kprobes-test.c 41.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
/*
 * arch/arm/kernel/kprobes-test.c
 *
 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

/*
 * This file contains test code for ARM kprobes.
 *
 * The top level function run_all_tests() executes tests for all of the
 * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
 * fall into two categories; run_api_tests() checks basic functionality of the
 * kprobes API, and run_test_cases() is a comprehensive test for kprobes
 * instruction decoding and simulation.
 *
 * run_test_cases() first checks the kprobes decoding table for self consistency
 * (using table_test()) then executes a series of test cases for each of the CPU
 * instruction forms. coverage_start() and coverage_end() are used to verify
 * that these test cases cover all of the possible combinations of instructions
 * described by the kprobes decoding tables.
 *
 * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
 * which use the macros defined in kprobes-test.h. The rest of this
 * documentation will describe the operation of the framework used by these
 * test cases.
 */

/*
 * TESTING METHODOLOGY
 * -------------------
 *
 * The methodology used to test an ARM instruction 'test_insn' is to use
 * inline assembler like:
 *
 * test_before: nop
 * test_case:	test_insn
 * test_after:	nop
 *
 * When the test case is run a kprobe is placed of each nop. The
 * post-handler of the test_before probe is used to modify the saved CPU
 * register context to that which we require for the test case. The
 * pre-handler of the of the test_after probe saves a copy of the CPU
 * register context. In this way we can execute test_insn with a specific
 * register context and see the results afterwards.
 *
 * To actually test the kprobes instruction emulation we perform the above
 * step a second time but with an additional kprobe on the test_case
 * instruction itself. If the emulation is accurate then the results seen
 * by the test_after probe will be identical to the first run which didn't
 * have a probe on test_case.
 *
 * Each test case is run several times with a variety of variations in the
 * flags value of stored in CPSR, and for Thumb code, different ITState.
 *
 * For instructions which can modify PC, a second test_after probe is used
 * like this:
 *
 * test_before: nop
 * test_case:	test_insn
 * test_after:	nop
 *		b test_done
 * test_after2: nop
 * test_done:
 *
 * The test case is constructed such that test_insn branches to
 * test_after2, or, if testing a conditional instruction, it may just
 * continue to test_after. The probes inserted at both locations let us
 * determine which happened. A similar approach is used for testing
 * backwards branches...
 *
 *		b test_before
 *		b test_done  @ helps to cope with off by 1 branches
 * test_after2: nop
 *		b test_done
 * test_before: nop
 * test_case:	test_insn
 * test_after:	nop
 * test_done:
 *
 * The macros used to generate the assembler instructions describe above
 * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
 * (branch backwards). In these, the local variables numbered 1, 50, 2 and
 * 99 represent: test_before, test_case, test_after2 and test_done.
 *
 * FRAMEWORK
 * ---------
 *
 * Each test case is wrapped between the pair of macros TESTCASE_START and
 * TESTCASE_END. As well as performing the inline assembler boilerplate,
 * these call out to the kprobes_test_case_start() and
 * kprobes_test_case_end() functions which drive the execution of the test
 * case. The specific arguments to use for each test case are stored as
 * inline data constructed using the various TEST_ARG_* macros. Putting
 * this all together, a simple test case may look like:
 *
 *	TESTCASE_START("Testing mov r0, r7")
 *	TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
 *	TEST_ARG_END("")
 *	TEST_INSTRUCTION("mov r0, r7")
 *	TESTCASE_END
 *
 * Note, in practice the single convenience macro TEST_R would be used for this
 * instead.
 *
 * The above would expand to assembler looking something like:
 *
 *	@ TESTCASE_START
 *	bl	__kprobes_test_case_start
 *	@ start of inline data...
 *	.ascii "mov r0, r7"	@ text title for test case
 *	.byte	0
 *	.align	2
 *
 *	@ TEST_ARG_REG
 *	.byte	ARG_TYPE_REG
 *	.byte	7
 *	.short	0
 *	.word	0x1234567
 *
 *	@ TEST_ARG_END
 *	.byte	ARG_TYPE_END
 *	.byte	TEST_ISA	@ flags, including ISA being tested
 *	.short	50f-0f		@ offset of 'test_before'
 *	.short	2f-0f		@ offset of 'test_after2' (if relevent)
 *	.short	99f-0f		@ offset of 'test_done'
 *	@ start of test case code...
 *	0:
 *	.code	TEST_ISA	@ switch to ISA being tested
 *
 *	@ TEST_INSTRUCTION
 *	50:	nop		@ location for 'test_before' probe
 *	1:	mov r0, r7	@ the test case instruction 'test_insn'
 *		nop		@ location for 'test_after' probe
 *
 *	// TESTCASE_END
 *	2:
 *	99:	bl __kprobes_test_case_end_##TEST_ISA
 *	.code	NONMAL_ISA
 *
 * When the above is execute the following happens...
 *
 * __kprobes_test_case_start() is an assembler wrapper which sets up space
 * for a stack buffer and calls the C function kprobes_test_case_start().
 * This C function will do some initial processing of the inline data and
 * setup some global state. It then inserts the test_before and test_after
 * kprobes and returns a value which causes the assembler wrapper to jump
 * to the start of the test case code, (local label '0').
 *
 * When the test case code executes, the test_before probe will be hit and
 * test_before_post_handler will call setup_test_context(). This fills the
 * stack buffer and CPU registers with a test pattern and then processes
 * the test case arguments. In our example there is one TEST_ARG_REG which
 * indicates that R7 should be loaded with the value 0x12345678.
 *
 * When the test_before probe ends, the test case continues and executes
 * the "mov r0, r7" instruction. It then hits the test_after probe and the
 * pre-handler for this (test_after_pre_handler) will save a copy of the
 * CPU register context. This should now have R0 holding the same value as
 * R7.
 *
 * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
 * an assembler wrapper which switches back to the ISA used by the test
 * code and calls the C function kprobes_test_case_end().
 *
 * For each run through the test case, test_case_run_count is incremented
 * by one. For even runs, kprobes_test_case_end() saves a copy of the
 * register and stack buffer contents from the test case just run. It then
 * inserts a kprobe on the test case instruction 'test_insn' and returns a
 * value to cause the test case code to be re-run.
 *
 * For odd numbered runs, kprobes_test_case_end() compares the register and
 * stack buffer contents to those that were saved on the previous even
 * numbered run (the one without the kprobe on test_insn). These should be
 * the same if the kprobe instruction simulation routine is correct.
 *
 * The pair of test case runs is repeated with different combinations of
 * flag values in CPSR and, for Thumb, different ITState. This is
 * controlled by test_context_cpsr().
 *
 * BUILDING TEST CASES
 * -------------------
 *
 *
 * As an aid to building test cases, the stack buffer is initialised with
 * some special values:
 *
 *   [SP+13*4]	Contains SP+120. This can be used to test instructions
 *		which load a value into SP.
 *
 *   [SP+15*4]	When testing branching instructions using TEST_BRANCH_{F,B},
 *		this holds the target address of the branch, 'test_after2'.
 *		This can be used to test instructions which load a PC value
 *		from memory.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kprobes.h>

