp;
        zSig0 = LIT64( 0x8000000000000000 );
    }
    roundIncrement = roundMask + 1;
    if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
        roundMask |= roundIncrement;
    }
    zSig0 &= ~ roundMask;
    if ( zSig0 == 0 ) zExp = 0;
    return packFloatx80( zSign, zExp, zSig0 );
 precision80:
    increment = ( (sbits64) zSig1 < 0 );
    if ( ! roundNearestEven ) {
        if ( roundingMode == float_round_to_zero ) {
            increment = 0;
        }
        else {
            if ( zSign ) {
                increment = ( roundingMode == float_round_down ) && zSig1;
            }
            else {
                increment = ( roundingMode == float_round_up ) && zSig1;
            }
        }
    }
    if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
        if (    ( 0x7FFE < zExp )
             || (    ( zExp == 0x7FFE )
                  && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
                  && increment
                )
           ) {
            roundMask = 0;
 overflow:
            roundData->exception |= float_flag_overflow | float_flag_inexact;
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
               ) {
                return packFloatx80( zSign, 0x7FFE, ~ roundMask );
            }
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        if ( zExp <= 0 ) {
            isTiny =
                   ( float_detect_tininess == float_tininess_before_rounding )
                || ( zExp < 0 )
                || ! increment
                || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
            shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
            zExp = 0;
            if ( isTiny && zSig1 ) roundData->exception |= float_flag_underflow;
            if ( zSig1 ) roundData->exception |= float_flag_inexact;
            if ( roundNearestEven ) {
                increment = ( (sbits64) zSig1 < 0 );
            }
            else {
                if ( zSign ) {
                    increment = ( roundingMode == float_round_down ) && zSig1;
                }
                else {
                    increment = ( roundingMode == float_round_up ) && zSig1;
                }
            }
            if ( increment ) {
                ++zSig0;
                zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven );
                if ( (sbits64) zSig0 < 0 ) zExp = 1;
            }
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
    if ( zSig1 ) roundData->exception |= float_flag_inexact;
    if ( increment ) {
        ++zSig0;
        if ( zSig0 == 0 ) {
            ++zExp;
            zSig0 = LIT64( 0x8000000000000000 );
        }
        else {
            zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven );
        }
    }
    else {
        if ( zSig0 == 0 ) zExp = 0;
    }
    
    return packFloatx80( zSign, zExp, zSig0 );
}

/*
-------------------------------------------------------------------------------
Takes an abstract floating-point value having sign `zSign', exponent
`zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
and returns the proper extended double-precision floating-point value
corresponding to the abstract input.  This routine is just like
`roundAndPackFloatx80' except that the input significand does not have to be
normalized.
-------------------------------------------------------------------------------
*/
static floatx80
 normalizeRoundAndPackFloatx80(
     struct roundingData *roundData, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
 )
{
    int8 shiftCount;

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
    shiftCount = countLeadingZeros64( zSig0 );
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    zExp -= shiftCount;
    return
        roundAndPackFloatx80( roundData, zSign, zExp, zSig0, zSig1 );

}

#endif

/*
-------------------------------------------------------------------------------
Returns the result of converting the 32-bit two's complement integer `a' to
the single-precision floating-point format.  The conversion is performed
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
float32 int32_to_float32(struct roundingData *roundData, int32 a)
{
    flag zSign;

    if ( a == 0 ) return 0;
    if ( a == 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
    zSign = ( a < 0 );
    return normalizeRoundAndPackFloat32( roundData, zSign, 0x9C, zSign ? - a : a );

}

/*
-------------------------------------------------------------------------------
Returns the result of converting the 32-bit two's complement integer `a' to
the double-precision floating-point format.  The conversion is performed
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
float64 int32_to_float64( int32 a )
{
    flag aSign;
    uint32 absA;
    int8 shiftCount;
    bits64 zSig;

    if ( a == 0 ) return 0;
    aSign = ( a < 0 );
    absA = aSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 21;
    zSig = absA;
    return packFloat64( aSign, 0x432 - shiftCount, zSig<<shiftCount );

}

#ifdef FLOATX80

/*
-------------------------------------------------------------------------------
Returns the result of converting the 32-bit two's complement integer `a'
to the extended double-precision floating-point format.  The conversion
is performed according to the IEC/IEEE Standard for Binary Floating-point
Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 int32_to_floatx80( int32 a )
{
    flag zSign;
    uint32 absA;
    int8 shiftCount;
    bits64 zSig;

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 32;
    zSig = absA;
    return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );

}

#endif

/*
-------------------------------------------------------------------------------
Returns the result of converting the single-precision floating-point value
`a' to the 32-bit two's complement integer format.  The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-point
Arithmetic---which means in particular that the conversion is rounded
according to the current rounding mode.  If `a' is a NaN, the largest
positive integer is returned.  Otherwise, if the conversion overflows, the
largest integer with the same sign as `a' is returned.
-------------------------------------------------------------------------------
*/
int32 float32_to_int32( struct roundingData *roundData, float32 a )
{
    flag aSign;
    int16 aExp, shiftCount;
    bits32 aSig;
    bits64 zSig;

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
    if ( aExp ) aSig |= 0x00800000;
    shiftCount = 0xAF - aExp;
    zSig = aSig;
    zSig <<= 32;
    if ( 0 < shiftCount ) shift64RightJamming( zSig, shiftCount, &zSig );
    return roundAndPackInt32( roundData, aSign, zSig );

}

/*
-------------------------------------------------------------------------------
Returns the result of converting the single-precision floating-point value
`a' to the 32-bit two's complement integer format.  The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-point
Arithmetic, except that the conversion is always rounded toward zero.  If
`a' is a NaN, the largest positive integer is returned.  Otherwise, if the
conversion overflows, the largest integer with the same sign as `a' is
returned.
-------------------------------------------------------------------------------
*/
int32 float32_to_int32_round_to_zero( float32 a )
{
    flag aSign;
    int16 aExp, shiftCount;
    bits32 aSig;
    int32 z;

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    shiftCount = aExp - 0x9E;
    if ( 0 <= shiftCount ) {
        if ( a == 0xCF000000 ) return 0x80000000;
        float_raise( float_flag_invalid );
        if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
        return 0x80000000;
    }
    else if ( aExp <= 0x7E ) {
        if ( aExp | aSig ) float_raise( float_flag_inexact );
        return 0;
    }
    aSig = ( aSig | 0x00800000 )<<8;
    z = aSig>>( - shiftCount );
    if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
        float_raise( float_flag_inexact );
    }
    return aSign ? - z : z;

}

/*
-------------------------------------------------------------------------------
Returns the result of converting the single-precision floating-point value
`a' to the double-precision floating-point format.  The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-point
Arithmetic.
-------------------------------------------------------------------------------
*/
float64 float32_to_float64( float32 a )
{
    flag aSign;
    int16 aExp;
    bits32 aSig;

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
        if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) );
        return packFloat64( aSign, 0x7FF, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
    return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 );

}

#ifdef FLOATX80

/*
-------------------------------------------------------------------------------
Returns the result of converting the single-precision floating-point value
`a' to the extended double-precision floating-point format.  The conversion
is performed according to the IEC/IEEE Standard for Binary Floating-point
Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 float32_to_floatx80( float32 a )
{
    flag aSign;
    int16 aExp;
    bits32 aSig;

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
        if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) );
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    aSig |= 0x00800000;
    return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 );

