ccp-crypto-main.c 10.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
/*
 * AMD Cryptographic Coprocessor (CCP) crypto API support
 *
 * Copyright (C) 2013 Advanced Micro Devices, Inc.
 *
 * Author: Tom Lendacky <thomas.lendacky@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/ccp.h>
#include <linux/scatterlist.h>
#include <crypto/internal/hash.h>

#include "ccp-crypto.h"

MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>");
MODULE_LICENSE("GPL");
MODULE_VERSION("1.0.0");
MODULE_DESCRIPTION("AMD Cryptographic Coprocessor crypto API support");


/* List heads for the supported algorithms */
static LIST_HEAD(hash_algs);
static LIST_HEAD(cipher_algs);

/* For any tfm, requests for that tfm on the same CPU must be returned
 * in the order received.  With multiple queues available, the CCP can
 * process more than one cmd at a time.  Therefore we must maintain
 * a cmd list to insure the proper ordering of requests on a given tfm/cpu
 * combination.
 */
struct ccp_crypto_cpu_queue {
	struct list_head cmds;
	struct list_head *backlog;
	unsigned int cmd_count;
};
#define CCP_CRYPTO_MAX_QLEN	50

struct ccp_crypto_percpu_queue {
	struct ccp_crypto_cpu_queue __percpu *cpu_queue;
};
static struct ccp_crypto_percpu_queue req_queue;

struct ccp_crypto_cmd {
	struct list_head entry;

	struct ccp_cmd *cmd;

	/* Save the crypto_tfm and crypto_async_request addresses
	 * separately to avoid any reference to a possibly invalid
	 * crypto_async_request structure after invoking the request
	 * callback
	 */
	struct crypto_async_request *req;
	struct crypto_tfm *tfm;

	/* Used for held command processing to determine state */
	int ret;

	int cpu;
};

struct ccp_crypto_cpu {
	struct work_struct work;
	struct completion completion;
	struct ccp_crypto_cmd *crypto_cmd;
	int err;
};


static inline bool ccp_crypto_success(int err)
{
	if (err && (err != -EINPROGRESS) && (err != -EBUSY))
		return false;

	return true;
}

/*
 * ccp_crypto_cmd_complete must be called while running on the appropriate
 * cpu and the caller must have done a get_cpu to disable preemption
 */
static struct ccp_crypto_cmd *ccp_crypto_cmd_complete(
	struct ccp_crypto_cmd *crypto_cmd, struct ccp_crypto_cmd **backlog)
{
	struct ccp_crypto_cpu_queue *cpu_queue;
	struct ccp_crypto_cmd *held = NULL, *tmp;

	*backlog = NULL;

	cpu_queue = this_cpu_ptr(req_queue.cpu_queue);

	/* Held cmds will be after the current cmd in the queue so start
	 * searching for a cmd with a matching tfm for submission.
	 */
	tmp = crypto_cmd;
	list_for_each_entry_continue(tmp, &cpu_queue->cmds, entry) {
		if (crypto_cmd->tfm != tmp->tfm)
			continue;
		held = tmp;
		break;
	}

	/* Process the backlog:
	 *   Because cmds can be executed from any point in the cmd list
	 *   special precautions have to be taken when handling the backlog.
	 */
	if (cpu_queue->backlog != &cpu_queue->cmds) {
		/* Skip over this cmd if it is the next backlog cmd */
		if (cpu_queue->backlog == &crypto_cmd->entry)
			cpu_queue->backlog = crypto_cmd->entry.next;

		*backlog = container_of(cpu_queue->backlog,
					struct ccp_crypto_cmd, entry);
		cpu_queue->backlog = cpu_queue->backlog->next;

		/* Skip over this cmd if it is now the next backlog cmd */
		if (cpu_queue->backlog == &crypto_cmd->entry)
			cpu_queue->backlog = crypto_cmd->entry.next;
	}