#include <asm/opcodes.h>

#include "kprobes.h"
#include "kprobes-test.h"


#define BENCHMARKING	1


/*
 * Test basic API
 */

static bool test_regs_ok;
static int test_func_instance;
static int pre_handler_called;
static int post_handler_called;
static int jprobe_func_called;
static int kretprobe_handler_called;

#define FUNC_ARG1 0x12345678
#define FUNC_ARG2 0xabcdef


#ifndef CONFIG_THUMB2_KERNEL

long arm_func(long r0, long r1);

static void __used __naked __arm_kprobes_test_func(void)
{
	__asm__ __volatile__ (
		".arm					\n\t"
		".type arm_func, %%function		\n\t"
		"arm_func:				\n\t"
		"adds	r0, r0, r1			\n\t"
		"bx	lr				\n\t"
		".code "NORMAL_ISA	 /* Back to Thumb if necessary */
		: : : "r0", "r1", "cc"
	);
}

#else /* CONFIG_THUMB2_KERNEL */

long thumb16_func(long r0, long r1);
long thumb32even_func(long r0, long r1);
long thumb32odd_func(long r0, long r1);

static void __used __naked __thumb_kprobes_test_funcs(void)
{
	__asm__ __volatile__ (
		".type thumb16_func, %%function		\n\t"
		"thumb16_func:				\n\t"
		"adds.n	r0, r0, r1			\n\t"
		"bx	lr				\n\t"

		".align					\n\t"
		".type thumb32even_func, %%function	\n\t"
		"thumb32even_func:			\n\t"
		"adds.w	r0, r0, r1			\n\t"
		"bx	lr				\n\t"

		".align					\n\t"
		"nop.n					\n\t"
		".type thumb32odd_func, %%function	\n\t"
		"thumb32odd_func:			\n\t"
		"adds.w	r0, r0, r1			\n\t"
		"bx	lr				\n\t"

		: : : "r0", "r1", "cc"
	);
}

#endif /* CONFIG_THUMB2_KERNEL */


static int call_test_func(long (*func)(long, long), bool check_test_regs)
{
	long ret;

	++test_func_instance;
	test_regs_ok = false;

	ret = (*func)(FUNC_ARG1, FUNC_ARG2);
	if (ret != FUNC_ARG1 + FUNC_ARG2) {
		pr_err("FAIL: call_test_func: func returned %lx\n", ret);
		return false;
	}

	if (check_test_regs && !test_regs_ok) {
		pr_err("FAIL: test regs not OK\n");
		return false;
	}

	return true;
}

static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
{
	pre_handler_called = test_func_instance;
	if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
		test_regs_ok = true;
	return 0;
}

static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
				unsigned long flags)
{
	post_handler_called = test_func_instance;
	if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
		test_regs_ok = false;
}

static struct kprobe the_kprobe = {
	.addr		= 0,
	.pre_handler	= pre_handler,
	.post_handler	= post_handler
};

static int test_kprobe(long (*func)(long, long))
{
	int ret;

	the_kprobe.addr = (kprobe_opcode_t *)func;
	ret = register_kprobe(&the_kprobe);
	if (ret < 0) {
		pr_err("FAIL: register_kprobe failed with %d\n", ret);
		return ret;
	}

	ret = call_test_func(func, true);

	unregister_kprobe(&the_kprobe);
	the_kprobe.flags = 0; /* Clear disable flag to allow reuse */

	if (!ret)
		return -EINVAL;
	if (pre_handler_called != test_func_instance) {
		pr_err("FAIL: kprobe pre_handler not called\n");
		return -EINVAL;
	}
	if (post_handler_called != test_func_instance) {
		pr_err("FAIL: kprobe post_handler not called\n");
		return -EINVAL;
	}
	if (!call_test_func(func, false))
		return -EINVAL;
	if (pre_handler_called == test_func_instance ||
				post_handler_called == test_func_instance) {
		pr_err("FAIL: probe called after unregistering\n");
		return -EINVAL;
	}

	return 0;
}

static void __kprobes jprobe_func(long r0, long r1)
{
	jprobe_func_called = test_func_instance;
	if (r0 == FUNC_ARG1 && r1 == FUNC_ARG2)
		test_regs_ok = true;
	jprobe_return();
}

static struct jprobe the_jprobe = {
	.entry		= jprobe_func,
};

static int test_jprobe(long (*func)(long, long))
{
	int ret;