}

#endif

/*
-------------------------------------------------------------------------------
Rounds the single-precision floating-point value `a' to an integer, and
returns the result as a single-precision floating-point value.  The
operation is performed according to the IEC/IEEE Standard for Binary
Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
float32 float32_round_to_int( struct roundingData *roundData, float32 a )
{
    flag aSign;
    int16 aExp;
    bits32 lastBitMask, roundBitsMask;
    int8 roundingMode;
    float32 z;

    aExp = extractFloat32Exp( a );
    if ( 0x96 <= aExp ) {
        if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
            return propagateFloat32NaN( a, a );
        }
        return a;
    }
    roundingMode = roundData->mode;
    if ( aExp <= 0x7E ) {
        if ( (bits32) ( a<<1 ) == 0 ) return a;
        roundData->exception |= float_flag_inexact;
        aSign = extractFloat32Sign( a );
        switch ( roundingMode ) {
         case float_round_nearest_even:
            if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
                return packFloat32( aSign, 0x7F, 0 );
            }
            break;
         case float_round_down:
            return aSign ? 0xBF800000 : 0;
         case float_round_up:
            return aSign ? 0x80000000 : 0x3F800000;
        }
        return packFloat32( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x96 - aExp;
    roundBitsMask = lastBitMask - 1;
    z = a;
    if ( roundingMode == float_round_nearest_even ) {
        z += lastBitMask>>1;
        if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
    }
    else if ( roundingMode != float_round_to_zero ) {
        if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {
            z += roundBitsMask;
        }
    }
    z &= ~ roundBitsMask;
    if ( z != a ) roundData->exception |= float_flag_inexact;
    return z;

}

/*
-------------------------------------------------------------------------------
Returns the result of adding the absolute values of the single-precision
floating-point values `a' and `b'.  If `zSign' is true, the sum is negated
before being returned.  `zSign' is ignored if the result is a NaN.  The
addition is performed according to the IEC/IEEE Standard for Binary
Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
static float32 addFloat32Sigs( struct roundingData *roundData, float32 a, float32 b, flag zSign )
{
    int16 aExp, bExp, zExp;
    bits32 aSig, bSig, zSig;
    int16 expDiff;

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    expDiff = aExp - bExp;
    aSig <<= 6;
    bSig <<= 6;
    if ( 0 < expDiff ) {
        if ( aExp == 0xFF ) {
            if ( aSig ) return propagateFloat32NaN( a, b );
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig |= 0x20000000;
        }
        shift32RightJamming( bSig, expDiff, &bSig );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0xFF ) {
            if ( bSig ) return propagateFloat32NaN( a, b );
            return packFloat32( zSign, 0xFF, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig |= 0x20000000;
        }
        shift32RightJamming( aSig, - expDiff, &aSig );
        zExp = bExp;
    }
    else {
        if ( aExp == 0xFF ) {
            if ( aSig | bSig ) return propagateFloat32NaN( a, b );
            return a;
        }
        if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
        zSig = 0x40000000 + aSig + bSig;
        zExp = aExp;
        goto roundAndPack;
    }
    aSig |= 0x20000000;
    zSig = ( aSig + bSig )<<1;
    --zExp;
    if ( (sbits32) zSig < 0 ) {
        zSig = aSig + bSig;
        ++zExp;
    }
 roundAndPack:
    return roundAndPackFloat32( roundData, zSign, zExp, zSig );

}

/*
-------------------------------------------------------------------------------
Returns the result of subtracting the absolute values of the single-
precision floating-point values `a' and `b'.  If `zSign' is true, the
difference is negated before being returned.  `zSign' is ignored if the
result is a NaN.  The subtraction is performed according to the IEC/IEEE
Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
static float32 subFloat32Sigs( struct roundingData *roundData, float32 a, float32 b, flag zSign )
{
    int16 aExp, bExp, zExp;
    bits32 aSig, bSig, zSig;
    int16 expDiff;

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    expDiff = aExp - bExp;
    aSig <<= 7;
    bSig <<= 7;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0xFF ) {
        if ( aSig | bSig ) return propagateFloat32NaN( a, b );
        roundData->exception |= float_flag_invalid;
        return float32_default_nan;
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
    return packFloat32( roundData->mode == float_round_down, 0, 0 );
 bExpBigger:
    if ( bExp == 0xFF ) {
        if ( bSig ) return propagateFloat32NaN( a, b );
        return packFloat32( zSign ^ 1, 0xFF, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig |= 0x40000000;
    }
    shift32RightJamming( aSig, - expDiff, &aSig );
    bSig |= 0x40000000;
 bBigger:
    zSig = bSig - aSig;
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0xFF ) {
        if ( aSig ) return propagateFloat32NaN( a, b );
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig |= 0x40000000;
    }
    shift32RightJamming( bSig, expDiff, &bSig );
    aSig |= 0x40000000;
 aBigger:
    zSig = aSig - bSig;
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
    return normalizeRoundAndPackFloat32( roundData, zSign, zExp, zSig );

}

/*
-------------------------------------------------------------------------------
Returns the result of adding the single-precision floating-point values `a'
and `b'.  The operation is performed according to the IEC/IEEE Standard for
Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
float32 float32_add( struct roundingData *roundData, float32 a, float32 b )
{
    flag aSign, bSign;

    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    if ( aSign == bSign ) {
        return addFloat32Sigs( roundData, a, b, aSign );
    }
    else {
        return subFloat32Sigs( roundData, a, b, aSign );
    }

}

/*
-------------------------------------------------------------------------------
Returns the result of subtracting the single-precision floating-point values
`a' and `b'.  The operation is performed according to the IEC/IEEE Standard
for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
float32 float32_sub( struct roundingData *roundData, float32 a, float32 b )
{
    flag aSign, bSign;

    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    if ( aSign == bSign ) {
        return subFloat32Sigs( roundData, a, b, aSign );
    }
    else {
        return addFloat32Sigs( roundData, a, b, aSign );
    }

}

/*
-------------------------------------------------------------------------------
Returns the result of multiplying the single-precision floating-point values
`a' and `b'.  The operation is performed according to the IEC/IEEE Standard
for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
float32 float32_mul( struct roundingData *roundData, float32 a, float32 b )
{
    flag aSign, bSign, zSign;
    int16 aExp, bExp, zExp;
    bits32 aSig, bSig;
    bits64 zSig64;
    bits32 zSig;

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    bSign = extractFloat32Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0xFF ) {
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
            return propagateFloat32NaN( a, b );
        }
        if ( ( bExp | bSig ) == 0 ) {
            roundData->exception |= float_flag_invalid;
            return float32_default_nan;
        }
        return packFloat32( zSign, 0xFF, 0 );
    }
    if ( bExp == 0xFF ) {
        if ( bSig ) return propagateFloat32NaN( a, b );
        if ( ( aExp | aSig ) == 0 ) {
            roundData->exception |= float_flag_invalid;
            return float32_default_nan;
        }
        return packFloat32( zSign, 0xFF, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x7F;
    aSig = ( aSig | 0x00800000 )<<7;
    bSig = ( bSig | 0x00800000 )<<8;
    shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 );
    zSig = zSig64;
    if ( 0 <= (sbits32) ( zSig<<1 ) ) {
        zSig <<= 1;
        --zExp;
    }
    return roundAndPackFloat32( roundData, zSign, zExp, zSig );