	/* Remove the cmd entry from the list of cmds */
	cpu_queue->cmd_count--;
	list_del(&crypto_cmd->entry);

	return held;
}

static void ccp_crypto_complete_on_cpu(struct work_struct *work)
{
	struct ccp_crypto_cpu *cpu_work =
		container_of(work, struct ccp_crypto_cpu, work);
	struct ccp_crypto_cmd *crypto_cmd = cpu_work->crypto_cmd;
	struct ccp_crypto_cmd *held, *next, *backlog;
	struct crypto_async_request *req = crypto_cmd->req;
	struct ccp_ctx *ctx = crypto_tfm_ctx(req->tfm);
	int cpu, ret;

	cpu = get_cpu();

	if (cpu_work->err == -EINPROGRESS) {
		/* Only propogate the -EINPROGRESS if necessary */
		if (crypto_cmd->ret == -EBUSY) {
			crypto_cmd->ret = -EINPROGRESS;
			req->complete(req, -EINPROGRESS);
		}

		goto e_cpu;
	}

	/* Operation has completed - update the queue before invoking
	 * the completion callbacks and retrieve the next cmd (cmd with
	 * a matching tfm) that can be submitted to the CCP.
	 */
	held = ccp_crypto_cmd_complete(crypto_cmd, &backlog);
	if (backlog) {
		backlog->ret = -EINPROGRESS;
		backlog->req->complete(backlog->req, -EINPROGRESS);
	}

	/* Transition the state from -EBUSY to -EINPROGRESS first */
	if (crypto_cmd->ret == -EBUSY)
		req->complete(req, -EINPROGRESS);

	/* Completion callbacks */
	ret = cpu_work->err;
	if (ctx->complete)
		ret = ctx->complete(req, ret);
	req->complete(req, ret);

	/* Submit the next cmd */
	while (held) {
		ret = ccp_enqueue_cmd(held->cmd);
		if (ccp_crypto_success(ret))
			break;

		/* Error occurred, report it and get the next entry */
		held->req->complete(held->req, ret);

		next = ccp_crypto_cmd_complete(held, &backlog);
		if (backlog) {
			backlog->ret = -EINPROGRESS;
			backlog->req->complete(backlog->req, -EINPROGRESS);
		}

		kfree(held);
		held = next;
	}

	kfree(crypto_cmd);

e_cpu:
	put_cpu();

	complete(&cpu_work->completion);
}

static void ccp_crypto_complete(void *data, int err)
{
	struct ccp_crypto_cmd *crypto_cmd = data;
	struct ccp_crypto_cpu cpu_work;

	INIT_WORK(&cpu_work.work, ccp_crypto_complete_on_cpu);
	init_completion(&cpu_work.completion);
	cpu_work.crypto_cmd = crypto_cmd;
	cpu_work.err = err;

	schedule_work_on(crypto_cmd->cpu, &cpu_work.work);

	/* Keep the completion call synchronous */
	wait_for_completion(&cpu_work.completion);
}

static int ccp_crypto_enqueue_cmd(struct ccp_crypto_cmd *crypto_cmd)
{
	struct ccp_crypto_cpu_queue *cpu_queue;
	struct ccp_crypto_cmd *active = NULL, *tmp;
	int cpu, ret;

	cpu = get_cpu();
	crypto_cmd->cpu = cpu;

	cpu_queue = this_cpu_ptr(req_queue.cpu_queue);

	/* Check if the cmd can/should be queued */
	if (cpu_queue->cmd_count >= CCP_CRYPTO_MAX_QLEN) {
		ret = -EBUSY;
		if (!(crypto_cmd->cmd->flags & CCP_CMD_MAY_BACKLOG))
			goto e_cpu;
	}

	/* Look for an entry with the same tfm.  If there is a cmd
	 * with the same tfm in the list for this cpu then the current
	 * cmd cannot be submitted to the CCP yet.
	 */
	list_for_each_entry(tmp, &cpu_queue->cmds, entry) {
		if (crypto_cmd->tfm != tmp->tfm)
			continue;
		active = tmp;
		break;
	}

	ret = -EINPROGRESS;
	if (!active) {
		ret = ccp_enqueue_cmd(crypto_cmd->cmd);
		if (!ccp_crypto_success(ret))
			goto e_cpu;
	}

	if (cpu_queue->cmd_count >= CCP_CRYPTO_MAX_QLEN) {
		ret = -EBUSY;
		if (cpu_queue->backlog == &cpu_queue->cmds)
			cpu_queue->backlog = &crypto_cmd->entry;
	}
	crypto_cmd->ret = ret;

	cpu_queue->cmd_count++;
	list_add_tail(&crypto_cmd->entry, &cpu_queue->cmds);

e_cpu:
	put_cpu();

	return ret;
}

/**
 * ccp_crypto_enqueue_request - queue an crypto async request for processing
 *				by the CCP
 *
 * @req: crypto_async_request struct to be processed
 * @cmd: ccp_cmd struct to be sent to the CCP
 */
int ccp_crypto_enqueue_request(struct crypto_async_request *req,
			       struct ccp_cmd *cmd)
{
	struct ccp_crypto_cmd *crypto_cmd;
	gfp_t gfp;
	int ret;

	gfp = req->flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC;

	crypto_cmd = kzalloc(sizeof(*crypto_cmd), gfp);
	if (!crypto_cmd)
		return -ENOMEM;