	the_jprobe.kp.addr = (kprobe_opcode_t *)func;
	ret = register_jprobe(&the_jprobe);
	if (ret < 0) {
		pr_err("FAIL: register_jprobe failed with %d\n", ret);
		return ret;
	}

	ret = call_test_func(func, true);

	unregister_jprobe(&the_jprobe);
	the_jprobe.kp.flags = 0; /* Clear disable flag to allow reuse */

	if (!ret)
		return -EINVAL;
	if (jprobe_func_called != test_func_instance) {
		pr_err("FAIL: jprobe handler function not called\n");
		return -EINVAL;
	}
	if (!call_test_func(func, false))
		return -EINVAL;
	if (jprobe_func_called == test_func_instance) {
		pr_err("FAIL: probe called after unregistering\n");
		return -EINVAL;
	}

	return 0;
}

static int __kprobes
kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
{
	kretprobe_handler_called = test_func_instance;
	if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
		test_regs_ok = true;
	return 0;
}

static struct kretprobe the_kretprobe = {
	.handler	= kretprobe_handler,
};

static int test_kretprobe(long (*func)(long, long))
{
	int ret;

	the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
	ret = register_kretprobe(&the_kretprobe);
	if (ret < 0) {
		pr_err("FAIL: register_kretprobe failed with %d\n", ret);
		return ret;
	}

	ret = call_test_func(func, true);

	unregister_kretprobe(&the_kretprobe);
	the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */

	if (!ret)
		return -EINVAL;
	if (kretprobe_handler_called != test_func_instance) {
		pr_err("FAIL: kretprobe handler not called\n");
		return -EINVAL;
	}
	if (!call_test_func(func, false))
		return -EINVAL;
	if (jprobe_func_called == test_func_instance) {
		pr_err("FAIL: kretprobe called after unregistering\n");
		return -EINVAL;
	}

	return 0;
}

static int run_api_tests(long (*func)(long, long))
{
	int ret;

	pr_info("    kprobe\n");
	ret = test_kprobe(func);
	if (ret < 0)
		return ret;

	pr_info("    jprobe\n");
	ret = test_jprobe(func);
	if (ret < 0)
		return ret;

	pr_info("    kretprobe\n");
	ret = test_kretprobe(func);
	if (ret < 0)
		return ret;

	return 0;
}


/*
 * Benchmarking
 */

#if BENCHMARKING

static void __naked benchmark_nop(void)
{
	__asm__ __volatile__ (
		"nop		\n\t"
		"bx	lr"
	);
}

#ifdef CONFIG_THUMB2_KERNEL
#define wide ".w"
#else
#define wide
#endif

static void __naked benchmark_pushpop1(void)
{
	__asm__ __volatile__ (
		"stmdb"wide"	sp!, {r3-r11,lr}  \n\t"
		"ldmia"wide"	sp!, {r3-r11,pc}"
	);
}

static void __naked benchmark_pushpop2(void)
{
	__asm__ __volatile__ (
		"stmdb"wide"	sp!, {r0-r8,lr}  \n\t"
		"ldmia"wide"	sp!, {r0-r8,pc}"
	);
}

static void __naked benchmark_pushpop3(void)
{
	__asm__ __volatile__ (
		"stmdb"wide"	sp!, {r4,lr}  \n\t"
		"ldmia"wide"	sp!, {r4,pc}"
	);
}

static void __naked benchmark_pushpop4(void)
{
	__asm__ __volatile__ (
		"stmdb"wide"	sp!, {r0,lr}  \n\t"
		"ldmia"wide"	sp!, {r0,pc}"
	);
}


#ifdef CONFIG_THUMB2_KERNEL

static void __naked benchmark_pushpop_thumb(void)
{
	__asm__ __volatile__ (
		"push.n	{r0-r7,lr}  \n\t"
		"pop.n	{r0-r7,pc}"
	);
}

#endif

static int __kprobes
benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
	return 0;
}

static int benchmark(void(*fn)(void))
{
	unsigned n, i, t, t0;

	for (n = 1000; ; n *= 2) {
		t0 = sched_clock();
		for (i = n; i > 0; --i)
			fn();
		t = sched_clock() - t0;
		if (t >= 250000000)
			break; /* Stop once we took more than 0.25 seconds */
	}
	return t / n; /* Time for one iteration in nanoseconds */
};

static int kprobe_benchmark(void(*fn)(void), unsigned offset)
{
	struct kprobe k = {
		.addr		= (kprobe_opcode_t *)((uintptr_t)fn + offset),
		.pre_handler	= benchmark_pre_handler,
	};

	int ret = register_kprobe(&k);
	if (ret < 0) {
		pr_err("FAIL: register_kprobe failed with %d\n", ret);
		return ret;
	}

	ret = benchmark(fn);

	unregister_kprobe(&k);
	return ret;
};

struct benchmarks {
	void		(*fn)(void);
	unsigned	offset;
	const char	*title;
};

static int run_benchmarks(void)
{
	int ret;
	struct benchmarks list[] = {
		{&benchmark_nop, 0, "nop"},
		/*
		 * benchmark_pushpop{1,3} will have the optimised
		 * instruction emulation, whilst benchmark_pushpop{2,4} will
		 * be the equivalent unoptimised instructions.
		 */
		{&benchmark_pushpop1, 0, "stmdb	sp!, {r3-r11,lr}"},
		{&benchmark_pushpop1, 4, "ldmia	sp!, {r3-r11,pc}"},
		{&benchmark_pushpop2, 0, "stmdb	sp!, {r0-r8,lr}"},
		{&benchmark_pushpop2, 4, "ldmia	sp!, {r0-r8,pc}"},
		{&benchmark_pushpop3, 0, "stmdb	sp!, {r4,lr}"},
		{&benchmark_pushpop3, 4, "ldmia	sp!, {r4,pc}"},
		{&benchmark_pushpop4, 0, "stmdb	sp!, {r0,lr}"},
		{&benchmark_pushpop4, 4, "ldmia	sp!, {r0,pc}"},
#ifdef CONFIG_THUMB2_KERNEL
		{&benchmark_pushpop_thumb, 0, "push.n	{r0-r7,lr}"},
		{&benchmark_pushpop_thumb, 2, "pop.n	{r0-r7,pc}"},
#endif
		{0}
	};