}

/*
-------------------------------------------------------------------------------
Returns the result of dividing the single-precision floating-point value `a'
by the corresponding value `b'.  The operation is performed according to the
IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
float32 float32_div( struct roundingData *roundData, float32 a, float32 b )
{
    flag aSign, bSign, zSign;
    int16 aExp, bExp, zExp;
    bits32 aSig, bSig, zSig;

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    bSign = extractFloat32Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0xFF ) {
        if ( aSig ) return propagateFloat32NaN( a, b );
        if ( bExp == 0xFF ) {
            if ( bSig ) return propagateFloat32NaN( a, b );
            roundData->exception |= float_flag_invalid;
            return float32_default_nan;
        }
        return packFloat32( zSign, 0xFF, 0 );
    }
    if ( bExp == 0xFF ) {
        if ( bSig ) return propagateFloat32NaN( a, b );
        return packFloat32( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
                roundData->exception |= float_flag_invalid;
                return float32_default_nan;
            }
            roundData->exception |= float_flag_divbyzero;
            return packFloat32( zSign, 0xFF, 0 );
        }
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x7D;
    aSig = ( aSig | 0x00800000 )<<7;
    bSig = ( bSig | 0x00800000 )<<8;
    if ( bSig <= ( aSig + aSig ) ) {
        aSig >>= 1;
        ++zExp;
    }
    {
        bits64 tmp = ( (bits64) aSig )<<32;
        do_div( tmp, bSig );
        zSig = tmp;
    }
    if ( ( zSig & 0x3F ) == 0 ) {
        zSig |= ( ( (bits64) bSig ) * zSig != ( (bits64) aSig )<<32 );
    }
    return roundAndPackFloat32( roundData, zSign, zExp, zSig );

}

/*
-------------------------------------------------------------------------------
Returns the remainder of the single-precision floating-point value `a'
with respect to the corresponding value `b'.  The operation is performed
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
float32 float32_rem( struct roundingData *roundData, float32 a, float32 b )
{
    flag aSign, bSign, zSign;
    int16 aExp, bExp, expDiff;
    bits32 aSig, bSig;
    bits32 q;
    bits64 aSig64, bSig64, q64;
    bits32 alternateASig;
    sbits32 sigMean;

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    bSign = extractFloat32Sign( b );
    if ( aExp == 0xFF ) {
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
            return propagateFloat32NaN( a, b );
        }
        roundData->exception |= float_flag_invalid;
        return float32_default_nan;
    }
    if ( bExp == 0xFF ) {
        if ( bSig ) return propagateFloat32NaN( a, b );
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            roundData->exception |= float_flag_invalid;
            return float32_default_nan;
        }
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig |= 0x00800000;
    bSig |= 0x00800000;
    if ( expDiff < 32 ) {
        aSig <<= 8;
        bSig <<= 8;
        if ( expDiff < 0 ) {
            if ( expDiff < -1 ) return a;
            aSig >>= 1;
        }
        q = ( bSig <= aSig );
        if ( q ) aSig -= bSig;
        if ( 0 < expDiff ) {
            bits64 tmp = ( (bits64) aSig )<<32;
            do_div( tmp, bSig );
            q = tmp;
            q >>= 32 - expDiff;
            bSig >>= 2;
            aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
        }
        else {
            aSig >>= 2;
            bSig >>= 2;
        }
    }
    else {
        if ( bSig <= aSig ) aSig -= bSig;
        aSig64 = ( (bits64) aSig )<<40;
        bSig64 = ( (bits64) bSig )<<40;
        expDiff -= 64;
        while ( 0 < expDiff ) {
            q64 = estimateDiv128To64( aSig64, 0, bSig64 );
            q64 = ( 2 < q64 ) ? q64 - 2 : 0;
            aSig64 = - ( ( bSig * q64 )<<38 );
            expDiff -= 62;
        }
        expDiff += 64;
        q64 = estimateDiv128To64( aSig64, 0, bSig64 );
        q64 = ( 2 < q64 ) ? q64 - 2 : 0;
        q = q64>>( 64 - expDiff );
        bSig <<= 6;
        aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
    } while ( 0 <= (sbits32) aSig );
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
    zSign = ( (sbits32) aSig < 0 );
    if ( zSign ) aSig = - aSig;
    return normalizeRoundAndPackFloat32( roundData, aSign ^ zSign, bExp, aSig );

}

/*
-------------------------------------------------------------------------------
Returns the square root of the single-precision floating-point value `a'.
The operation is performed according to the IEC/IEEE Standard for Binary
Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
float32 float32_sqrt( struct roundingData *roundData, float32 a )
{
    flag aSign;
    int16 aExp, zExp;
    bits32 aSig, zSig;
    bits64 rem, term;

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
        if ( aSig ) return propagateFloat32NaN( a, 0 );
        if ( ! aSign ) return a;
        roundData->exception |= float_flag_invalid;
        return float32_default_nan;
    }
    if ( aSign ) {
        if ( ( aExp | aSig ) == 0 ) return a;
        roundData->exception |= float_flag_invalid;
        return float32_default_nan;
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return 0;
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
    aSig = ( aSig | 0x00800000 )<<8;
    zSig = estimateSqrt32( aExp, aSig ) + 2;
    if ( ( zSig & 0x7F ) <= 5 ) {
        if ( zSig < 2 ) {
            zSig = 0xFFFFFFFF;
        }
        else {
            aSig >>= aExp & 1;
            term = ( (bits64) zSig ) * zSig;
            rem = ( ( (bits64) aSig )<<32 ) - term;
            while ( (sbits64) rem < 0 ) {
                --zSig;
                rem += ( ( (bits64) zSig )<<1 ) | 1;
            }
            zSig |= ( rem != 0 );
        }
    }
    shift32RightJamming( zSig, 1, &zSig );
    return roundAndPackFloat32( roundData, 0, zExp, zSig );

}

/*
-------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is equal to the
corresponding value `b', and 0 otherwise.  The comparison is performed
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float32_eq( float32 a, float32 b )
{

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid );
        }
        return 0;
    }
    return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );

}

/*
-------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is less than or
equal to the corresponding value `b', and 0 otherwise.  The comparison is
performed according to the IEC/IEEE Standard for Binary Floating-point
Arithmetic.
-------------------------------------------------------------------------------
*/
flag float32_le( float32 a, float32 b )
{
    flag aSign, bSign;

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        float_raise( float_flag_invalid );
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
    return ( a == b ) || ( aSign ^ ( a < b ) );

}

/*
-------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is less than
the corresponding value `b', and 0 otherwise.  The comparison is performed
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float32_lt( float32 a, float32 b )
{
    flag aSign, bSign;

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        float_raise( float_flag_invalid );
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
    return ( a != b ) && ( aSign ^ ( a < b ) );

}

/*
-------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is equal to the
corresponding value `b', and 0 otherwise.  The invalid exception is raised
if either operand is a NaN.  Otherwise, the comparison is performed
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float32_eq_signaling( float32 a, float32 b )
{

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        float_raise( float_flag_invalid );
        return 0;
    }
    return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );

}

/*
-------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is less than or
equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
cause an exception.  Otherwise, the comparison is performed according to the
IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float32_le_quiet( float32 a, float32 b )
{
    flag aSign, bSign;
    //int16 aExp, bExp;

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        /* Do nothing, even if NaN as we're quiet */
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
    return ( a == b ) || ( aSign ^ ( a < b ) );

}

/*
-------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is less than
the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
exception.  Otherwise, the comparison is performed according to the IEC/IEEE
Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float32_lt_quiet( float32 a, float32 b )
{
    flag aSign, bSign;