	/* The tfm pointer must be saved and not referenced from the
	 * crypto_async_request (req) pointer because it is used after
	 * completion callback for the request and the req pointer
	 * might not be valid anymore.
	 */
	crypto_cmd->cmd = cmd;
	crypto_cmd->req = req;
	crypto_cmd->tfm = req->tfm;

	cmd->callback = ccp_crypto_complete;
	cmd->data = crypto_cmd;

	if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG)
		cmd->flags |= CCP_CMD_MAY_BACKLOG;
	else
		cmd->flags &= ~CCP_CMD_MAY_BACKLOG;

	ret = ccp_crypto_enqueue_cmd(crypto_cmd);
	if (!ccp_crypto_success(ret))
		kfree(crypto_cmd);

	return ret;
}

struct scatterlist *ccp_crypto_sg_table_add(struct sg_table *table,
					    struct scatterlist *sg_add)
{
	struct scatterlist *sg, *sg_last = NULL;

	for (sg = table->sgl; sg; sg = sg_next(sg))
		if (!sg_page(sg))
			break;
	BUG_ON(!sg);

	for (; sg && sg_add; sg = sg_next(sg), sg_add = sg_next(sg_add)) {
		sg_set_page(sg, sg_page(sg_add), sg_add->length,
			    sg_add->offset);
		sg_last = sg;
	}
	BUG_ON(sg_add);

	return sg_last;
}

static int ccp_register_algs(void)
{
	int ret;

	ret = ccp_register_aes_algs(&cipher_algs);
	if (ret)
		return ret;

	ret = ccp_register_aes_cmac_algs(&hash_algs);
	if (ret)
		return ret;

	ret = ccp_register_aes_xts_algs(&cipher_algs);
	if (ret)
		return ret;

	ret = ccp_register_sha_algs(&hash_algs);
	if (ret)
		return ret;

	return 0;
}

static void ccp_unregister_algs(void)
{
	struct ccp_crypto_ahash_alg *ahash_alg, *ahash_tmp;
	struct ccp_crypto_ablkcipher_alg *ablk_alg, *ablk_tmp;

	list_for_each_entry_safe(ahash_alg, ahash_tmp, &hash_algs, entry) {
		crypto_unregister_ahash(&ahash_alg->alg);
		list_del(&ahash_alg->entry);
		kfree(ahash_alg);
	}

	list_for_each_entry_safe(ablk_alg, ablk_tmp, &cipher_algs, entry) {
		crypto_unregister_alg(&ablk_alg->alg);
		list_del(&ablk_alg->entry);
		kfree(ablk_alg);
	}
}

static int ccp_init_queues(void)
{
	struct ccp_crypto_cpu_queue *cpu_queue;
	int cpu;

	req_queue.cpu_queue = alloc_percpu(struct ccp_crypto_cpu_queue);
	if (!req_queue.cpu_queue)
		return -ENOMEM;

	for_each_possible_cpu(cpu) {
		cpu_queue = per_cpu_ptr(req_queue.cpu_queue, cpu);
		INIT_LIST_HEAD(&cpu_queue->cmds);
		cpu_queue->backlog = &cpu_queue->cmds;
		cpu_queue->cmd_count = 0;
	}

	return 0;
}

static void ccp_fini_queue(void)
{
	struct ccp_crypto_cpu_queue *cpu_queue;
	int cpu;

	for_each_possible_cpu(cpu) {
		cpu_queue = per_cpu_ptr(req_queue.cpu_queue, cpu);
		BUG_ON(!list_empty(&cpu_queue->cmds));
	}
	free_percpu(req_queue.cpu_queue);
}

static int ccp_crypto_init(void)
{
	int ret;

	ret = ccp_init_queues();
	if (ret)
		return ret;

	ret = ccp_register_algs();
	if (ret) {
		ccp_unregister_algs();
		ccp_fini_queue();
	}

	return ret;
}

static void ccp_crypto_exit(void)
{
	ccp_unregister_algs();
	ccp_fini_queue();
}

module_init(ccp_crypto_init);
module_exit(ccp_crypto_exit);