	struct benchmarks *b;
	for (b = list; b->fn; ++b) {
		ret = kprobe_benchmark(b->fn, b->offset);
		if (ret < 0)
			return ret;
		pr_info("    %dns for kprobe %s\n", ret, b->title);
	}

	pr_info("\n");
	return 0;
}

#endif /* BENCHMARKING */


/*
 * Decoding table self-consistency tests
 */

static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
	[DECODE_TYPE_TABLE]	= sizeof(struct decode_table),
	[DECODE_TYPE_CUSTOM]	= sizeof(struct decode_custom),
	[DECODE_TYPE_SIMULATE]	= sizeof(struct decode_simulate),
	[DECODE_TYPE_EMULATE]	= sizeof(struct decode_emulate),
	[DECODE_TYPE_OR]	= sizeof(struct decode_or),
	[DECODE_TYPE_REJECT]	= sizeof(struct decode_reject)
};

static int table_iter(const union decode_item *table,
			int (*fn)(const struct decode_header *, void *),
			void *args)
{
	const struct decode_header *h = (struct decode_header *)table;
	int result;

	for (;;) {
		enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;

		if (type == DECODE_TYPE_END)
			return 0;

		result = fn(h, args);
		if (result)
			return result;

		h = (struct decode_header *)
			((uintptr_t)h + decode_struct_sizes[type]);

	}
}

static int table_test_fail(const struct decode_header *h, const char* message)
{

	pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
					message, h->mask.bits, h->value.bits);
	return -EINVAL;
}

struct table_test_args {
	const union decode_item *root_table;
	u32			parent_mask;
	u32			parent_value;
};

static int table_test_fn(const struct decode_header *h, void *args)
{
	struct table_test_args *a = (struct table_test_args *)args;
	enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;

	if (h->value.bits & ~h->mask.bits)
		return table_test_fail(h, "Match value has bits not in mask");

	if ((h->mask.bits & a->parent_mask) != a->parent_mask)
		return table_test_fail(h, "Mask has bits not in parent mask");

	if ((h->value.bits ^ a->parent_value) & a->parent_mask)
		return table_test_fail(h, "Value is inconsistent with parent");

	if (type == DECODE_TYPE_TABLE) {
		struct decode_table *d = (struct decode_table *)h;
		struct table_test_args args2 = *a;
		args2.parent_mask = h->mask.bits;
		args2.parent_value = h->value.bits;
		return table_iter(d->table.table, table_test_fn, &args2);
	}

	return 0;
}

static int table_test(const union decode_item *table)
{
	struct table_test_args args = {
		.root_table	= table,
		.parent_mask	= 0,
		.parent_value	= 0
	};
	return table_iter(args.root_table, table_test_fn, &args);
}


/*
 * Decoding table test coverage analysis
 *
 * coverage_start() builds a coverage_table which contains a list of
 * coverage_entry's to match each entry in the specified kprobes instruction
 * decoding table.
 *
 * When test cases are run, coverage_add() is called to process each case.
 * This looks up the corresponding entry in the coverage_table and sets it as
 * being matched, as well as clearing the regs flag appropriate for the test.
 *
 * After all test cases have been run, coverage_end() is called to check that
 * all entries in coverage_table have been matched and that all regs flags are
 * cleared. I.e. that all possible combinations of instructions described by
 * the kprobes decoding tables have had a test case executed for them.
 */

bool coverage_fail;

#define MAX_COVERAGE_ENTRIES 256

struct coverage_entry {
	const struct decode_header	*header;
	unsigned			regs;
	unsigned			nesting;
	char				matched;
};

struct coverage_table {
	struct coverage_entry	*base;
	unsigned		num_entries;
	unsigned		nesting;
};

struct coverage_table coverage;

#define COVERAGE_ANY_REG	(1<<0)
#define COVERAGE_SP		(1<<1)
#define COVERAGE_PC		(1<<2)
#define COVERAGE_PCWB		(1<<3)

static const char coverage_register_lookup[16] = {
	[REG_TYPE_ANY]		= COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
	[REG_TYPE_SAMEAS16]	= COVERAGE_ANY_REG,
	[REG_TYPE_SP]		= COVERAGE_SP,
	[REG_TYPE_PC]		= COVERAGE_PC,
	[REG_TYPE_NOSP]		= COVERAGE_ANY_REG | COVERAGE_SP,
	[REG_TYPE_NOSPPC]	= COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
	[REG_TYPE_NOPC]		= COVERAGE_ANY_REG | COVERAGE_PC,
	[REG_TYPE_NOPCWB]	= COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
	[REG_TYPE_NOPCX]	= COVERAGE_ANY_REG,
	[REG_TYPE_NOSPPCX]	= COVERAGE_ANY_REG | COVERAGE_SP,
};

unsigned coverage_start_registers(const struct decode_header *h)
{
	unsigned regs = 0;
	int i;
	for (i = 0; i < 20; i += 4) {
		int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
		regs |= coverage_register_lookup[r] << i;
	}
	return regs;
}

static int coverage_start_fn(const struct decode_header *h, void *args)
{
	struct coverage_table *coverage = (struct coverage_table *)args;
	enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
	struct coverage_entry *entry = coverage->base + coverage->num_entries;

	if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
		pr_err("FAIL: Out of space for test coverage data");
		return -ENOMEM;
	}