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        /* Do nothing, even if NaN as we're quiet */
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
    return ( a != b ) && ( aSign ^ ( a < b ) );

}

/*
-------------------------------------------------------------------------------
Returns the result of converting the double-precision floating-point value
`a' to the 32-bit two's complement integer format.  The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-point
Arithmetic---which means in particular that the conversion is rounded
according to the current rounding mode.  If `a' is a NaN, the largest
positive integer is returned.  Otherwise, if the conversion overflows, the
largest integer with the same sign as `a' is returned.
-------------------------------------------------------------------------------
*/
int32 float64_to_int32( struct roundingData *roundData, float64 a )
{
    flag aSign;
    int16 aExp, shiftCount;
    bits64 aSig;

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
    if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
    shiftCount = 0x42C - aExp;
    if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
    return roundAndPackInt32( roundData, aSign, aSig );

}

/*
-------------------------------------------------------------------------------
Returns the result of converting the double-precision floating-point value
`a' to the 32-bit two's complement integer format.  The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-point
Arithmetic, except that the conversion is always rounded toward zero.  If
`a' is a NaN, the largest positive integer is returned.  Otherwise, if the
conversion overflows, the largest integer with the same sign as `a' is
returned.
-------------------------------------------------------------------------------
*/
int32 float64_to_int32_round_to_zero( float64 a )
{
    flag aSign;
    int16 aExp, shiftCount;
    bits64 aSig, savedASig;
    int32 z;

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    shiftCount = 0x433 - aExp;
    if ( shiftCount < 21 ) {
        if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
        goto invalid;
    }
    else if ( 52 < shiftCount ) {
        if ( aExp || aSig ) float_raise( float_flag_inexact );
        return 0;
    }
    aSig |= LIT64( 0x0010000000000000 );
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
        float_raise( float_flag_invalid );
        return aSign ? 0x80000000 : 0x7FFFFFFF;
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
        float_raise( float_flag_inexact );
    }
    return z;

}

/*
-------------------------------------------------------------------------------
Returns the result of converting the double-precision floating-point value
`a' to the 32-bit two's complement unsigned integer format.  The conversion
is performed according to the IEC/IEEE Standard for Binary Floating-point
Arithmetic---which means in particular that the conversion is rounded
according to the current rounding mode.  If `a' is a NaN, the largest
positive integer is returned.  Otherwise, if the conversion overflows, the
largest positive integer is returned.
-------------------------------------------------------------------------------
*/
int32 float64_to_uint32( struct roundingData *roundData, float64 a )
{
    flag aSign;
    int16 aExp, shiftCount;
    bits64 aSig;

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = 0; //extractFloat64Sign( a );
    //if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
    if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
    shiftCount = 0x42C - aExp;
    if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
    return roundAndPackInt32( roundData, aSign, aSig );
}

/*
-------------------------------------------------------------------------------
Returns the result of converting the double-precision floating-point value
`a' to the 32-bit two's complement integer format.  The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-point
Arithmetic, except that the conversion is always rounded toward zero.  If
`a' is a NaN, the largest positive integer is returned.  Otherwise, if the
conversion overflows, the largest positive integer is returned.
-------------------------------------------------------------------------------
*/
int32 float64_to_uint32_round_to_zero( float64 a )
{
    flag aSign;
    int16 aExp, shiftCount;
    bits64 aSig, savedASig;
    int32 z;

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    shiftCount = 0x433 - aExp;
    if ( shiftCount < 21 ) {
        if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
        goto invalid;
    }
    else if ( 52 < shiftCount ) {
        if ( aExp || aSig ) float_raise( float_flag_inexact );
        return 0;
    }
    aSig |= LIT64( 0x0010000000000000 );
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
        float_raise( float_flag_invalid );
        return aSign ? 0x80000000 : 0x7FFFFFFF;
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
        float_raise( float_flag_inexact );
    }
    return z;
}

/*
-------------------------------------------------------------------------------
Returns the result of converting the double-precision floating-point value
`a' to the single-precision floating-point format.  The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-point
Arithmetic.
-------------------------------------------------------------------------------
*/
float32 float64_to_float32( struct roundingData *roundData, float64 a )
{
    flag aSign;
    int16 aExp;
    bits64 aSig;
    bits32 zSig;

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
        if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) );
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 22, &aSig );
    zSig = aSig;
    if ( aExp || zSig ) {
        zSig |= 0x40000000;
        aExp -= 0x381;
    }
    return roundAndPackFloat32( roundData, aSign, aExp, zSig );

}

#ifdef FLOATX80

/*
-------------------------------------------------------------------------------
Returns the result of converting the double-precision floating-point value
`a' to the extended double-precision floating-point format.  The conversion
is performed according to the IEC/IEEE Standard for Binary Floating-point
Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 float64_to_floatx80( float64 a )
{
    flag aSign;
    int16 aExp;
    bits64 aSig;

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
        if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) );
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    return
        packFloatx80(
            aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );

}

#endif

/*
-------------------------------------------------------------------------------
Rounds the double-precision floating-point value `a' to an integer, and
returns the result as a double-precision floating-point value.  The
operation is performed according to the IEC/IEEE Standard for Binary
Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
float64 float64_round_to_int( struct roundingData *roundData, float64 a )
{
    flag aSign;
    int16 aExp;
    bits64 lastBitMask, roundBitsMask;
    int8 roundingMode;
    float64 z;

    aExp = extractFloat64Exp( a );
    if ( 0x433 <= aExp ) {
        if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
            return propagateFloat64NaN( a, a );
        }
        return a;
    }
    if ( aExp <= 0x3FE ) {
        if ( (bits64) ( a<<1 ) == 0 ) return a;
        roundData->exception |= float_flag_inexact;
        aSign = extractFloat64Sign( a );
        switch ( roundData->mode ) {
         case float_round_nearest_even:
            if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
                return packFloat64( aSign, 0x3FF, 0 );
            }
            break;
         case float_round_down:
            return aSign ? LIT64( 0xBFF0000000000000 ) : 0;
         case float_round_up:
            return
            aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 );
        }
        return packFloat64( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x433 - aExp;
    roundBitsMask = lastBitMask - 1;
    z = a;
    roundingMode = roundData->mode;
    if ( roundingMode == float_round_nearest_even ) {
        z += lastBitMask>>1;
        if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
    }
    else if ( roundingMode != float_round_to_zero ) {
        if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) {
            z += roundBitsMask;
        }
    }
    z &= ~ roundBitsMask;
    if ( z != a ) roundData->exception |= float_flag_inexact;
    return z;

}

/*
-------------------------------------------------------------------------------
Returns the result of adding the absolute values of the double-precision
floating-point values `a' and `b'.  If `zSign' is true, the sum is negated
before being returned.  `zSign' is ignored if the result is a NaN.  The
addition is performed according to the IEC/IEEE Standard for Binary
Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
static float64 addFloat64Sigs( struct roundingData *roundData, float64 a, float64 b, flag zSign )
{
    int16 aExp, bExp, zExp;
    bits64 aSig, bSig, zSig;
    int16 expDiff;