	++coverage->num_entries;

	entry->header = h;
	entry->regs = coverage_start_registers(h);
	entry->nesting = coverage->nesting;
	entry->matched = false;

	if (type == DECODE_TYPE_TABLE) {
		struct decode_table *d = (struct decode_table *)h;
		int ret;
		++coverage->nesting;
		ret = table_iter(d->table.table, coverage_start_fn, coverage);
		--coverage->nesting;
		return ret;
	}

	return 0;
}

static int coverage_start(const union decode_item *table)
{
	coverage.base = kmalloc(MAX_COVERAGE_ENTRIES *
				sizeof(struct coverage_entry), GFP_KERNEL);
	coverage.num_entries = 0;
	coverage.nesting = 0;
	return table_iter(table, coverage_start_fn, &coverage);
}

static void
coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
{
	int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
	int i;
	for (i = 0; i < 20; i += 4) {
		enum decode_reg_type reg_type = (regs >> i) & 0xf;
		int reg = (insn >> i) & 0xf;
		int flag;

		if (!reg_type)
			continue;

		if (reg == 13)
			flag = COVERAGE_SP;
		else if (reg == 15)
			flag = COVERAGE_PC;
		else
			flag = COVERAGE_ANY_REG;
		entry->regs &= ~(flag << i);

		switch (reg_type) {

		case REG_TYPE_NONE:
		case REG_TYPE_ANY:
		case REG_TYPE_SAMEAS16:
			break;

		case REG_TYPE_SP:
			if (reg != 13)
				return;
			break;

		case REG_TYPE_PC:
			if (reg != 15)
				return;
			break;

		case REG_TYPE_NOSP:
			if (reg == 13)
				return;
			break;

		case REG_TYPE_NOSPPC:
		case REG_TYPE_NOSPPCX:
			if (reg == 13 || reg == 15)
				return;
			break;

		case REG_TYPE_NOPCWB:
			if (!is_writeback(insn))
				break;
			if (reg == 15) {
				entry->regs &= ~(COVERAGE_PCWB << i);
				return;
			}
			break;

		case REG_TYPE_NOPC:
		case REG_TYPE_NOPCX:
			if (reg == 15)
				return;
			break;
		}

	}
}

static void coverage_add(kprobe_opcode_t insn)
{
	struct coverage_entry *entry = coverage.base;
	struct coverage_entry *end = coverage.base + coverage.num_entries;
	bool matched = false;
	unsigned nesting = 0;

	for (; entry < end; ++entry) {
		const struct decode_header *h = entry->header;
		enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;

		if (entry->nesting > nesting)
			continue; /* Skip sub-table we didn't match */

		if (entry->nesting < nesting)
			break; /* End of sub-table we were scanning */

		if (!matched) {
			if ((insn & h->mask.bits) != h->value.bits)
				continue;
			entry->matched = true;
		}

		switch (type) {

		case DECODE_TYPE_TABLE:
			++nesting;
			break;

		case DECODE_TYPE_CUSTOM:
		case DECODE_TYPE_SIMULATE:
		case DECODE_TYPE_EMULATE:
			coverage_add_registers(entry, insn);
			return;

		case DECODE_TYPE_OR:
			matched = true;
			break;

		case DECODE_TYPE_REJECT:
		default:
			return;
		}

	}
}

static void coverage_end(void)
{
	struct coverage_entry *entry = coverage.base;
	struct coverage_entry *end = coverage.base + coverage.num_entries;

	for (; entry < end; ++entry) {
		u32 mask = entry->header->mask.bits;
		u32 value = entry->header->value.bits;

		if (entry->regs) {
			pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
				mask, value, entry->regs);
			coverage_fail = true;
		}
		if (!entry->matched) {
			pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
				mask, value);
			coverage_fail = true;
		}
	}

	kfree(coverage.base);
}


/*
 * Framework for instruction set test cases
 */

void __naked __kprobes_test_case_start(void)
{
	__asm__ __volatile__ (
		"stmdb	sp!, {r4-r11}				\n\t"
		"sub	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
		"bic	r0, lr, #1  @ r0 = inline title string	\n\t"
		"mov	r1, sp					\n\t"
		"bl	kprobes_test_case_start			\n\t"
		"bx	r0					\n\t"
	);
}

#ifndef CONFIG_THUMB2_KERNEL

void __naked __kprobes_test_case_end_32(void)
{
	__asm__ __volatile__ (
		"mov	r4, lr					\n\t"
		"bl	kprobes_test_case_end			\n\t"
		"cmp	r0, #0					\n\t"
		"movne	pc, r0					\n\t"
		"mov	r0, r4					\n\t"
		"add	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
		"ldmia	sp!, {r4-r11}				\n\t"
		"mov	pc, r0					\n\t"
	);
}

#else /* CONFIG_THUMB2_KERNEL */

void __naked __kprobes_test_case_end_16(void)
{
	__asm__ __volatile__ (
		"mov	r4, lr					\n\t"
		"bl	kprobes_test_case_end			\n\t"
		"cmp	r0, #0					\n\t"
		"bxne	r0					\n\t"
		"mov	r0, r4					\n\t"
		"add	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
		"ldmia	sp!, {r4-r11}				\n\t"
		"bx	r0					\n\t"
	);
}

void __naked __kprobes_test_case_end_32(void)
{
	__asm__ __volatile__ (
		".arm						\n\t"
		"orr	lr, lr, #1  @ will return to Thumb code	\n\t"
		"ldr	pc, 1f					\n\t"
		"1:						\n\t"
		".word	__kprobes_test_case_end_16		\n\t"
	);
}

#endif


int kprobe_test_flags;
int kprobe_test_cc_position;

static int test_try_count;
static int test_pass_count;
static int test_fail_count;

static struct pt_regs initial_regs;
static struct pt_regs expected_regs;
static struct pt_regs result_regs;

static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];

static const char *current_title;
static struct test_arg *current_args;
static u32 *current_stack;
static uintptr_t current_branch_target;

static uintptr_t current_code_start;
static kprobe_opcode_t current_instruction;


#define TEST_CASE_PASSED -1
#define TEST_CASE_FAILED -2

static int test_case_run_count;
static bool test_case_is_thumb;
static int test_instance;

/*
 * We ignore the state of the imprecise abort disable flag (CPSR.A) because this
 * can change randomly as the kernel doesn't take care to preserve or initialise
 * this across context switches. Also, with Security Extentions, the flag may
 * not be under control of the kernel; for this reason we ignore the state of
 * the FIQ disable flag CPSR.F as well.
 */
#define PSR_IGNORE_BITS (PSR_A_BIT | PSR_F_BIT)

static unsigned long test_check_cc(int cc, unsigned long cpsr)
{
	int ret = arm_check_condition(cc << 28, cpsr);

	return (ret != ARM_OPCODE_CONDTEST_FAIL);
}

static int is_last_scenario;
static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
static int memory_needs_checking;

static unsigned long test_context_cpsr(int scenario)
{
	unsigned long cpsr;

	probe_should_run = 1;

	/* Default case is that we cycle through 16 combinations of flags */
	cpsr  = (scenario & 0xf) << 28; /* N,Z,C,V flags */
	cpsr |= (scenario & 0xf) << 16; /* GE flags */
	cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */

	if (!test_case_is_thumb) {
		/* Testing ARM code */
		int cc = current_instruction >> 28;

		probe_should_run = test_check_cc(cc, cpsr) != 0;
		if (scenario == 15)
			is_last_scenario = true;

	} else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
		/* Testing Thumb code without setting ITSTATE */
		if (kprobe_test_cc_position) {
			int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
			probe_should_run = test_check_cc(cc, cpsr) != 0;
		}

		if (scenario == 15)
			is_last_scenario = true;

	} else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
		/* Testing Thumb code with all combinations of ITSTATE */
		unsigned x = (scenario >> 4);
		unsigned cond_base = x % 7; /* ITSTATE<7:5> */
		unsigned mask = x / 7 + 2;  /* ITSTATE<4:0>, bits reversed */

		if (mask > 0x1f) {
			/* Finish by testing state from instruction 'itt al' */
			cond_base = 7;
			mask = 0x4;
			if ((scenario & 0xf) == 0xf)
				is_last_scenario = true;
		}

		cpsr |= cond_base << 13;	/* ITSTATE<7:5> */
		cpsr |= (mask & 0x1) << 12;	/* ITSTATE<4> */
		cpsr |= (mask & 0x2) << 10;	/* ITSTATE<3> */
		cpsr |= (mask & 0x4) << 8;	/* ITSTATE<2> */
		cpsr |= (mask & 0x8) << 23;	/* ITSTATE<1> */
		cpsr |= (mask & 0x10) << 21;	/* ITSTATE<0> */

		probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;

	} else {
		/* Testing Thumb code with several combinations of ITSTATE */
		switch (scenario) {
		case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
			cpsr = 0x00000800;
			probe_should_run = 0;
			break;
		case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
			cpsr = 0xf0007800;
			probe_should_run = 0;
			break;
		case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
			cpsr = 0x00009800;
			break;
		case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
			cpsr = 0xf0002800;
			is_last_scenario = true;
			break;
		}
	}

	return cpsr;
}

static void setup_test_context(struct pt_regs *regs)
{
	int scenario = test_case_run_count>>1;
	unsigned long val;
	struct test_arg *args;
	int i;

	is_last_scenario = false;
	memory_needs_checking = false;

	/* Initialise test memory on stack */
	val = (scenario & 1) ? VALM : ~VALM;
	for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
		current_stack[i] = val + (i << 8);
	/* Put target of branch on stack for tests which load PC from memory */
	if (current_branch_target)
		current_stack[15] = current_branch_target;
	/* Put a value for SP on stack for tests which load SP from memory */
	current_stack[13] = (u32)current_stack + 120;

	/* Initialise register values to their default state */
	val = (scenario & 2) ? VALR : ~VALR;
	for (i = 0; i < 13; ++i)
		regs->uregs[i] = val ^ (i << 8);
	regs->ARM_lr = val ^ (14 << 8);
	regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
	regs->ARM_cpsr |= test_context_cpsr(scenario);

	/* Perform testcase specific register setup  */
	args = current_args;
	for (; args[0].type != ARG_TYPE_END; ++args)
		switch (args[0].type) {
		case ARG_TYPE_REG: {
			struct test_arg_regptr *arg =
				(struct test_arg_regptr *)args;
			regs->uregs[arg->reg] = arg->val;
			break;
		}
		case ARG_TYPE_PTR: {
			struct test_arg_regptr *arg =
				(struct test_arg_regptr *)args;
			regs->uregs[arg->reg] =
				(unsigned long)current_stack + arg->val;
			memory_needs_checking = true;
			break;
		}
		case ARG_TYPE_MEM: {
			struct test_arg_mem *arg = (struct test_arg_mem *)args;
			current_stack[arg->index] = arg->val;
			break;
		}
		default:
			break;
		}
}

struct test_probe {
	struct kprobe	kprobe;
	bool		registered;
	int		hit;
};

static void unregister_test_probe(struct test_probe *probe)
{
	if (probe->registered) {
		unregister_kprobe(&probe->kprobe);
		probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
	}
	probe->registered = false;
}

static int register_test_probe(struct test_probe *probe)
{
	int ret;

	if (probe->registered)
		BUG();

	ret = register_kprobe(&probe->kprobe);
	if (ret >= 0) {
		probe->registered = true;
		probe->hit = -1;
	}
	return ret;
}

static int __kprobes
test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
	container_of(p, struct test_probe, kprobe)->hit = test_instance;
	return 0;
}

static void __kprobes
test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
							unsigned long flags)
{
	setup_test_context(regs);
	initial_regs = *regs;
	initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
}

static int __kprobes
test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
	container_of(p, struct test_probe, kprobe)->hit = test_instance;
	return 0;
}

static int __kprobes
test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
	if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
		return 0; /* Already run for this test instance */

	result_regs = *regs;
	result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;