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    expDiff = aExp - bExp;
    aSig <<= 9;
    bSig <<= 9;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FF ) {
            if ( aSig ) return propagateFloat64NaN( a, b );
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig |= LIT64( 0x2000000000000000 );
        }
        shift64RightJamming( bSig, expDiff, &bSig );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FF ) {
            if ( bSig ) return propagateFloat64NaN( a, b );
            return packFloat64( zSign, 0x7FF, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig |= LIT64( 0x2000000000000000 );
        }
        shift64RightJamming( aSig, - expDiff, &aSig );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FF ) {
            if ( aSig | bSig ) return propagateFloat64NaN( a, b );
            return a;
        }
        if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
        zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
        zExp = aExp;
        goto roundAndPack;
    }
    aSig |= LIT64( 0x2000000000000000 );
    zSig = ( aSig + bSig )<<1;
    --zExp;
    if ( (sbits64) zSig < 0 ) {
        zSig = aSig + bSig;
        ++zExp;
    }
 roundAndPack:
    return roundAndPackFloat64( roundData, zSign, zExp, zSig );

}

/*
-------------------------------------------------------------------------------
Returns the result of subtracting the absolute values of the double-
precision floating-point values `a' and `b'.  If `zSign' is true, the
difference is negated before being returned.  `zSign' is ignored if the
result is a NaN.  The subtraction is performed according to the IEC/IEEE
Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
static float64 subFloat64Sigs( struct roundingData *roundData, float64 a, float64 b, flag zSign )
{
    int16 aExp, bExp, zExp;
    bits64 aSig, bSig, zSig;
    int16 expDiff;

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    expDiff = aExp - bExp;
    aSig <<= 10;
    bSig <<= 10;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FF ) {
        if ( aSig | bSig ) return propagateFloat64NaN( a, b );
        roundData->exception |= float_flag_invalid;
        return float64_default_nan;
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
    return packFloat64( roundData->mode == float_round_down, 0, 0 );
 bExpBigger:
    if ( bExp == 0x7FF ) {
        if ( bSig ) return propagateFloat64NaN( a, b );
        return packFloat64( zSign ^ 1, 0x7FF, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig |= LIT64( 0x4000000000000000 );
    }
    shift64RightJamming( aSig, - expDiff, &aSig );
    bSig |= LIT64( 0x4000000000000000 );
 bBigger:
    zSig = bSig - aSig;
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FF ) {
        if ( aSig ) return propagateFloat64NaN( a, b );
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig |= LIT64( 0x4000000000000000 );
    }
    shift64RightJamming( bSig, expDiff, &bSig );
    aSig |= LIT64( 0x4000000000000000 );
 aBigger:
    zSig = aSig - bSig;
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
    return normalizeRoundAndPackFloat64( roundData, zSign, zExp, zSig );

}

/*
-------------------------------------------------------------------------------
Returns the result of adding the double-precision floating-point values `a'
and `b'.  The operation is performed according to the IEC/IEEE Standard for
Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
float64 float64_add( struct roundingData *roundData, float64 a, float64 b )
{
    flag aSign, bSign;

    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
    if ( aSign == bSign ) {
        return addFloat64Sigs( roundData, a, b, aSign );
    }
    else {
        return subFloat64Sigs( roundData, a, b, aSign );
    }

}

/*
-------------------------------------------------------------------------------
Returns the result of subtracting the double-precision floating-point values
`a' and `b'.  The operation is performed according to the IEC/IEEE Standard
for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
float64 float64_sub( struct roundingData *roundData, float64 a, float64 b )
{
    flag aSign, bSign;

    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
    if ( aSign == bSign ) {
        return subFloat64Sigs( roundData, a, b, aSign );
    }
    else {
        return addFloat64Sigs( roundData, a, b, aSign );
    }

}

/*
-------------------------------------------------------------------------------
Returns the result of multiplying the double-precision floating-point values
`a' and `b'.  The operation is performed according to the IEC/IEEE Standard
for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
float64 float64_mul( struct roundingData *roundData, float64 a, float64 b )
{
    flag aSign, bSign, zSign;
    int16 aExp, bExp, zExp;
    bits64 aSig, bSig, zSig0, zSig1;

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    bSign = extractFloat64Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FF ) {
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
            return propagateFloat64NaN( a, b );
        }
        if ( ( bExp | bSig ) == 0 ) {
            roundData->exception |= float_flag_invalid;
            return float64_default_nan;
        }
        return packFloat64( zSign, 0x7FF, 0 );
    }
    if ( bExp == 0x7FF ) {
        if ( bSig ) return propagateFloat64NaN( a, b );
        if ( ( aExp | aSig ) == 0 ) {
            roundData->exception |= float_flag_invalid;
            return float64_default_nan;
        }
        return packFloat64( zSign, 0x7FF, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x3FF;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
    zSig0 |= ( zSig1 != 0 );
    if ( 0 <= (sbits64) ( zSig0<<1 ) ) {
        zSig0 <<= 1;
        --zExp;
    }
    return roundAndPackFloat64( roundData, zSign, zExp, zSig0 );

}

/*
-------------------------------------------------------------------------------
Returns the result of dividing the double-precision floating-point value `a'
by the corresponding value `b'.  The operation is performed according to
the IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
float64 float64_div( struct roundingData *roundData, float64 a, float64 b )
{
    flag aSign, bSign, zSign;
    int16 aExp, bExp, zExp;
    bits64 aSig, bSig, zSig;
    bits64 rem0, rem1;
    bits64 term0, term1;

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    bSign = extractFloat64Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FF ) {
        if ( aSig ) return propagateFloat64NaN( a, b );
        if ( bExp == 0x7FF ) {
            if ( bSig ) return propagateFloat64NaN( a, b );
            roundData->exception |= float_flag_invalid;
            return float64_default_nan;
        }
        return packFloat64( zSign, 0x7FF, 0 );
    }
    if ( bExp == 0x7FF ) {
        if ( bSig ) return propagateFloat64NaN( a, b );
        return packFloat64( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
                roundData->exception |= float_flag_invalid;
                return float64_default_nan;
            }
            roundData->exception |= float_flag_divbyzero;
            return packFloat64( zSign, 0x7FF, 0 );
        }
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x3FD;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    if ( bSig <= ( aSig + aSig ) ) {
        aSig >>= 1;
        ++zExp;
    }
    zSig = estimateDiv128To64( aSig, 0, bSig );
    if ( ( zSig & 0x1FF ) <= 2 ) {
        mul64To128( bSig, zSig, &term0, &term1 );
        sub128( aSig, 0, term0, term1, &rem0, &rem1 );
        while ( (sbits64) rem0 < 0 ) {
            --zSig;
            add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
        }
        zSig |= ( rem1 != 0 );
    }
    return roundAndPackFloat64( roundData, zSign, zExp, zSig );

}

/*
-------------------------------------------------------------------------------
Returns the remainder of the double-precision floating-point value `a'
with respect to the corresponding value `b'.  The operation is performed
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
float64 float64_rem( struct roundingData *roundData, float64 a, float64 b )
{
    flag aSign, bSign, zSign;
    int16 aExp, bExp, expDiff;
    bits64 aSig, bSig;
    bits64 q, alternateASig;
    sbits64 sigMean;

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    bSign = extractFloat64Sign( b );
    if ( aExp == 0x7FF ) {
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
            return propagateFloat64NaN( a, b );
        }
        roundData->exception |= float_flag_invalid;
        return float64_default_nan;
    }
    if ( bExp == 0x7FF ) {
        if ( bSig ) return propagateFloat64NaN( a, b );
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            roundData->exception |= float_flag_invalid;
            return float64_default_nan;
        }
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        aSig >>= 1;
    }
    q = ( bSig <= aSig );
    if ( q ) aSig -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        aSig = - ( ( bSig>>2 ) * q );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        bSig >>= 2;
        aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
    }
    else {
        aSig >>= 2;
        bSig >>= 2;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
    } while ( 0 <= (sbits64) aSig );
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
    zSign = ( (sbits64) aSig < 0 );
    if ( zSign ) aSig = - aSig;
    return normalizeRoundAndPackFloat64( roundData, aSign ^ zSign, bExp, aSig );

}

/*
-------------------------------------------------------------------------------
Returns the square root of the double-precision floating-point value `a'.
The operation is performed according to the IEC/IEEE Standard for Binary
Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
float64 float64_sqrt( struct roundingData *roundData, float64 a )
{
    flag aSign;
    int16 aExp, zExp;
    bits64 aSig, zSig;
    bits64 rem0, rem1, term0, term1; //, shiftedRem;
    //float64 z;

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
        if ( aSig ) return propagateFloat64NaN( a, a );
        if ( ! aSign ) return a;
        roundData->exception |= float_flag_invalid;
        return float64_default_nan;
    }
    if ( aSign ) {
        if ( ( aExp | aSig ) == 0 ) return a;
        roundData->exception |= float_flag_invalid;
        return float64_default_nan;
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return 0;
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
    aSig |= LIT64( 0x0010000000000000 );
    zSig = estimateSqrt32( aExp, aSig>>21 );
    zSig <<= 31;
    aSig <<= 9 - ( aExp & 1 );
    zSig = estimateDiv128To64( aSig, 0, zSig ) + zSig + 2;
    if ( ( zSig & 0x3FF ) <= 5 ) {
        if ( zSig < 2 ) {
            zSig = LIT64( 0xFFFFFFFFFFFFFFFF );
        }
        else {
            aSig <<= 2;
            mul64To128( zSig, zSig, &term0, &term1 );
            sub128( aSig, 0, term0, term1, &rem0, &rem1 );
            while ( (sbits64) rem0 < 0 ) {
                --zSig;
                shortShift128Left( 0, zSig, 1, &term0, &term1 );
                term1 |= 1;
                add128( rem0, rem1, term0, term1, &rem0, &rem1 );
            }
            zSig |= ( ( rem0 | rem1 ) != 0 );
        }
    }
    shift64RightJamming( zSig, 1, &zSig );
    return roundAndPackFloat64( roundData, 0, zExp, zSig );

}

/*
-------------------------------------------------------------------------------
Returns 1 if the double-precision floating-point value `a' is equal to the
corresponding value `b', and 0 otherwise.  The comparison is performed
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float64_eq( float64 a, float64 b )
{

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid );
        }
        return 0;
    }
    return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );

}

/*
-------------------------------------------------------------------------------
Returns 1 if the double-precision floating-point value `a' is less than or
equal to the corresponding value `b', and 0 otherwise.  The comparison is
performed according to the IEC/IEEE Standard for Binary Floating-point
Arithmetic.
-------------------------------------------------------------------------------
*/
flag float64_le( float64 a, float64 b )
{
    flag aSign, bSign;

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        float_raise( float_flag_invalid );
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
    if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
    return ( a == b ) || ( aSign ^ ( a < b ) );

}

/*
-------------------------------------------------------------------------------
Returns 1 if the double-precision floating-point value `a' is less than
the corresponding value `b', and 0 otherwise.  The comparison is performed
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float64_lt( float64 a, float64 b )
{
    flag aSign, bSign;

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        float_raise( float_flag_invalid );
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
    if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
    return ( a != b ) && ( aSign ^ ( a < b ) );

}

/*
-------------------------------------------------------------------------------
Returns 1 if the double-precision floating-point value `a' is equal to the
corresponding value `b', and 0 otherwise.  The invalid exception is raised
if either operand is a NaN.  Otherwise, the comparison is performed
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float64_eq_signaling( float64 a, float64 b )
{

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        float_raise( float_flag_invalid );
        return 0;
    }
    return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );

}

/*
-------------------------------------------------------------------------------
Returns 1 if the double-precision floating-point value `a' is less than or
equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
cause an exception.  Otherwise, the comparison is performed according to the
IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float64_le_quiet( float64 a, float64 b )
{
    flag aSign, bSign;
    //int16 aExp, bExp;

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        /* Do nothing, even if NaN as we're quiet */
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
    if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
    return ( a == b ) || ( aSign ^ ( a < b ) );

}

/*
-------------------------------------------------------------------------------
Returns 1 if the double-precision floating-point value `a' is less than
the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
exception.  Otherwise, the comparison is performed according to the IEC/IEEE
Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float64_lt_quiet( float64 a, float64 b )
{
    flag aSign, bSign;

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        /* Do nothing, even if NaN as we're quiet */
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
    if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
    return ( a != b ) && ( aSign ^ ( a < b ) );

}

#ifdef FLOATX80

/*
-------------------------------------------------------------------------------
Returns the result of converting the extended double-precision floating-
point value `a' to the 32-bit two's complement integer format.  The
conversion is performed according to the IEC/IEEE Standard for Binary
Floating-point Arithmetic---which means in particular that the conversion
is rounded according to the current rounding mode.  If `a' is a NaN, the
largest positive integer is returned.  Otherwise, if the conversion
overflows, the largest integer with the same sign as `a' is returned.
-------------------------------------------------------------------------------
*/
int32 floatx80_to_int32( struct roundingData *roundData, floatx80 a )
{
    flag aSign;
    int32 aExp, shiftCount;
    bits64 aSig;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
    shiftCount = 0x4037 - aExp;
    if ( shiftCount <= 0 ) shiftCount = 1;
    shift64RightJamming( aSig, shiftCount, &aSig );
    return roundAndPackInt32( roundData, aSign, aSig );

}

/*
-------------------------------------------------------------------------------
Returns the result of converting the extended double-precision floating-
point value `a' to the 32-bit two's complement integer format.  The
conversion is performed according to the IEC/IEEE Standard for Binary
Floating-point Arithmetic, except that the conversion is always rounded
toward zero.  If `a' is a NaN, the largest positive integer is returned.
Otherwise, if the conversion overflows, the largest integer with the same
sign as `a' is returned.
-------------------------------------------------------------------------------
*/
int32 floatx80_to_int32_round_to_zero( floatx80 a )
{
    flag aSign;
    int32 aExp, shiftCount;
    bits64 aSig, savedASig;
    int32 z;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = 0x403E - aExp;
    if ( shiftCount < 32 ) {
        if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
        goto invalid;
    }
    else if ( 63 < shiftCount ) {
        if ( aExp || aSig ) float_raise( float_flag_inexact );
        return 0;
    }
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
        float_raise( float_flag_invalid );
        return aSign ? 0x80000000 : 0x7FFFFFFF;
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
        float_raise( float_flag_inexact );
    }
    return z;

}

/*
-------------------------------------------------------------------------------
Returns the result of converting the extended double-precision floating-
point value `a' to the single-precision floating-point format.  The
conversion is performed according to the IEC/IEEE Standard for Binary
Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
float32 floatx80_to_float32( struct roundingData *roundData, floatx80 a )
{
    flag aSign;
    int32 aExp;
    bits64 aSig;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( (bits64) ( aSig<<1 ) ) {
            return commonNaNToFloat32( floatx80ToCommonNaN( a ) );
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 33, &aSig );
    if ( aExp || aSig ) aExp -= 0x3F81;
    return roundAndPackFloat32( roundData, aSign, aExp, aSig );