	/* Undo any changes done to SP by the test case */
	regs->ARM_sp = (unsigned long)current_stack;

	container_of(p, struct test_probe, kprobe)->hit = test_instance;
	return 0;
}

static struct test_probe test_before_probe = {
	.kprobe.pre_handler	= test_before_pre_handler,
	.kprobe.post_handler	= test_before_post_handler,
};

static struct test_probe test_case_probe = {
	.kprobe.pre_handler	= test_case_pre_handler,
};

static struct test_probe test_after_probe = {
	.kprobe.pre_handler	= test_after_pre_handler,
};

static struct test_probe test_after2_probe = {
	.kprobe.pre_handler	= test_after_pre_handler,
};

static void test_case_cleanup(void)
{
	unregister_test_probe(&test_before_probe);
	unregister_test_probe(&test_case_probe);
	unregister_test_probe(&test_after_probe);
	unregister_test_probe(&test_after2_probe);
}

static void print_registers(struct pt_regs *regs)
{
	pr_err("r0  %08lx | r1  %08lx | r2  %08lx | r3  %08lx\n",
		regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
	pr_err("r4  %08lx | r5  %08lx | r6  %08lx | r7  %08lx\n",
		regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
	pr_err("r8  %08lx | r9  %08lx | r10 %08lx | r11 %08lx\n",
		regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
	pr_err("r12 %08lx | sp  %08lx | lr  %08lx | pc  %08lx\n",
		regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
	pr_err("cpsr %08lx\n", regs->ARM_cpsr);
}

static void print_memory(u32 *mem, size_t size)
{
	int i;
	for (i = 0; i < size / sizeof(u32); i += 4)
		pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
						mem[i+2], mem[i+3]);
}

static size_t expected_memory_size(u32 *sp)
{
	size_t size = sizeof(expected_memory);
	int offset = (uintptr_t)sp - (uintptr_t)current_stack;
	if (offset > 0)
		size -= offset;
	return size;
}

static void test_case_failed(const char *message)
{
	test_case_cleanup();

	pr_err("FAIL: %s\n", message);
	pr_err("FAIL: Test %s\n", current_title);
	pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
}

static unsigned long next_instruction(unsigned long pc)
{
#ifdef CONFIG_THUMB2_KERNEL
	if ((pc & 1) && !is_wide_instruction(*(u16 *)(pc - 1)))
		return pc + 2;
	else
#endif
	return pc + 4;
}

static uintptr_t __used kprobes_test_case_start(const char *title, void *stack)
{
	struct test_arg *args;
	struct test_arg_end *end_arg;
	unsigned long test_code;

	args = (struct test_arg *)PTR_ALIGN(title + strlen(title) + 1, 4);

	current_title = title;
	current_args = args;
	current_stack = stack;

	++test_try_count;

	while (args->type != ARG_TYPE_END)
		++args;
	end_arg = (struct test_arg_end *)args;

	test_code = (unsigned long)(args + 1); /* Code starts after args */

	test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
	if (test_case_is_thumb)
		test_code |= 1;

	current_code_start = test_code;

	current_branch_target = 0;
	if (end_arg->branch_offset != end_arg->end_offset)
		current_branch_target = test_code + end_arg->branch_offset;

	test_code += end_arg->code_offset;
	test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;

	test_code = next_instruction(test_code);
	test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;

	if (test_case_is_thumb) {
		u16 *p = (u16 *)(test_code & ~1);
		current_instruction = p[0];
		if (is_wide_instruction(current_instruction)) {
			current_instruction <<= 16;
			current_instruction |= p[1];
		}
	} else {
		current_instruction = *(u32 *)test_code;
	}

	if (current_title[0] == '.')
		verbose("%s\n", current_title);
	else
		verbose("%s\t@ %0*x\n", current_title,
					test_case_is_thumb ? 4 : 8,
					current_instruction);

	test_code = next_instruction(test_code);
	test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;

	if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
		if (!test_case_is_thumb ||
			is_wide_instruction(current_instruction)) {
				test_case_failed("expected 16-bit instruction");
				goto fail;
		}
	} else {
		if (test_case_is_thumb &&
			!is_wide_instruction(current_instruction)) {
				test_case_failed("expected 32-bit instruction");
				goto fail;
		}
	}

	coverage_add(current_instruction);

	if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
		if (register_test_probe(&test_case_probe) < 0)
			goto pass;
		test_case_failed("registered probe for unsupported instruction");
		goto fail;
	}

	if (end_arg->flags & ARG_FLAG_SUPPORTED) {
		if (register_test_probe(&test_case_probe) >= 0)
			goto pass;
		test_case_failed("couldn't register probe for supported instruction");
		goto fail;
	}

	if (register_test_probe(&test_before_probe) < 0) {
		test_case_failed("register test_before_probe failed");
		goto fail;
	}
	if (register_test_probe(&test_after_probe) < 0) {
		test_case_failed("register test_after_probe failed");
		goto fail;
	}
	if (current_branch_target) {
		test_after2_probe.kprobe.addr =
				(kprobe_opcode_t *)current_branch_target;
		if (register_test_probe(&test_after2_probe) < 0) {
			test_case_failed("register test_after2_probe failed");
			goto fail;
		}
	}