}

/*
-------------------------------------------------------------------------------
Returns the result of converting the extended double-precision floating-
point value `a' to the double-precision floating-point format.  The
conversion is performed according to the IEC/IEEE Standard for Binary
Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
float64 floatx80_to_float64( struct roundingData *roundData, floatx80 a )
{
    flag aSign;
    int32 aExp;
    bits64 aSig, zSig;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( (bits64) ( aSig<<1 ) ) {
            return commonNaNToFloat64( floatx80ToCommonNaN( a ) );
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shift64RightJamming( aSig, 1, &zSig );
    if ( aExp || aSig ) aExp -= 0x3C01;
    return roundAndPackFloat64( roundData, aSign, aExp, zSig );

}

/*
-------------------------------------------------------------------------------
Rounds the extended double-precision floating-point value `a' to an integer,
and returns the result as an extended quadruple-precision floating-point
value.  The operation is performed according to the IEC/IEEE Standard for
Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 floatx80_round_to_int( struct roundingData *roundData, floatx80 a )
{
    flag aSign;
    int32 aExp;
    bits64 lastBitMask, roundBitsMask;
    int8 roundingMode;
    floatx80 z;

    aExp = extractFloatx80Exp( a );
    if ( 0x403E <= aExp ) {
        if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) {
            return propagateFloatx80NaN( a, a );
        }
        return a;
    }
    if ( aExp <= 0x3FFE ) {
        if (    ( aExp == 0 )
             && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
            return a;
        }
        roundData->exception |= float_flag_inexact;
        aSign = extractFloatx80Sign( a );
        switch ( roundData->mode ) {
         case float_round_nearest_even:
            if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 )
               ) {
                return
                    packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
            }
            break;
         case float_round_down:
            return
                  aSign ?
                      packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
                : packFloatx80( 0, 0, 0 );
         case float_round_up:
            return
                  aSign ? packFloatx80( 1, 0, 0 )
                : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
        }
        return packFloatx80( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x403E - aExp;
    roundBitsMask = lastBitMask - 1;
    z = a;
    roundingMode = roundData->mode;
    if ( roundingMode == float_round_nearest_even ) {
        z.low += lastBitMask>>1;
        if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
    }
    else if ( roundingMode != float_round_to_zero ) {
        if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) {
            z.low += roundBitsMask;
        }
    }
    z.low &= ~ roundBitsMask;
    if ( z.low == 0 ) {
        ++z.high;
        z.low = LIT64( 0x8000000000000000 );
    }
    if ( z.low != a.low ) roundData->exception |= float_flag_inexact;
    return z;

}

/*
-------------------------------------------------------------------------------
Returns the result of adding the absolute values of the extended double-
precision floating-point values `a' and `b'.  If `zSign' is true, the sum is
negated before being returned.  `zSign' is ignored if the result is a NaN.
The addition is performed according to the IEC/IEEE Standard for Binary
Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
static floatx80 addFloatx80Sigs( struct roundingData *roundData, floatx80 a, floatx80 b, flag zSign )
{
    int32 aExp, bExp, zExp;
    bits64 aSig, bSig, zSig0, zSig1;
    int32 expDiff;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
            if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
            return a;
        }
        if ( bExp == 0 ) --expDiff;
        shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
            if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        if ( aExp == 0 ) ++expDiff;
        shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
            if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
                return propagateFloatx80NaN( a, b );
            }
            return a;
        }
        zSig1 = 0;
        zSig0 = aSig + bSig;
        if ( aExp == 0 ) {
            normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
            goto roundAndPack;
        }
        zExp = aExp;
        goto shiftRight1;
    }
    
    zSig0 = aSig + bSig;

    if ( (sbits64) zSig0 < 0 ) goto roundAndPack; 
 shiftRight1:
    shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= LIT64( 0x8000000000000000 );
    ++zExp;
 roundAndPack:
    return
        roundAndPackFloatx80(
            roundData, zSign, zExp, zSig0, zSig1 );

}

/*
-------------------------------------------------------------------------------
Returns the result of subtracting the absolute values of the extended
double-precision floating-point values `a' and `b'.  If `zSign' is true,
the difference is negated before being returned.  `zSign' is ignored if the
result is a NaN.  The subtraction is performed according to the IEC/IEEE
Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
static floatx80 subFloatx80Sigs( struct roundingData *roundData, floatx80 a, floatx80 b, flag zSign )
{
    int32 aExp, bExp, zExp;
    bits64 aSig, bSig, zSig0, zSig1;
    int32 expDiff;
    floatx80 z;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
        if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
            return propagateFloatx80NaN( a, b );
        }
        roundData->exception |= float_flag_invalid;
        z.low = floatx80_default_nan_low;
        z.high = floatx80_default_nan_high;
        z.__padding = 0;
        return z;
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    zSig1 = 0;
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
    return packFloatx80( roundData->mode == float_round_down, 0, 0 );
 bExpBigger:
    if ( bExp == 0x7FFF ) {
        if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
        return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) ++expDiff;
    shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 bBigger:
    sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
        if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
        return a;
    }
    if ( bExp == 0 ) --expDiff;
    shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 aBigger:
    sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
    return
        normalizeRoundAndPackFloatx80(
            roundData, zSign, zExp, zSig0, zSig1 );

}

/*
-------------------------------------------------------------------------------
Returns the result of adding the extended double-precision floating-point
values `a' and `b'.  The operation is performed according to the IEC/IEEE
Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 floatx80_add( struct roundingData *roundData, floatx80 a, floatx80 b )
{
    flag aSign, bSign;
    
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
        return addFloatx80Sigs( roundData, a, b, aSign );
    }
    else {
        return subFloatx80Sigs( roundData, a, b, aSign );
    }
    
}

/*
-------------------------------------------------------------------------------
Returns the result of subtracting the extended double-precision floating-
point values `a' and `b'.  The operation is performed according to the
IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 floatx80_sub( struct roundingData *roundData, floatx80 a, floatx80 b )
{
    flag aSign, bSign;

    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
        return subFloatx80Sigs( roundData, a, b, aSign );
    }
    else {
        return addFloatx80Sigs( roundData, a, b, aSign );
    }

}

/*
-------------------------------------------------------------------------------
Returns the result of multiplying the extended double-precision floating-
point values `a' and `b'.  The operation is performed according to the
IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 floatx80_mul( struct roundingData *roundData, floatx80 a, floatx80 b )
{
    flag aSign, bSign, zSign;
    int32 aExp, bExp, zExp;
    bits64 aSig, bSig, zSig0, zSig1;
    floatx80 z;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
        if (    (bits64) ( aSig<<1 )
             || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
            return propagateFloatx80NaN( a, b );
        }
        if ( ( bExp | bSig ) == 0 ) goto invalid;
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( bExp == 0x7FFF ) {
        if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
        if ( ( aExp | aSig ) == 0 ) {
 invalid:
            roundData->exception |= float_flag_invalid;
            z.low = floatx80_default_nan_low;
            z.high = floatx80_default_nan_high;
            z.__padding = 0;
            return z;
        }
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x3FFE;
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
    if ( 0 < (sbits64) zSig0 ) {
        shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
        --zExp;
    }
    return
        roundAndPackFloatx80(
            roundData, zSign, zExp, zSig0, zSig1 );

}

/*
-------------------------------------------------------------------------------
Returns the result of dividing the extended double-precision floating-point
value `a' by the corresponding value `b'.  The operation is performed
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 floatx80_div( struct roundingData *roundData, floatx80 a, floatx80 b )
{
    flag aSign, bSign, zSign;
    int32 aExp, bExp, zExp;
    bits64 aSig, bSig, zSig0, zSig1;
    bits64 rem0, rem1, rem2, term0, term1, term2;
    floatx80 z;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
        if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
        if ( bExp == 0x7FFF ) {
            if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
            goto invalid;
        }
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( bExp == 0x7FFF ) {
        if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
        return packFloatx80( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
 invalid:
                roundData->exception |= float_flag_invalid;
                z.low = floatx80_default_nan_low;
                z.high = floatx80_default_nan_high;
                z.__padding = 0;
                return z;
            }
            roundData->exception |= float_flag_divbyzero;
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x3FFE;
    rem1 = 0;
    if ( bSig <= aSig ) {
        shift128Right( aSig, 0, 1, &aSig, &rem1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig, rem1, bSig );
    mul64To128( bSig, zSig0, &term0, &term1 );
    sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
    while ( (sbits64) rem0 < 0 ) {
        --zSig0;
        add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, bSig );
    if ( (bits64) ( zSig1<<1 ) <= 8 ) {
        mul64To128( bSig, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        while ( (sbits64) rem1 < 0 ) {
            --zSig1;
            add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
        }
        zSig1 |= ( ( rem1 | rem2 ) != 0 );
    }
    return
        roundAndPackFloatx80(
            roundData, zSign, zExp, zSig0, zSig1 );

}

/*
-------------------------------------------------------------------------------
Returns the remainder of the extended double-precision floating-point value
`a' with respect to the corresponding value `b'.  The operation is performed
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 floatx80_rem( struct roundingData *roundData, floatx80 a, floatx80 b )
{
    flag aSign, bSign, zSign;
    int32 aExp, bExp, expDiff;
    bits64 aSig0, aSig1, bSig;
    bits64 q, term0, term1, alternateASig0, alternateASig1;
    floatx80 z;

    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    if ( aExp == 0x7FFF ) {
        if (    (bits64) ( aSig0<<1 )
             || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
            return propagateFloatx80NaN( a, b );
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
        if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
 invalid:
            roundData->exception |= float_flag_invalid;
            z.low = floatx80_default_nan_low;
            z.high = floatx80_default_nan_high;
            z.__padding = 0;
            return z;
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( (bits64) ( aSig0<<1 ) == 0 ) return a;
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    bSig |= LIT64( 0x8000000000000000 );
    zSign = aSign;
    expDiff = aExp - bExp;
    aSig1 = 0;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
        expDiff = 0;
    }
    q = ( bSig <= aSig0 );
    if ( q ) aSig0 -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        mul64To128( bSig, q, &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
        while ( le128( term0, term1, aSig0, aSig1 ) ) {
            ++q;
            sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        }
    }
    else {
        term1 = 0;
        term0 = bSig;
    }
    sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
    if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
         || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
              && ( q & 1 ) )
       ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
        zSign = ! zSign;
    }

    return
        normalizeRoundAndPackFloatx80(
            roundData, zSign, bExp + expDiff, aSig0, aSig1 );

}

/*
-------------------------------------------------------------------------------
Returns the square root of the extended double-precision floating-point
value `a'.  The operation is performed according to the IEC/IEEE Standard
for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 floatx80_sqrt( struct roundingData *roundData, floatx80 a )
{
    flag aSign;
    int32 aExp, zExp;
    bits64 aSig0, aSig1, zSig0, zSig1;
    bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
    bits64 shiftedRem0, shiftedRem1;
    floatx80 z;

    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a );
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 ) == 0 ) return a;
 invalid:
        roundData->exception |= float_flag_invalid;
        z.low = floatx80_default_nan_low;
        z.high = floatx80_default_nan_high;
        z.__padding = 0;
        return z;
    }
    if ( aExp == 0 ) {
        if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
    zSig0 = estimateSqrt32( aExp, aSig0>>32 );
    zSig0 <<= 31;
    aSig1 = 0;
    shift128Right( aSig0, 0, ( aExp & 1 ) + 2, &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0 ) + zSig0 + 4;
    if ( 0 <= (sbits64) zSig0 ) zSig0 = LIT64( 0xFFFFFFFFFFFFFFFF );
    shortShift128Left( aSig0, aSig1, 2, &aSig0, &aSig1 );
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
    while ( (sbits64) rem0 < 0 ) {
        --zSig0;
        shortShift128Left( 0, zSig0, 1, &term0, &term1 );
        term1 |= 1;
        add128( rem0, rem1, term0, term1, &rem0, &rem1 );
    }
    shortShift128Left( rem0, rem1, 63, &shiftedRem0, &shiftedRem1 );
    zSig1 = estimateDiv128To64( shiftedRem0, shiftedRem1, zSig0 );
    if ( (bits64) ( zSig1<<1 ) <= 10 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( zSig0, zSig1, &term1, &term2 );
        shortShift128Left( term1, term2, 1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
        while ( (sbits64) rem1 < 0 ) {
            --zSig1;
            shortShift192Left( 0, zSig0, zSig1, 1, &term1, &term2, &term3 );
            term3 |= 1;
            add192(
                rem1, rem2, rem3, term1, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    return
        roundAndPackFloatx80(
            roundData, 0, zExp, zSig0, zSig1 );

}

/*
-------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is
equal to the corresponding value `b', and 0 otherwise.  The comparison is
performed according to the IEC/IEEE Standard for Binary Floating-point
Arithmetic.
-------------------------------------------------------------------------------
*/
flag floatx80_eq( floatx80 a, floatx80 b )
{

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
       ) {
        if (    floatx80_is_signaling_nan( a )
             || floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid );
        }
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
                  && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
           );

}

/*
-------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is
less than or equal to the corresponding value `b', and 0 otherwise.  The
comparison is performed according to the IEC/IEEE Standard for Binary
Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
flag floatx80_le( floatx80 a, floatx80 b )
{
    flag aSign, bSign;

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
       ) {
        float_raise( float_flag_invalid );
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
            || (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*
-------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is
less than the corresponding value `b', and 0 otherwise.  The comparison
is performed according to the IEC/IEEE Standard for Binary Floating-point
Arithmetic.
-------------------------------------------------------------------------------
*/
flag floatx80_lt( floatx80 a, floatx80 b )
{
    flag aSign, bSign;

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
       ) {
        float_raise( float_flag_invalid );
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
            && (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

/*
-------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is equal
to the corresponding value `b', and 0 otherwise.  The invalid exception is
raised if either operand is a NaN.  Otherwise, the comparison is performed
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
flag floatx80_eq_signaling( floatx80 a, floatx80 b )
{

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
       ) {
        float_raise( float_flag_invalid );
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
                  && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
           );

}

/*
-------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is less
than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
do not cause an exception.  Otherwise, the comparison is performed according
to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
flag floatx80_le_quiet( floatx80 a, floatx80 b )
{
    flag aSign, bSign;

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
       ) {
        /* Do nothing, even if NaN as we're quiet */
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
            || (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*
-------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is less
than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
an exception.  Otherwise, the comparison is performed according to the
IEC/IEEE Standard for Binary Floating-point Arithmetic.
-------------------------------------------------------------------------------
*/
flag floatx80_lt_quiet( floatx80 a, floatx80 b )
{
    flag aSign, bSign;

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
       ) {
        /* Do nothing, even if NaN as we're quiet */
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
            && (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

#endif