	/* Start first run of test case */
	test_case_run_count = 0;
	++test_instance;
	return current_code_start;
pass:
	test_case_run_count = TEST_CASE_PASSED;
	return (uintptr_t)test_after_probe.kprobe.addr;
fail:
	test_case_run_count = TEST_CASE_FAILED;
	return (uintptr_t)test_after_probe.kprobe.addr;
}

static bool check_test_results(void)
{
	size_t mem_size = 0;
	u32 *mem = 0;

	if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
		test_case_failed("registers differ");
		goto fail;
	}

	if (memory_needs_checking) {
		mem = (u32 *)result_regs.ARM_sp;
		mem_size = expected_memory_size(mem);
		if (memcmp(expected_memory, mem, mem_size)) {
			test_case_failed("test memory differs");
			goto fail;
		}
	}

	return true;

fail:
	pr_err("initial_regs:\n");
	print_registers(&initial_regs);
	pr_err("expected_regs:\n");
	print_registers(&expected_regs);
	pr_err("result_regs:\n");
	print_registers(&result_regs);

	if (mem) {
		pr_err("current_stack=%p\n", current_stack);
		pr_err("expected_memory:\n");
		print_memory(expected_memory, mem_size);
		pr_err("result_memory:\n");
		print_memory(mem, mem_size);
	}

	return false;
}

static uintptr_t __used kprobes_test_case_end(void)
{
	if (test_case_run_count < 0) {
		if (test_case_run_count == TEST_CASE_PASSED)
			/* kprobes_test_case_start did all the needed testing */
			goto pass;
		else
			/* kprobes_test_case_start failed */
			goto fail;
	}

	if (test_before_probe.hit != test_instance) {
		test_case_failed("test_before_handler not run");
		goto fail;
	}

	if (test_after_probe.hit != test_instance &&
				test_after2_probe.hit != test_instance) {
		test_case_failed("test_after_handler not run");
		goto fail;
	}

	/*
	 * Even numbered test runs ran without a probe on the test case so
	 * we can gather reference results. The subsequent odd numbered run
	 * will have the probe inserted.
	*/
	if ((test_case_run_count & 1) == 0) {
		/* Save results from run without probe */
		u32 *mem = (u32 *)result_regs.ARM_sp;
		expected_regs = result_regs;
		memcpy(expected_memory, mem, expected_memory_size(mem));

		/* Insert probe onto test case instruction */
		if (register_test_probe(&test_case_probe) < 0) {
			test_case_failed("register test_case_probe failed");
			goto fail;
		}
	} else {
		/* Check probe ran as expected */
		if (probe_should_run == 1) {
			if (test_case_probe.hit != test_instance) {
				test_case_failed("test_case_handler not run");
				goto fail;
			}
		} else if (probe_should_run == 0) {
			if (test_case_probe.hit == test_instance) {
				test_case_failed("test_case_handler ran");
				goto fail;
			}
		}

		/* Remove probe for any subsequent reference run */
		unregister_test_probe(&test_case_probe);

		if (!check_test_results())
			goto fail;

		if (is_last_scenario)
			goto pass;
	}

	/* Do next test run */
	++test_case_run_count;
	++test_instance;
	return current_code_start;
fail:
	++test_fail_count;
	goto end;
pass:
	++test_pass_count;
end:
	test_case_cleanup();
	return 0;
}


/*
 * Top level test functions
 */

static int run_test_cases(void (*tests)(void), const union decode_item *table)
{
	int ret;

	pr_info("    Check decoding tables\n");
	ret = table_test(table);
	if (ret)
		return ret;

	pr_info("    Run test cases\n");
	ret = coverage_start(table);
	if (ret)
		return ret;

	tests();

	coverage_end();
	return 0;
}


static int __init run_all_tests(void)
{
	int ret = 0;

	pr_info("Beginning kprobe tests...\n");

#ifndef CONFIG_THUMB2_KERNEL

	pr_info("Probe ARM code\n");
	ret = run_api_tests(arm_func);
	if (ret)
		goto out;

	pr_info("ARM instruction simulation\n");
	ret = run_test_cases(kprobe_arm_test_cases, kprobe_decode_arm_table);
	if (ret)
		goto out;

#else /* CONFIG_THUMB2_KERNEL */

	pr_info("Probe 16-bit Thumb code\n");
	ret = run_api_tests(thumb16_func);
	if (ret)
		goto out;

	pr_info("Probe 32-bit Thumb code, even halfword\n");
	ret = run_api_tests(thumb32even_func);
	if (ret)
		goto out;

	pr_info("Probe 32-bit Thumb code, odd halfword\n");
	ret = run_api_tests(thumb32odd_func);
	if (ret)
		goto out;

	pr_info("16-bit Thumb instruction simulation\n");
	ret = run_test_cases(kprobe_thumb16_test_cases,
				kprobe_decode_thumb16_table);
	if (ret)
		goto out;

	pr_info("32-bit Thumb instruction simulation\n");
	ret = run_test_cases(kprobe_thumb32_test_cases,
				kprobe_decode_thumb32_table);
	if (ret)
		goto out;
#endif

	pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
		test_try_count, test_pass_count, test_fail_count);
	if (test_fail_count) {
		ret = -EINVAL;
		goto out;
	}

#if BENCHMARKING
	pr_info("Benchmarks\n");
	ret = run_benchmarks();
	if (ret)
		goto out;
#endif

#if __LINUX_ARM_ARCH__ >= 7
	/* We are able to run all test cases so coverage should be complete */
	if (coverage_fail) {
		pr_err("FAIL: Test coverage checks failed\n");
		ret = -EINVAL;
		goto out;
	}
#endif

out:
	if (ret == 0)
		pr_info("Finished kprobe tests OK\n");
	else
		pr_err("kprobe tests failed\n");

	return ret;
}


/*
 * Module setup
 */

#ifdef MODULE

static void __exit kprobe_test_exit(void)
{
}

module_init(run_all_tests)
module_exit(kprobe_test_exit)
MODULE_LICENSE("GPL");

#else /* !MODULE */

late_initcall(run_all_tests);

#endif